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Abstract

Workflow systems often employ scheduling algorithms that order the
execution of tasks in a workflow to improve performance and efficiency.
Container orchestrators are often used to manage and schedule containers
on a large scale. We design a containerized workflow, a workflow where
all tasks are containers, with a critical path. We run the workflow on
two container schedulers, Kubernetes and Docker Swarm. The goal of
this research is to find a method to order the execution of a containerized
workflow on Kubernetes and Swarm. We order the execution by setting
a priority for certain tasks when submitting the tasks to Kubernetes. For
Swarm, we phase the submission of the tasks to influence the order in
which the tasks are executed. The results for Kubernetes show that the
priority provides a slight improvement in execution time. The results for
Swarm are inconclusive.

1 Introduction

Operating system (OS) virtualization, such as containers, is becoming increas-
ingly popular in the DevOps and cloud communities. Users often run large
volumes of interconnected containers on their cloud infrastructure, requiring
container orchestration tools such as Kubernetes [1] and Docker Swarm [2] to
manage them. These orchestrators provide a layer of abstraction on top of
the underlying infrastructure and provide the user with an API. The user pro-
vides the orchestrator with computing resources, usually in the form of Virtual
Machines (VM). The user can then submit containers to the API and the orches-
tration tool will take care of the scheduling and the monitoring of the containers.

Workflows are a widely used abstraction for describing large scientific appli-
cations. “A workflow comprises three components: a list of tasks or operations,
the set of dependencies between the interconnected tasks (the flow), and the set
of data resources used to generate or terminate the flow” [3]. The execution of
these workflows can be automated by a workflow management system (WMS)
such as Pegasus [4] or Taverna [5]. The WMS organizes the execution of the
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workflows, taking into account the flow of the workflow and the resources needed
for the execution.

The benefits of containers can also be reaped in scientific workflow applica-
tions [6]. Some WMSs already provide operators that use containers. However,
there is little work done in combining the scheduling algorithms in WMSs and
the scheduling algorithms in container orchestrators. Currently there is no stan-
dard or specification for interfacing WMSs and container orchestrators.

Research Question

The main task of a container scheduler is to schedule containers on a set of
computing nodes. The logic of the scheduler is aimed at finding the right node
for each container. Container schedulers have different strategies and different
algorithms that they use, but the logic is always aimed ”downward” towards
the infrastructure. The container scheduler does not take the context of the
containerized task into account. In the case of workflows this means that the
container scheduler is not aware that other tasks may be dependent on the task
inside the container or that the task itself may be dependent on other tasks.

Not only dependencies, but also ordering is an inherent part of workflows.
Workflow systems often employ scheduling algorithms that order the execution
of tasks to improve the performance of a workflow by improving its efficiency [7].
If we are to employ the same scheduling algorithms when executing workflows
on container schedulers we need a way to influence the order in which the
containerized tasks are scheduled. The research question of this project is:

How can we order the execution of a
containerized workflow on a container scheduler?

2 Related Work

There have been successful attempts to incorporate container scheduling in
workflows. Zheng et al. [8] connected Makeflow [9] (a WMS) and Mesos [10] (a
container scheduler) to run a large bioinformatics workflow. Zheng et al. explore
the possibility of running scientific workflows on a container-based scheduling
platform. They implement a batch job system for Mesos and connected it to
Makeflow and Work Queue [11].

Applatix recently introduced Argo, an open source container-native workflow
engine for Kubernetes [12]. Argo expands on Kubernetes as a custom resource
definition [13]. It is designed around running workflows of containerized tasks on
Kubernetes. Argo is, however, limited to Kubernetes as its container scheduler.

Apache Airflow is a workflow system sponsored by the Apache Incubator
[14]. ”Airflow is a platform to programmatically author, schedule and monitor
workflows.” Airflow is currently developing an integration with Kubernetes as
shown in this [15] open Jira ticket.
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3 Method

For the experiments we pick two container schedulers: Docker Swarm and Ku-
bernetes. For each scheduler we set up a small cluster of 5 nodes with 1 vCPU
and 1GB of RAM. For Swarm, we use Docker version 18.03.1-ce and for Kuber-
netes we use version 1.10.5.

We design a workflow consisting of containerized tasks. For the tasks we
create a simple Python application that uses Stress [16] to emulate CPU and
memory usage for a given amount of time. We then package this application in
a Docker container. This gives us a containerized task for which we can set the
resource use and duration. We can set different parameters for each individual
task in the workflow. The container starts CPU cycles and allocates memory
based on the parameters with which the container is run. The source code of
the Python application can be viewed on GitHub [17].

We design the workflow based on two requirements: It should have an identi-
fiable critical path [18] and its resource requirements should exceed the capacity
of the cluster. We design the workflow and its critical path in such a way that
the order in which the tasks are executed should have an effect on the total
execution time of the workflow. By exceeding the resources of the cluster, we
make sure that the scheduler cannot execute all tasks in parallel. This forces
the scheduler to make decisions on the order of the tasks.

We then execute the workflow based on two scheduling approaches: Batch
and Critical Path. In batch, we identify which tasks are ready to be scheduled
(have all dependencies met) and immediately schedule them on the container
schedulers. In batch, we do not influence the order in which the tasks are
scheduled. In the case of critical path we do influence the order in which the
ready tasks are executed, specifically to prioritize the tasks of the critical path.

We measure the execution time of our workflow from start to finish, to assess
the effectiveness of the different scheduling approaches and whether the ordering
of tasks has a noticeable effect on the execution time.

4 Experiment Setup

4.1 The Workflow

The workflow used in the experiments consists of 34 tasks. Figure 1 shows the
structure of the workflow with each node representing a task and each edge
representing a dependency. The flow starts with a single preprocessing task.
This task is followed by four subflows, three of the subflows have a single task
followed by three parallel tasks. The three parallel tasks can only start if the
first task of the subflow is completed. The last flow, shown on the bottom of
the graph, consists of twenty parallel tasks. The entire workflow ends in a single
postprocessing task, this task is dependent on all other tasks in the workflow.

For the experiments we only use the duration and memory parameters, the
task will not instruct Stress to do CPU cycles. We set the duration for most
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of the tasks at 20 seconds and the memory at 500MB as indicated in figure 1
(green tasks). In order to create a critical path we increase the duration of the
tasks of one of the subflows. These 3 blue tasks in figure 1 have a duration of
90 seconds instead of 20. The red path in figure 1 shows the critical path.

Figure 1: Graph of the workflow used in the experiments including resource and
duration parameters. The red path is the critical path.

The memory requirements and the number of parallel tasks puts the cluster
into a resource constrained state. This forces the container scheduler to make
decisions as to the order in which it schedules the tasks.

We set the memory requirements for the first task of the critical path and one
other task at 1000MB (yellow tasks in figure 1). Each node in the respective
cluster can handle two 500MB tasks in parallel or one 1000MB task. The
1000MB task cannot be scheduled on a node that already contains another
task. This makes it more difficult to schedule these tasks which increases the
odds of these tasks being scheduled later in the ordering. We expect that this
slightly exaggerates the difference between the batch and critical path scheduling
approaches.

The pre- and postprocessing tasks have a duration of 5 seconds and a memory
requirement of 250MB (orange tasks in figure 1). The dependencies of the
workflow state that these two tasks are always executed alone and therefore the
parameters are not important. We are interested in the ordering and scheduling
of the tasks in between.
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Execution Time

Kubernetes does not allow containers to be scheduled on a master node by
default. Docker Swarm does allow this. We adhere to these defaults, which
leaves 4 worker nodes for Kubernetes and 5 for Swarm. Assuming no overhead
and assuming a best case scenario where the critical path is scheduled first, the
execution time of the workflow is 130 seconds on Kubernetes and 120 seconds
on Swarm as displayed in table 4.1. In a worst case scenario where the scheduler
schedules the critical path at the last possible moment, the execution time of
the workflow is 180 seconds for Kubernetes and 160 for Swarm.

Scheduler Lowest Highest
Swarm 120s 160s

Kubernetes 130s 180s

Table 1: Lowest/Highest possible total execution times assuming no overhead.

4.2 Executing the Workflow

Using the Python clients for Swarm and Kubernetes [19, 20], we create a Python
application to execute the workflow on the two container schedulers.

The application submits the containerized tasks to the container scheduler
and passes the duration and memory parameters to the container, along with
a unique ID. The container starts up Stress and allocates a certain amount of
memory for the duration of the task. After Stress returns, the container sets
a key (based on the ID) in a Consul [21] key value store. After submitting
the container, the Python application starts a thread that watches this key in
Consul. The thread returns when the key is set, which signals the end of the
task.

The Python application manages the dependencies of the workflow. It sub-
mits a task as soon as that task’s dependencies are met.

Kubernetes has a resource definition called Job [22]. The containers sched-
uled using the Job definition are expected to terminate. Most other definitions
schedule containers that are not expected to terminate, Kubernetes will contin-
uously try to recover these containers by restarting (rescheduling) them. The
Python application uses the Job resource when scheduling tasks on Kubernetes.

Docker Swarm does not have such a resource definition. There is a discus-
sion on this topic in this [23] issue on GitHub. Ellis, in a blog, provides two
methods of working around this limitation [24]. One is a Golang CLI that he
himself maintains, the other is using the Service resource but with a Restart
Policy of None. This prevents Swarm from restarting or rescheduling the con-
tainer after it finishes. This has the downside that Swarm will not reschedule
the container when it stops for any other reason. The Python application uses
the latter method as it is easier to implement.

We configure the containers in both Kubernetes and Swarm to reserve the
amount of memory the task requires using the respective resource reservation
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flags. The container scheduler uses this knowledge when scheduling the contain-
ers, it will make sure that the containers do not directly compete over resources.
Both Kubernetes and Swarm do not have a flag for the duration of a container.
Even when, as in our experiments, the duration of the task is known beforehand
there is no way to indicate this to the container scheduler.

5 Analysis

5.1 Ordering

The simplest way to order the execution of the containerized tasks is to sub-
mit them in order to the container scheduler. Both Kubernetes and Swarm,
however, do no not respect this ordering. We observe that the order in which
the containers are scheduled differs from the order in which the containers are
submitted. We see that the first containers that are submitted are scheduled
somewhat in order, but also here we see unpredictable ordering. It becomes even
more unpredictable when the first containers occupy all available nodes. Both
Kubernetes and Swarm pick a seemingly random container from the queue as
soon as a node becomes available. This makes the container scheduler’s queue
an unpredictable and unreliable method of ordering the tasks.

Kubernetes has the option of configuring a custom scheduler [25]. Containers
can be configured to use this scheduler. The custom scheduler, however, is
invoked when a container has already been taken from the queue. The custom
scheduler replaces the logic that decides on which node a container should be
scheduled. The custom scheduler is still bound by the same queue limitations
of the default scheduler.

Docker Swarm has a configuration option that changes the strategy of the
scheduler [26]. As with Kubernetes, this strategy only affects the way in which
nodes are selected for a container. It does not change the behavior of the queue.

Containers can have a priority in Kubernetes [27]. The priority is an integer
and can take many different values, this allows for very fine-grained control over
the prioritization of containers. Containers with a higher priority are scheduled
before containers with a lower priority. In Kubernetes version 1.10 (the version
used for the experiments) Kubernetes also preempts running containers to free
up resources for the prioritized container. The preemption can be damaging to
the total execution time when it kills running tasks and even more so when it
kills tasks that have no graceful way of handling the shutdown. This is fixed in
the newer version of Kubernetes (1.11), containers can now have a priority while
preemption is disabled. However, the preemption is still enabled by default.

Docker Swarm does not have the ability to set a priority for a service or
container. We can influence the order of execution by submitting the tasks of
the critical path together with only a part of the other tasks. The remaining
part of those tasks can be submitted after the critical path has finished its first
task. By waiting for the critical tasks to complete before scheduling the non-
critical tasks, we can force Swarm to execute the critical tasks first. The critical
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tasks alone, however, do not take up all available resources. To overcome this
inefficiency, we submit the critical tasks together with a part of the other tasks.

5.2 Results

We run the workflow one hundred times per experiment on the two container
schedulers and we measure the average execution time. For Kubernetes we do
two experiments: one where we set a higher priority for the fist task of the
critical path and one where all tasks have the same priority.

Figure 2 shows the average execution time for both experiments on Kuber-
netes. We observe that the execution time, when setting a higher priority for
the critical path, is slightly lower at 244 seconds versus 260 seconds without the
priority.

Figure 2: Barplot showing the mean execution time of the workflow on Kuber-
netes including an indication of 1 standard deviation.

In both experiments we observe a high standard deviation. This is to be
expected as there are many different orders in which the workflow can be ex-
ecuted. Even in the experiments with the priority set there are still different
orders of execution.

In order to prioritize the critical path in Swarm we hold back some of the 20
parallel tasks shown on the bottom of figure 1. We run three experiments: One
where we submit all ready containers at once, one where we hold back 5 of the
parallel tasks until the first task of the critical path has finished and one where
we hold back 10 of the parallel tasks until the first task of the critical path has
finished.

7



Figure 3: Barplot showing the mean execution time of the workflow on Swarm
including an indication of 1 standard deviation.

Figure 3 shows the average execution times for the three Swarm experiments.
We observe that the average execution time of the batch approach is slightly
higher at 287 seconds versus 277 when we hold back 10 of the parallel tasks and
275 seconds when we hold back 5 of those tasks.

We see that the standard deviation is higher than the standard deviation in
the Kubernetes experiments. Part of this difference can be explained by Swarm
having a higher average execution time. We also see that the execution times
are closer together. The difference in execution time is at 12 seconds less than
half of the standard deviation of the experiments.

6 Conclusion

The queue of the scheduler in both Swarm and Kubernetes does not reliably
behave as a first in, first out queue. We cannot use this queue when ordering
the execution of a containerized workflow on Kubernetes or Swarm.

In the case of Kubernetes we can configure a priority per container. The
scheduler will always try to schedule the container with the highest priority
first. This feature allows one to order the containers in Kubernetes’ queue and
it that way order the execution of a containerized workflow. The results of
the experiments show a slight improvement of 16 seconds when prioritizing the
critical path of the workflow used in the experiments.

Docker Swarm lacks the features to order the containers in the queue itself.
One has to assume that Swarm will pick a random container from the queue as
soon as resources become available. One has to submit the containers to Swarm
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in a carefully timed manner. By submitting containers after the first task of the
critical path has finished we gain a slight improvement in the total execution
time. The differences between the execution times are small, however, and the
standard deviation over 100 experiments is relatively high. The results indicate
a slight improvement but do not definitively prove that this method of ordering
the tasks is effective.

7 Discussion

Kubernetes and Docker Swarm are not designed around workflows. This brings
certain limitations. Containers can be configured with a resource reservation
but the duration or estimated duration of a task cannot be indicated to the
scheduler. Even in different scheduling strategies or custom schedulers, the con-
tainer scheduler has no way of taking into account the context of the container.
There are ways of indicating dependencies between containers but a dependency
in that context means that one container has to be up and running before the
other container can start. In the context of workflows a dependency means that
a task has to finish before another task can start.

Workflow Management Systems in turn are often not designed around con-
tainers or container schedulers. Some workflow systems can be extended through
plugins or operators. In this research we ordered the execution of a container-
ized workflow in a static setting. We first determined the order and then execute
the workflow in that order. This can only be achieved when parameters such as
resource use and duration are known beforehand. When running a workflow it
may be useful to actively monitor the progress of a workflow and dynamically
change the ordering of the tasks in the case of a task failure. This will require
the WMS to interface with the container scheduler.

The experiments performed in this research can be expanded. In the case
of Kubernetes we can set a unique priority for every task in the workflow and
see how that approach compares, especially when preemption is disabled. In
the case of Swarm we now wait until the first task of the critical path has
finished, but we can also query the Docker API to see whether the task has
started. We can also use a form of dynamic scheduling where we interface with
the scheduler’s API to determine when to submit which task.

The experiments performed have a high standard deviation. This is in part
expected due to the nature of the experiments where there are many ways of
executing the workflow used in the experiments. In future research one can
do the same experiments with a different workflow or by leaving fewer different
ordering options to the container scheduler to see if this high standard deviation
persists. This may provide a more definitive answer as to the effectiveness of
the ordering approaches.
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8 Future Work

More research is needed into the behavior of the schedulers and their queues.
Both Swarm and Kubernetes are open source. It should not be difficult to find
the reason for the erratic behavior of the queue in the source code. We expect
that the scheduler loops over the containers in the queue and schedules every
container that it can schedule. When resources become available, the scheduler
can be anywhere in its loop and thus anywhere in the queue. It might be worth
to research whether this scheduling behavior can be modified or whether it is
possible to provide an alternative scheduler, one that might be slower but is
predictable.

This research focuses on Kubernetes and Docker Swarm. The same research
can be done for other container schedulers such as HashiCorp’s Nomad and
Apache Mesos’ Marathon.

References

[1] “Kubernetes,” https://kubernetes.io/, Accessed 01-07-2018.

[2] “Docker Swarm,” https://docs.docker.com/engine/swarm/, Accessed 01-
07-2018.

[3] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and J. I. V.
Hemert, “Scientific workflows: moving across paradigms,” ACM Computing
Surveys (CSUR), vol. 49, no. 4, p. 66, 2017.

[4] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny et al., “Pegasus, a workflow
management system for science automation,” Future Generation Computer
Systems, vol. 46, pp. 17–35, 2015.

[5] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher et al., “The taverna
workflow suite: designing and executing workflows of web services on the
desktop, web or in the cloud,” Nucleic acids research, vol. 41, no. W1, pp.
W557–W561, 2013.

[6] T. Adufu, J. Choi, and Y. Kim, “Is container-based technology a win-
ner for high performance scientific applications?” in Network Operations
and Management Symposium (APNOMS), 2015 17th Asia-Pacific. IEEE,
2015, pp. 507–510.

[7] A. Bala and I. Chana, “A survey of various workflow scheduling algorithms
in cloud environment,” in 2nd National Conference on Information and
Communication Technology (NCICT). sn, 2011, pp. 26–30.

10

https://kubernetes.io/
https://docs.docker.com/engine/swarm/


[8] C. Zheng, B. Tovar, and D. Thain, “Deploying high throughput scientific
workflows on container schedulers with makeflow and mesos,” in Proceed-
ings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE Press, 2017, pp. 130–139.

[9] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies. ACM, 2012, p. 1.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained re-
source sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp.
22–22.

[11] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
queue+ python: A framework for scalable scientific ensemble applications,”
in Workshop on python for high performance and scientific computing at
sc11, 2011.

[12] “Argo - GitHub,” https://github.com/argoproj/argo, Accessed 01-07-2018.

[13] Kubernetes Documentation, “Custom Resources,” https://kubernetes.io/
docs/concepts/extend-kubernetes/api-extension/custom-resources/, Ac-
cessed 01-07-2018.

[14] “Apache Airflow (incubating) website,” https://airflow.apache.org/, Ac-
cessed 01-07-2018.

[15] “Airflow kubernetes integration,” https://issues.apache.org/jira/browse/
AIRFLOW-1314, Accessed 01-07-2018.

[16] “Stress - Manpage,” https://linux.die.net/man/1/stress, Accessed 02-07-
2018.

[17] Isaac Klop, “task-emulator - GitHub,” https://github.com/IsaacKlop/
task-emulator, Accessed 02-07-2018.

[18] D.-H. Chang, J. H. Son, and M. H. Kim, “Critical path identification in
the context of a workflow,” Information and software Technology, vol. 44,
no. 7, pp. 405–417, 2002.

[19] “Docker SDK for Python - GitHub,” https://github.com/docker/
docker-py, Accessed 08-07-2018.

[20] “Kubernetes Python Client - GitHub,” https://github.com/
kubernetes-client/python, Accessed 08-07-2018.

[21] Hashicorp, “Consul,” https://www.consul.io/, Accessed 08-07-2018.

11

https://github.com/argoproj/argo
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://airflow.apache.org/
https://issues.apache.org/jira/browse/AIRFLOW-1314
https://issues.apache.org/jira/browse/AIRFLOW-1314
https://linux.die.net/man/1/stress
https://github.com/IsaacKlop/task-emulator
https://github.com/IsaacKlop/task-emulator
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://www.consul.io/


[22] Kubernetes Documentation, “Jobs - Run to Completion,”
https://kubernetes.io/docs/concepts/workloads/controllers/
jobs-run-to-completion/, Accessed 08-07-2018.

[23] “[feature request] Swarm mode should support batch/cron jobs in addi-
tion to persistent services,” https://github.com/kubernetes-client/python,
Accessed 08-07-2018.

[24] Alex Ellis, “One-shot containers on Docker Swarm,” https://blog.alexellis.
io/containers-on-swarm/, March 11, 2017.

[25] Kubernetes Documentation, “Configure Multiple Sched-
ulers,” https://kubernetes.io/docs/tasks/administer-cluster/
configure-multiple-schedulers/, Accessed 09-07-2018.

[26] Docker, “Scheduler Strategy,” https://github.com/docker/docker.github.
io/blob/master/swarm/scheduler/strategy.md, Accessed 09-07-2018.

[27] Kubernetes Documentation, “Pod Priority and Preemption,” https://
kubernetes.io/docs/concepts/configuration/pod-priority-preemption/, Ac-
cessed 09-07-2018.

12

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://github.com/kubernetes-client/python
https://blog.alexellis.io/containers-on-swarm/
https://blog.alexellis.io/containers-on-swarm/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
https://github.com/docker/docker.github.io/blob/master/swarm/scheduler/strategy.md
https://github.com/docker/docker.github.io/blob/master/swarm/scheduler/strategy.md
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

	Introduction
	Related Work
	Method
	Experiment Setup
	The Workflow
	Executing the Workflow

	Analysis
	Ordering
	Results

	Conclusion
	Discussion
	Future Work

