MScC SECURITY AND NETWORK ENGINEERING
(SNE/OS3)

RESEARCH PROJECT 1

Categorizing container escape methodologies in
multi-tenant environments

by
RIK JANSSEN

Rik.Janssen@o0s3.nl
ID: 12000256

February 11, 2018

6 ECTS
January 8th - February 7th, 2018

Supervisor: Assessor:
Max Hovens, KPMG Cyber Security Cees de Laat
Netherlands

UNIVERSITY OF AMSTERDAM
X

GRADUATE SCHOOL OF INFORMATICS

Categorizing container escape methodologies in multi-tenant environments

SNE/OS3

Abstract—With regards to operating-system-level virtualiza-
tion, the security aspects that arise within multi-tenant envi-
ronments utilizing this technology have not been systematically
categorized. As a result of this omission, container escapes within
such environments might occur. These escapes can lead to the
loss of control and potential data leakage. This paper extends
on previous work by providing additional security requirements
and mitigation techniques. This contribution is based on an in-
depth look at the architecture of the cluster management software
enabling the aforementioned environments.

Index Terms—Containers, multi-tenancy,
operating-system-level virtualization, security.

Kubernetes,

1 INTRODUCTION

With the continual emergence of operating-system-level
virtualization the security aspects of containers become all
the more important. Numerous vulnerabilities, such as [1]-[3],
have been identified, which allow for container escapes to oc-
cur. These escapes can lead to compromising the host system
itself and/or the reveal of confidential data. This is especially
damaging in multi-tenant environments, because within such
environments the same physical and/or logical resources (e.g.,
the processor, memory, file system, and management software)
are shared between multiple potentially untrusted parties. A
common example of these kind of multi-tenant environments
is a public cloud. Categorizing the previously mentioned
vulnerabilities remains a challenge, since not all vulnerabilities
affect all container technologies and are also depended on
specific configurations.

The aim of this paper is to systematically categorize these
kinds of vulnerabilities, such that a systematic way of thinking
can be achieved when handling the security aspects of multi-
tenant environments (e.g., the aforementioned data leakage).
This systematic way of thinking then allows for the specifying
of mitigation recommendations.

This paper is further divided into six sections. Sections 2,
3, and 4 describe the research question, related work, and
used methodology respectively. Sections 5 and 6 describe and
discuss the results. The last section concludes this paper and
lists the future work that can be performed.

2 RESEARCH QUESTION

The research question is stated below. Section 4 outlines the
approach that was taken to answer this question.
o How to systematically categorize vulnerabilities relating
to multi-tenant environments that make use of operating-
system-level virtualization?

3 RELATED WORK

Multiple studies have been performed on the aspects of
container security. [4] defined an attacker model and several
security requirements for container technologies. [S] further
looked at the mentioned attacker model, which it considered
as an academic view, and unified it with an industrial view.
[6] extended on the research done in [4] by categorizing
how exploits of specific container security threats violated the
security requirements.

[7] and [8] specifically targeted the Docker container plat-
form. These studies covered the internals specific to Docker,
but also the general technologies in the areas of compute,

storage, and network that Docker makes use of (i.e. Linux
kernel features), together with their related configurations.
Comparisons between containers and virtual machines were
also made by [9], and a hybrid approach of running containers
within virtual machines is generally advised by the aforemen-
tioned studies. [10] took an extensive look at Docker as well as
LXC and CoreOS’s Rkt, and subsequently provided multiple
security recommendations focusing on said technologies and
overall containers in general.

In regards to the security of multi-tenant environments, [11]
explored the design of ’automated threat mitigation architec-
ture’ using the Kubernetes cluster management software.
The study described an event-driven process entailing the
automated creation of secure images and container quarantine.
Furthermore, in regards to secure images, [12] proposed a
methodology to evaluate the security of container images.

The added value of the research proposed in this docu-
ment is categorizing container vulnerabilities when moving
the context from individual container host systems to cluster
management software enabling multi-tenant environments.

4 METHODOLOGY

The conducted research consisted of a literature study only,
no software was installed or infrastructure deployed. The focus
of the research was to categorize existing vulnerabilities within
multi-tenant environment, not to discover new vulnerabilities.
Given the time constraints of the research, the research was
limited to the Linux operating system and the Kubernetes
cluster management software. These two were chosen based on
their broad utilization as well as their history with Google, who
has more than a decade of experience using these technologies
as part of its Borg system, as stated in [13].

Only operating-system-level virtualization was a factor,
other forms of virtualization (e.g. full or para) were not
part of the research. Hybrid solutions utilizing both con-
tainers and virtual machines (e.g. projects like OpenStack’s
Kata Containers project or Xens PV Calls) did
also not fall into scope; only container-native technologies
were accounted for.

The research was divided into several steps. First, the
cluster management software powering the multi-tenant en-
vironments was broken down into its components. Then
possible areas of existing vulnerabilities, identified us-
ing the Common Vulnerabilities and Exposures
(CVE) system, were mapped to these components. After this
step was completed, the security requirements of container
technologies, mentioned in the related works [4] and [6], were
extended to account for the mapped vulnerabilities relating
to the cluster management software. Furthermore, these vul-
nerabilities were associated with configurations in order to
determine possible affected industries and workloads. Finally,
several mitigation techniques were listed.

5 RESULTS

The results of the literature study are presented in the
subsections below.

5.1 Architecture overview

scope of the
(CNCPF).

Figure 1 gives an overview of the
Cloud Native Computing Foundation

Categorizing container escape methodologies in multi-tenant environments

SNE/OS3

application definition and orchestration

resource scheduling

distributed systems services

Il

container
container image registry runtime agent
container image compute node
repository 0os

....N
| software defined network | software defined storage |

infrastructure provisioning

\

Figure 1. Scope of the Cloud Native Computing Foundation. Source: [14]

Overlay/Underlay Network (Flannel/Calico/Weave)

Container Runtime
Operating System

Infrastructure

Kube-proxy

Scheduler
Controller Manager
etcd

API Server

Physical Network

Figure 2. Architecture overview of Kubernetes. Adapted from: [17]

This foundation’s mission is to ”[...] create and drive the
adoption of a new computing paradigm that is optimized for
modern distributed systems environments capable of scaling
to tens of thousands of self healing multi-tenant nodes.”[15]
Practically, the CNCF oversees multiple open source projects
in order to enable the modern software delivery workflow (i.e.,
the implementation of the twelve-factor app methodology[16]
in the form of microservices on top of container platforms la
Docker). These project include Kubernetes for orchestration,
Prometheus for monitoring, container runtimes like
containerd and rkt, and many others. The CNCF’s
members include companies like Google (whom donated
Kubernetes), Docker, Red Hat, Amazon, Cisco, Intel, IBM,
Dell, VMware. and many others. The foundation is overseen
by the Linux Foundation.

Figure 2 illustrates the architecture of the Kubernetes cluster
management software [18]. Comparing this figure to the scope
of the CNCEF, it’s clear Kubernetes materializes the CNCF’s
scope within its software architecture. The major area of
interest related to this paper is the "Master’. This node controls
all the nodes of a cluster. Each node runs an operating
system aimed at running containers. Kubernetes manages the
containers as pods, which is a layer of abstraction referring

Hardened application
User namespace w/o caps
Mount protections
Minimal container distro
Syscall Filtering w/ seccomp-bpf
Linux kernel with grsecurity+pax
Hypervisor/Hardware

Figure 3. NCC Group’s security model. Adapted from: [19]

to the tight-coupling of the containers (i.e., these containers,
and corresponding applications, will be deployed on the same
node). Furthermore, the component et cd is a distributed key-
value store which functions as the single source of config-
uration truth (e.g., IP addresses, storage locations, security
policies, etc.) of the entire cluster.

To clarify, Kubernetes itself is just the orchestration soft-
ware (i.e, all the components that make up the master node
plus the two components running on each node). The other
components, such as the network and operating system, are
managed by Kubernetes but can be implemented using differ-
ent software (e.g., the network connecting the containers can
be realized using software like Flannel or Calico which is
then utilized by Kubernetes). In turn, the software responsible
for providing this functionality to Kubernetes relies on further
lower-level components like file systems (e.g., overlayfs)
and kernel features (e.g., cgroups and namespaces). In
other words, Kubernetes is not a complete solution in itself, but
rather relies on other software and extends their functionality.
This means a layered software model is utilized to enable
multi-tenancy within environments built on operating-system-
level virtualization.

Finally, Kubernetes utilizes the concept of namespaces
in order to separate resources per tenant. These namespaces
are separate domains of control within a Kubernetes cluster
(i.e., resources can be restricted to certain namespaces). Please
note that these namespaces are not the same as the earlier
mentioned kernel features.

5.2 CVE mapping

Because Kubernetes is using a layered approach, one
would have to map the CVEs of every single component
and their subcomponents. For example, Kubernetes might
utilize the Docker runtime, hence any vulnerabilities related
to the Docker runtime now also impact the kubernetes cluster.
Furthermore, any vulnerabilities related to the Linux kernel
features might impact Docker. So mapping these CVEs would
quickly encompass the entirety of the Linux software land-
scape. Figure 3 shows a security model provided by the NCC
group that accounts for these layers.

In order to still account for the mapping of the CVEs, the
CVE:s relating to Red Hat’s OpenShift platform have been
looked at [20]. This platform combines a Linxu distribution,
Docker, and Kubernetes. Currently there are 76 CVEs listed.
As such, these CVEs encompass the aforementioned technolo-
gies, providing a holistic overview.

One major CVE of current note is the Meltdown vulnerabil-
ity discussed in [21]. This hardware-level vulnerability makes
use of out-of-order execution and CPU cache timings to read
all physical memory from any user space process. The paper

Categorizing container escape methodologies in multi-tenant environments

SNE/OS3

Container 1 Container 2 Container 3
Compute App A App A App B
Memory Lib 1 Lib 1 Lib1
Storage App A App B . N
Images Lib 1 Lib 1 Single binaries

Figure 4. Static linking of binaries within an OS-level virtualization platform.

Container 1 Container 2 Container 3
App A App A App B
Compute
Memory | | |
| Libs 1, 2, and 3 (loaded once in mem) |
Storage Container 1 Container 2 Container 3
. App A App A App B
Container FS Libs 1 and 2 Libs 1 and 2 Libs 1 and 3
popA || AopB
Storage Lib 2 Lib 3 Layers
Images | I (copy-on-write)
| Lib 1 |
Figure 5. Dynamic linking of binaries within an OS-level virtualization

platform.

specifically mentions the leakage of data between containers.
As such, the boundary between tenants has moved from the
visualization layer to the physical layer.

5.3 Extended requirements

Based on the previous described results, the following
requirements are provided in order to supplement the ones
defined in the previous done work done by [4] and [6]. The
requirements are as follows:

o Separate security-sensitive workloads over physical nodes
because the security boundary is moved to the infras-
tructure (i.e. hardware) level instead of the virtualization
level.

o Secure the single source of configuration truth because
this is a single point of failure within a multi-tenant
environment.

o Utilize an integrated approach in regards to the cluster
management software (i.e., don’t use upstream Kuber-
netes unless processes are in place to track the individual
components’ vulnerabilities).

5.4 Mitigations

Figures 4 and 5 show a possible mitigation technique
involving static linking and dynamic linking of binaries within
containers. Specifically, figure 5 shows a way to optimize
memory and storage usage.

6 DISCUSSION

Looking at the results, it seems that operating-system-level
virtualization by itself doesn’t provide the required security
boundaries for multi-tenant environments. Furthermore, the
security aspects can be divided into two categories: infrastruc-
ture and application. Because applications are tightly-coupled

to the underlying infrastructure when using operating-system-
level visualization, hardening is required. Within multi-tenant
environments consisting of untrusted parties this remains a
challenge. Finally, the recent acquirement of CoreOS by Red
Hat might show a movement to a single Enterprise-ready
container platform.

7 CONCLUSION AND FUTURE WORK

This paper provided a view of the container security land-
scape when accounting for multi-tenancy. As a result, several
requirements and mitigation techniques have been identified,
allowing for a systematic approach to the securing of multi-
tenant environments utilizing operating-system-level virtual-
ization.

Future work might include a correlation of the require-
ments to compliance standards such as ISO and HIPAA.
Furthermore, other operating-system-level virtualization plat-
forms and cluster management software could be looked at
(e.g.,Microsoft Windows, FreeBSD, Apache Mesos,
Nomad, etc.). Other virtualization techniques (e.g. full and/or
para) could also be relevant, especially the out-of-scope hybrid
solutions that were previously mentioned in section 4. A
further interesting study might be to look at the automation
of the classification and orchestration of workloads (i.e. apply
the requirements in a automated fashion). Finally, in regard to
application architecture, a look at the Istio platform might
be relevant. This open source project (provided by Google,
IBM, and Lyft) is currently in alpha and aims to provide secure
microservices on top of Kubernetes.

REFERENCES

[1] CVE-2016-5195. Available from MITRE, CVE-ID CVE-2016-5195.
2016. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2016-5195. [Accessed: Jan. 22, 2018].

[2] CVE-2015-3630. Available from MITRE, CVE-ID CVE-2015-3630.
2015. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3630. [Accessed: Jan. 22, 2018].

[3] CVE-2017-5123. Available from Red Hat, CVE-ID CVE-2017-
5123. 2017. [Online]. Available: https://access.redhat.com/security/cve/
cve-2017-5123. [Accessed: Jan. 22, 2018].

[4] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security of
os-level virtualization technologies,” in Nordic Conference on Secure IT
Systems. Springer, 2014, pp. 77-93, doi:10.1007/978-3-319-11599-3_5.

[5] L. Catuogno and C. Galdi, “On the evaluation of security properties
of containerized systems,” in 2016 15th International Conference on
Ubiquitous Computing and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS), Dec 2016, pp.
69-76, doi:10.1109/IUCC-CSS.2016.018.

[6] S. Laurén, M. R. Memarian, M. Conti, and V. Leppinen, “Analysis
of security in modern container platforms,” in Research Advances in
Cloud Computing. Springer, 2017, pp. 351-369, doi:10.1007/978-981-
10-5026-8_14.

[7] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967,
2015, [Online]. Available: https://arxiv.org/abs/1501.02967v1. [Ac-
cessed: Jan. 8, 2018].

[8] A. R. MP, A. Kumar, S. J. Pai, and A. Gopal, “Enhancing se-
curity of docker using linux hardening techniques,” in 2016 2nd
International Conference on Applied and Theoretical Computing
and Communication Technology (iCATccT), July 2016, pp. 94-99,
doi:10.1109/ICATCCT.2016.7911971.

[9] M. Eder, “Hypervisor-vs. container-based virtualization,” Future Internet
(FI) and Innovative Internet Technologies and Mobile Communica-
tions (IITM), vol. 1, 2016, [Online]. Available: https://www.net.in.tum.
de/fileadmin/TUM/NET/NET-2016-07- 1/NET-2016-07-1_01.pdf. [Ac-
cessed: Jan. 8, 2018].

[10] A. Grattafiori, “Understanding and hardening linux containers,”
Whitepaper, NCC Group, 2016, [Online]. Available: https:
/Iwww.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/
april/ncc_group_understanding_hardening_linux_containers- 1-1.pdf.
[Accessed: Jan. 8, 2018].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3630
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3630
https://access.redhat.com/security/cve/cve-2017-5123
https://access.redhat.com/security/cve/cve-2017-5123
https://doi.org/10.1007/978-3-319-11599-3_5
https://doi.org/10.1109/IUCC-CSS.2016.018
https://doi.org/10.1007/978-981-10-5026-8_14
https://doi.org/10.1007/978-981-10-5026-8_14
https://arxiv.org/abs/1501.02967v1
https://doi.org/10.1109/ICATCCT.2016.7911971
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

Categorizing container escape methodologies in multi-tenant environments SNE/OS3

[11] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, and A. Youssef,
“Leveraging the serverless architecture for securing linux contain-
ers,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW), June 2017, pp. 401-404,
doi:10.1109/ICDCSW.2017.66.

[12] B. M. Abbott, “A security evaluation methodology for container images,”
2017, [Online]. Available: https://scholarsarchive.byu.edu/etd/6287. [Ac-
cessed: Jan. 17, 2018].

[13] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18, doi:10.1145/2741948.2741964.

[14] The Linux Foundation. Cloud Native Computing Foundation (CNCF)
Charter. 2017. [Online]. Available: https://www.cncf.io/about/charter.
[Accessed: Jan. 15, 2018].

[15] T. L. Foundation, “Cloud Native Computing Foundation,” 2017, [On-
line]. Available: https://www.cncf.io/. [Accessed: Jan. 17, 2018].

[16] A. Wiggins, “The Twelve-Factor App,” 2017, [Online]. Available: https:
//12factor.net/. [Accessed: Jan. 17, 2018].

[17] I. Gunaratne, “A Reference Architecture for Deploy-
ing WSO02 Middleware on Kubernetes,” Jan. 2017,
[Online]. Available: https://medium.com/containermind/
a-reference- architecture-for-deploying- wso2-middleware-on-kubernetes-d4dee7601e8e.
[Accessed: Jan. 17, 2018].

[18] T. K. Authors, “Concepts — Kubernetes,” 2018, [Online]. Available:
https://kubernetes.io/docs/concepts. [Accessed: Jan. 17, 2018].

[19] A. Grattafiori. Def con 23 - aaron grattafiori - linux containers: Future
or fantasy? - 101 track. Youtube. 2015. Available: https://www.youtube.
com/watch?v=iN6QbszB 1R8 [Accessed: Jan. 3, 2018].

[20] MITRE, “Redhat Openshift : List of security vulnerabilities,” 2018, [On-
line]. Available: https://www.cvedetails.com/vulnerability-list/vendor_
id-25/product_id-23704/Redhat-Openshift.html. [Accessed: Jan. 31,
2018].

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” Jan.
2018, [Online]. Available: https://arxiv.org/abs/1801.01207. [Accessed:
Jan. 30, 2018].

https://doi.org/10.1109/ICDCSW.2017.66
https://scholarsarchive.byu.edu/etd/6287
https://doi.org/10.1145/2741948.2741964
https://www.cncf.io/about/charter
https://www.cncf.io/
https://12factor.net/
https://12factor.net/
https://medium.com/containermind/a-reference-architecture-for-deploying-wso2-middleware-on-kubernetes-d4dee7601e8e
https://medium.com/containermind/a-reference-architecture-for-deploying-wso2-middleware-on-kubernetes-d4dee7601e8e
https://kubernetes.io/docs/concepts
https://www.youtube.com/watch?v=iN6QbszB1R8
https://www.youtube.com/watch?v=iN6QbszB1R8
https://www.cvedetails.com/vulnerability-list/vendor_id-25/product_id-23704/Redhat-Openshift.html
https://www.cvedetails.com/vulnerability-list/vendor_id-25/product_id-23704/Redhat-Openshift.html
https://arxiv.org/abs/1801.01207

	Categorizing container escape methodologies in multi-tenant environments
	1 Introduction
	2 Research question
	3 Related work
	4 Methodology
	5 Results
	5.1 Architecture overview
	5.2 CVE mapping
	5.3 Extended requirements
	5.4 Mitigations

	6 Discussion
	7 Conclusion and future work
	References

