System and Network
Engineering

Plug-and-play Raspberry Pi-based video filtration system:

A novel approach to real-time on the wire reversible PII anonymization in video
streams using commodity hardware

Chris Kuipers* Swann Scholtes'
*chris.kuipers @os3.nl, fswann.scholtes @os3.nl

Institute of Informatics
University of Amsterdam
February 11, 2018

Abstract—With Video Surveillance Systems becom-
ing a commodity to our modern society, the call
for preserving our privacy within these systems is
evenly getting stronger. The systems that are available
today lack certain aspects that render them useless to
ordinairy businesses and organisations. In our novel
approach filter Personally Identifiable Information
(PII) from real-time camerafeeds, we present a plug-
and-play solution, based on commodity hardware, that
can be used existing Video Surveillance setups. Our
proposal makes use of a Deep Neural Network (DNN)
to identify regions of interests (ROIs), and can blur
them using three anonymization filters. The original
video stream is AES encrypted before storage to allow
access under certain circumstances later on. We tested
various configurations on four different hardware se-
tups to derive the feasibility of our proof of concept on
commodity hardware. We proved that not all hardware
platforms are equally capable of outputting a workable
video feed. Our results show that the Raspberry Pi 3
is outputting a stuttering video, that is comparable to
traditional video surveillance systems.

I. INTRODUCTION

Nowadays, Video Surveillance Systems are em-
ployed in a number of wide-ranging industries, from
healthcare and assisted living communities to retail
and hospitality. Each industry is using these systems
for a variety of applications.

Back in the days, Video Surveillance systems
were operated by humans who monitored the camera

feeds[1]]. An increasing amount of technology is used
to automate the process of classifying events and au-
tomatically recognizing oddities and accordingly[2].
This is done by identifying anomalies using complex
probabilistic calculations and visual analysis[1[]. The
methods of using smart, automated surveillance sys-
tems are to be considered heavily privacy invasive.
The type of systems can track all persons and objects
in its view, threatening fundamental human rights
along its way|3].

In health care, Video Surveillance solutions aim to
aid the recovery process of patients or improve the
quality of life of the elderly[4]]. In such a solution,
cameras monitor the patients. While this instrument
could have a significant positive impact, the cameras
are located in the homes and living areas of those
patients. Therefore, the privacy impact of the Video
Surveillance is even more substantial than the impact
of Video Surveillance in the public domain. While
the privacy of those people are affected the most, the
privacy issues of Video Surveillance is not limited
to health care alone. Also in other situations, Video
Surveillance systems were used for monitoring cer-
tain trends and anomalies|S), |6]].

Most stages in the solution we propose are not
new. A lot of work has already been done in clas-
sifying PII, identifying ROIs via the use of Deep
Neural Networks (DNNs) and (ir)reversibly filtering
the data. The solutions that are on the market today

are neither based on commodity hardware, resource
efficient, effective or open source.

In our approach to protect the privacy of people,
we are aiming for a solution that filters personally
identifiable information (PII) from live camera feeds,
by identifying and obfuscating regions of interests
(ROIs). The solution we propose is deployable in a
plug-and-play manner in existing Video Surveillance
setups through the use of commodity hardware. We
present the solution in the form of a proof of concept,
where the code is open source and publicly available
under the GPLv3 license. We test our setup on four
different hardware platforms to measure the impact
of various configurations. Based on these results, we
can derive the feasibility of our setup on commodity
hardware.

II. RESEARCH QUESTIONS

To achieve our goal, we deduced the following
research question:

e How can commodity hardware be used to filter
Personally Identifiable Information from real-
time video streams?

Based on that question, the following sub-questions
were deduced:

1) What types of Personally Identifiable Informa-
tion are of interest that need to be filtered from
the camera feeds?

2) What feasible anonymization techniques are
available to reversibly anonymize regions of
interests?

3) How can the proof of concept be tailored to
commodity hardware?

III. RELATED WORK

The implications of Video Surveillance systems to
privacy has already had quite some attention, shown
by numerous papers who try to solve this exact issue,
all using their own approach.

The first part we try to achieve is to identify re-
gions of interest (ROIs) that contain personally iden-
tifiable information (PII) in a video stream. Research
has already been conducted regarding classifying PII.

The second part we try to achieve is filtering
PII by removing the information from ROIs. Other
researchers have already looked into the challenges
regarding anonymization techniques and the aspects
regarding their reversibility and security.

A. Personally Identifiable Information

Before we can identify ROIs, we first need to de-
fine what types of information need to be considered
as Personally Identifiable. The define Personally
Identifiable Information as any information related
to a natural person or ‘Data Subject’, that can be
used to directly or indirectly identify the personl]].
Although this definition is quite clear, it is also
quite broad. To put this into context regarding the
filtration from video streams, the following concrete
examples can be derived|8||: Personal attributes; such
as face and other distinguishing characteristics and
specific behaviour. Information on paper; such as
identification documents, banking account numbers
and addresses. Information on other media such as
on smartphones and on computer screens.

B. Approaches to reversibility

For numerous purposes, like court-orders, there
needs to be a way to access the original video stream.
Just anonymizing the video feed, without any means
to recover the original information it contained, is
not enough. In practice this can be solved in multiple
ways;

e One-way method: Irreversibly altering the

stream and saving an original copy;

o Two-way method: Altering the video stream in

a reversible manner (two-way function);
« Splitting up the stream in multiple chunks.

1) One-way method: Wickramasuriya et al.
describe a method where they use a one-
way anonymization function and store both the
anonymized and the original video stream[9]. The
original stream being encrypted before storage. In
normal operation, only the edited, anonymized, ver-
sion is used. In special cases, when the unfiltered
version of the video feed is needed, can be accessed
by whomever holds the encryption key.

2) Two-way method: Another solution is the use
of a two-way anonymization method. The original
information is scrambled in such a way that the
process can be reversed, for example by encrypting
the ROI with a shared secret. Pantoja et al. reviewed
a bunch of methods, both permanent and reversible,
and compared them to eachother.

3) Splitting up: In their paper, Upmanyu et al.
describe an alternative approach to privacy preserving
surveillance systems. Instead of altering the original
video stream by filtering out or encrypting ROIs, they

proposed a solution where they split the stream into
smaller parts or chunks to be processed separately.

C. Level of anonymity

The level of anonymity the filtration process of-
fers, all comes down to the effectiveness of the
anonymization algorithm being used. The three ap-
proaches to reversibility have their own set of char-
acteristics.

1) One-way method: Ruchaud and Dugelay
demonstrated a way to detect whether images have
been altered using a privacy filter. In case the images
have been altered, they were able to reliably tell
which filter had been used. They proved that it is
possible to reverse the filter process to such extent
that automated facial recognition is possible again.
Worth noting is that they conclude that although
numerous privacy filters appear to successfully hide
Personally Identifiable Information, those filters may
not be as reliable and secure after all[12]]. Ruchaud
and Dugelay particularly call out the techniques
blackener, normalized box pixelization and (Gaus-
sian) blurring. However, it is worth mentioning that
they altered an image test set using the Gaussian blur
standard deviation parameter ranging from 2 to 8 and
the pixelization parameter size, ranging from a 3x3
to 10x10 pixel grid.

2) Two-way method: The method proposed by
Rahman et al.,, based on Chaos Cryptography is
an example of such a solution that has been re-
viewed[13]]. Their proposal supports multiple levels
of reversibility; authorization levels can be defined,
so that only certain types of information will be
reversed, while other types of information will still
be kept hidden.

Two other reversible methods reviewed by Pantoja
et al. are warping and pixel relocation. Korshunov
and Ebrahimi describe a warping method that ob-
fuscates faces in videos and images[3|]. Using their
method, faces can be warped according to various
key points. The security of the method relies upon the
level of warping that is applied. They claim that the
warping process is secure, because their algorithm
makes use of a shared key and a transform matrix.
They do not use proven and well known symmetric
encryption algorithms so the level of security of-
fered by the warping method is questionable. This
same issue also arises in the method [14] published
about[14]. They proposed a method that relocates the
pixels in a ROI according to a fixed pattern. This

same, fixed, pattern is used in all operations. Anyone
that knows the pattern can undo the filter and obtain
the original version. Therefore, this method is far
from secure, as proved by Pantoja et al.[10].

3) Splitting up: The solution Upmanyu et al.
propose, relies upon the assumption that "each image
by itself does not convey any meaningful information
about the original frame, while collectively, they
retain all the information"[11]]. Therefore, they claim
that their solution is both privacy preserving and
efficient, because there is no need to edit the stream.

IV. METHODS

The test environment consists of an Ubiquiti UVC-
G3-Dome IP camera, router and an interception de-
vice. The interception device is a piece of hardware
that contains the OpenCV3.3.0 software library to
be able to process the video stream generated by the
IP camera. This setup is shown in Figure [T} The IP-
camera streams the video as an H264 encoded RTSP-
stream, in Full-HD (1920x1080) at 30 fps.

Q 7% Interception device

Router

To determine the influence of the hardware on the
setup, different hardware platforms will be used. The
four different setups are based on a Dell desktop,
Intel Atom server, Intel Atom laptop and a Raspberry
Pi 3. The exact hardware specifications can be found
in the hardware Appendix Each batch of tests
will be run on the different hardware platforms.

The project’s source code is fully open source and
publicly available under the GPLv3 license on our
GitLab page[/15].

OpenCV includes a module to detect objects using
pre-trained deep neural networks. The deep neural
network needs model data to detect objects. The
training of a DNN model is outside the scope of
this project. Because we are interested in detecting
multiple types of PII, pre-trained models that only
detect humans are not sufficient.

For our proof of concept we set out to find a model
that not only detects people, but at least one other
type of PII we defined, based on the findings in the
related work section. We ended up with using the
publicly available Caffenet Caffemodel described by

Figure 1: Setup overview

Donahuel[|16]]. This model is trained to detect 20 types
of everyday objects, including person and monitor
screen object detection. To proof that our concept
of filtering multiple types of PII works, this model
sufficed. The accuracy of this model is included in

Appendix [X]

A. Unit of measurement

Each experiment will run for 15 seconds and is re-
peated 10 times giving a minimum of 140 results per
hardware platform. We measure the frame throughput
in frames per seconds (fps) on the different hardware
platforms to determine the performance hit of each
test. A median will be calculated from each individ-
ual test giving the average of each test conducted.

B. Measurement technique

In a normal setup, the interception device will
process the images according to a set rate, this is
either the same fps as the video source, or a statically
configured value.

In our setup we intend to measure the maximum
performance of each hardware platform under given
situation. Therefore, we did not specify any fps rate
beforehand. As a result, each device will try to
process frames as fast as possible from the IP camera
video feed. If the interception device has enough
resources to handle more frames than the IP camera
is able to put out, it will take the same frame multiple
times and treat each frame as a new frame. In the
same way, when the interception device lacks the
resources to process the video stream at the frame
rate the IP camera is putting out, the frames will be
dropped. As soon as it can process the next frame,
it will take the most recent one in the video stream.

Therefore, this setup ensures us that we measure
the maximum performance of the interception device
under the different circumstances.

C. Experiment layout

We use a static setup pointing the IP camera at 2
monitors, to ensure that between the tests, the same
number of objects are being detected. This eliminates
the influence the amount of regions being detected
have on our results. This setup is shown in Appendix
X1

The proof of concept includes 14 different tests
that measure the performance of the interception
devices under various loads.

The first test will serve as a baseline. The baseline
will be used to see what impact the other tests have
to the performance of the interception device. The
baseline test picks up the video feed and discards it
afterwards. It does not perform any manipulation on
the feed.

The detection test will use the OpenCV Deep
Neural Network in combination with the Caffenet
Caffemodel to detect monitors and persons, though
in our static setup, we will only detect monitors.

The boxes test will draw rectangle boxes around
the detected objects.

The label test will put descriptive labels on the
detected objects, stating what kind of object has been
detected alongside the confidence level expressed in
percentages the Deep Neural Network has that it is
actually that particular object.

The save edited stream test archives the modified
stream to storage in H264 format so that it can be
re-watched later in time.

The save original stream test archives the original
stream in H264 format to storage so that the original
unmodified stream can be re-watched later in case of
a court order.

Based on the findings in the related work, we
decided to cover the reversibility aspect of our setup
on the container-level. Therefore, we encrypt the
original stream. We test the perfomance of this step
using the encrypt original stream test. This test
encrypts the original video stream before it is stored
or transmitted over the network by using AES-128-
CBC.

The re-stream test broadcasts the anonymized
video stream just like the original IP camera does.
To accomplish this, the test uses ffimpeg and ffserver.

The blur test applies the pixelation blur
anonymization technique to the detected objects. The
blur level used in this test is the maximum value
accepted by OpenCV, which is 50. This translates to
a square of pixels of 50x50 pixels.

The blur and padding test applies 25 extra pixels
around the detected objects making the region of
interest bigger. The extra padding is added to deter-
mine how the size of the ROI affects the performance
of each blurring technique. The padding is useful if
objects move faster than the DNN can process. In
that case, objects could move outside of the blurred
region and unveil its contents.

The Gaussian blur test applies the Gaussian blur
technique to the detected objects. The standard devi-

ation used in this test is 25, which is the maximum
value accepted by OpenCV.

The Gaussian blur and padding test applies 25
extra pixels around the detected objects making the
region of interest bigger. This is done to see how the
region of interest size effects the Gaussian blurring
technique.

The masking test applies the masking anonymiza-
tion technique to the detected objects in the video
stream. Masking a ROI means that the area will be
filled with a solid color, usually black.

The masking and padding test applies 25 extra
pixels around the detected objects making the region
of interest larger. As a result we can measure the
impact the size of the region of interest has on the
masking technique.

D. Cumulative testing

The next step is to bring in logic to the tests being
conducted. It would not make sense to draw boxes or
put labels on the detections if the detection test itself
is not being conducted. Table [[|shows an overview of
how the different tests are constructed. Up until test
8 (re-streaming), all tests are cumulative. Starting at
test 9 the actual anonymization techniques will be
applied.

E g g
%Eg %)
S = =
E‘g?’ on f g
ER s 55 &
= £ g °g O © +
o 5 §~é°8§ &ggmoﬂ
Si8%c.55.1L7733
23388z 3z 2 422 835 88
MARAJw v @eEgmam OO = =
Test 1| v
Test 2| v/ v
Test 3| V| V|V
Test 4 | V| V[V]V
Test 5| V| /| V] V|V
Test 6| V| V| V|V |V |V
Test 7| V| V| V|V |V |V |V
Test 8 | V| V| V| V|V |V |V |V
Test 9 | V| V| V| V|V [V |V |V]V
Test 10| V| V| V|V |V |V |V V| V/]V
Test 11| /| V| V|V |V |V |V |V v
Test 12| /| V| V|V |V [V V|V IV
Test 13| /| V| V|V V|V |V]V v
Test 14| /| V|V | V|V [V V|V VIV

Table I: Shows how the different tests are constructed

V. RESULTS

The results of all 14 experiments on the four
hardware platforms are shown in Table [Tl The unit
of measurement is frames per second (fps).

§ = o
Q S > < : < g
Sz §& EFf ZE
Q& & o S 5.3
Test 1 | 120.1 9.2 79 3.46
Test 2 | 1184 9.1 7.8 3.42
Test 3 | 117 9.1 7.8 3.45
Test 4 | 115.1 8.8 7.6 3.42
Test 5 | 101.1 7.3 6.2 3.06
Test 6 | 82.5 6.4 53 291
Test 7 | 85.8 6.4 53 2.92
Test 8 | 85.3 6.4 53 2.96
Test 9 | 76.6 6.0 5.4 2.87
Test 10 | 78.6 6.2 53 2.82
Test 11 | 57.9 4.1 4.78 2.5
Test 12 | 53.6 3.8 4.79 2.58
Test 13 | 82.0 6.3 5.4 2.88
Test 14 | 82.0 6.3 53 291
Table II: Shows the relation between the baseline

measurement and the performance hit in frames per
seconds

The results from the 14 Dell desktop experiments
are plotted in Figure 2] Test 1 shows that the baseline
measurement for the Dell desktop is 120.1 fps. Test
2 shows that detecting objects with the deep neural
network model results in a 118.4 fps. This is 98.58%
compared to the baseline. After adding rectangle
boxes on the detections, test 3 shows that the frames
per seconds achieved is 117. This is 97.42% of the
baseline measurement.

Test 4 also puts labels on the detection, which
gives a performance of 115.1 fps. Compared to the
baseline measurement this is 95.84%. Test 5 also
saves the anonymized video stream to disk, which
performs with 101.1 fps. This is 84.18% of the
baseline measurement. test 6 shows that 82.5 fps is
achieved while also saving the original video stream
to disk. 82.5 frames per second is 68.70% compared
to the baseline. Also encrypting the original video
stream yields 85.8 fps as shown in test 7. This
is 71.44% compared to the baseline measurement.
Test 8 shows that at the same time re-streaming the
anonymized video stream performs with 85.3 frames
per second. 85.3 frames per second is 71.02% com-
pared to the baseline. Anonymizing the detections in

the video stream with a blur yields 76.6 fps as shown
in test 9. That is 63.78% compared to the baseline.
Test 10 shows that 78.6 fps can be achieved while
also adding 25pixels of padding to the blurring. Com-
pared to the baseline that is 65.44%. In test 11 the
anonymization technique is changed to a Gaussian
blur, which shows that the fps achieved is 57.9. That
is 48.21% compared to the baseline measurement.
53.6 fps is achieved while also adding 25pixels to
the Gaussian blur, this is shown in test 12. This is
44.63% compared to the baseline measurement. Test
13 changes the anonymization technique to masking,
which shows that the performance is 82.0 fps. That
is equal to 68.28% compared to the baseline. After
adding 25pixel padding to the masking technique
applied to the detections, the performance recorded
is 82.0 fps as shown in test 14. Compared to the
baseline that is 68.28%.

The same 14 tests are also conducted on the other
hardware platforms. Figure [3] shows the results for
the Raspberry Pi 3 platform.

IR
120 |-
110 i
100 - = |

90 - a

Framerate (FPS)

70 |- o a

| | | | | | | | |
6 78 91011121314
Test number

H;
ol
el
ol
ol

Figure 2: Hardware setup: Dell desktop

107 T T T T T T T T T T T T T T

Framerate (FPS)

=

=

| | | | | | | | | |
123456789101
Test number

| | |
1121314
Figure 3: Hardware setup: Raspberry Pi 3

The Intel Atom Server results are shown in Figure

=

8.5

8,

75 a
7E
6.5 [

6,

Framerate (FPS)

5.5 oL
5 [7\7 7\7

4.5

| | | | | | | | | |
123456789101
Test number

| | |
1121314
Figure 4: Hardware setup: Intel Atom Server

Similar the results for the Intel Atom Laptop are
shown in Figure [5

3.6 |- a

341 :

321 8

Framerate (FPS)

28] S
26| |

24

| | | | | | | | | |
123456789101
Test number

| | |
1121314
Figure 5: Hardware setup: Atom laptop
Table reflects the performance of each test

relative to their respective baseline test (test 1). The
results are shown in Table [Tl

§ = s
g £ §& §&
Q S <o g
T2 e g5 z8
Q& & & S 5.3
Test 1 | 100% 100% 100% 100%
Test 2 | 98.58% 9891% 98.73% 98.84%
Test 3 | 97.42% 9891% 98.13% 99.71%
Test 4 | 95.84% 95.65% 96.20% 98.84%
Test 5 | 84.18% 79.35% 7848% 88.44%
Test 6 | 68.70% 69.56% 67.09% 84.10%
Test 7 | 71.44% 69.56% 67.09% 84.39%
Test 8 | 71.02% 69.56% 67.00% 85.55%
Test 9 | 63.78% 6522% 6835% 82.95%
Test 10 | 6544% 6739% 67.00% 81.50%
Test 11 | 4821% 44.56% 60.50% 72.25%
Test 12 | 44.63% 4130% 60.63% 7457%
Test 13 | 68.28% 6348% 6835% 83.24%
Test 14 | 6828% 6848% 67.09% 84.10%

Table III: Shows the relation between the baseline
measurement and the performance hit relative to the
baseline measurement

VI. DISCUSSION

The first thing that became obvious was the overall
performance of the Raspberry Pi 3, compared to
the two Atom platforms. In general, the Raspberry
performed as good or even better than both Atom
platforms. This is especially interesting, given the
Atom server specs (shown in Appendix [[X).

The results clearly show that the Raspberry Pi is
not capable of processing the Full-HD video stream
at the same rate the IP-camera is putting out the
video. Even during the baseline test, the camera is
performing around 9.2 fps. To the human eye, this is
conceived as stuttering. In test 14, the Raspberry Pi
3 is performing at 6.3 frames per second. Although
this performance is far from fluent, the frame rate
can still be acceptable, depending on the application.
Traditional Video Surveillance systems tend to follow
the same behaviour, instead of saving the whole
video stream at full frame rate, these systems only
save a few frames per second. This way, the storage
requirements are far less than in cases where the
whole feed is stored.

While running the experiments on the Raspberry
Pi 3 and the Intel Atom laptop the temperature of
the devices was abnormally high. Initial tests showed
that the temperature would reach 80+ degree Celsius.
Therefore, we had to take extra cooling measures
to prevent crashes or damage to the devices during
the experiments. The setup is shown in Appendix
XTI} Due to the temperature issues, more permanent
cooling solutions are needed if the Raspberry Pi 3 or
the Intel Atom Laptop are to be used in a production
environment.

A key factor influencing the results is the hardware
offloading support for encryption and video pro-
cessing. The Dell desktop supports both AES-128-
CBC and H264-codec hardware offloading, while
the Raspberry Pi 3 supports only H264 offloading.
Both Atom platforms lacked hardware support for
cryptographic operations, and therefore had to do all
operations in software.

We could not reliably determine if the Intel Atom
server used hardware offloading for the video codecs.

Lacking hardware offloading support means that
the device has to do these operations in software.
Generally, this translates to using more CPU re-
sources, compared to hardware offloading.

Based on the information in the literature, we
chose to use three specific anonymization techniques
during our experiments; pixelation, Gaussian blurring

and masking. As mentioned before, according to the
work of Ruchaud and Dugelay, Gaussian blurring and
(normalized box) pixelation are not considered to be
secure.e.

However, it is worth noting that they tried to re-
identify faces that were anonymized using various
levels of Gaussian blur, with a standard deviation
ranging from 2 to 8. They stated that even with a
standard deviation of 8, they were indeed able to
distinctively identify faces. In our tests we used a
standard deviation of 25, being the highest setting
OpenCV would allow us to use.

The same holds true for the pixelation technique
we used. Ruchaud and Dugelay used a maximum box
size of 10x10 pixels. We used a grid of 50x50 pixels,
a multiple of what they used.

It has yet to be proven that both their statements
will still hold for the parameters we used.

Based on our results, the masking filter proved
in all cases to be the most resource friendly. All
filters cover the same amount of frame real-estate,
potentially covering more than necessary. Due to the
limitations of the DNN, we were not able to define
the ROIs more precisely. Therefore, the ROIs had
to be defined as rectangles. Anonymizing the ROIs
more precisely would be more intelligent.

VII. CONCLUSION

Based on the work others did, we concluded that
PII extends further than only faces or personal char-
acteristics. PII also includes any information that can
directly or indirectly identify a person. Information
about what a person is doing can identify the person
itself. Therefore, besides filtering persons, we set out
to filter computer screens too.

After identifying ROIs, we studied various filtra-
tion techniques. Based on related work, we chose
three one-way filtration techniques; pixelation, Gaus-
sian blurring and masking. Related work showed that
two-way filtration techniques were either complex,
lacked a real implementation or were not reviewed
by the cryptographic community.

Our results show that commodity hardware can
be used to filter Personally Identifiable Information
from real-time video streams. While the results show
that the Dell desktop platform is the only hard-
ware platform that is capable of producing a fully
anonymized video stream at the same framerate as
the IP-camera, other platforms can still be used. The
video that is produced by the other platforms is

perceived as stuttering. Depending of the use case,
this does not have to cause any issues, since typical
Video Surveillance Systems often only store a few
fps.

The performance hits of each of the tests described
in Table [[II} show that all hardware platforms follow
a similar pattern. This indicates that the operations
have a simmilar impact on the overall performance.
Though a clear relation can be seen between the Dell
Desktop and the Raspberry Pi performance hits. The
baseline measurements differ as the Dell Desktop can
handle 120.1 fps compared to the Raspberry Pi’s 9.2
fps. This is only 7.66% of the Dell Desktop baseline.

Due to this relation a prediction model could be
devised to predict how much fps a given hardware
platform has under a specific test or load.

VIII. FUTURE WORK

In this section possible contributions are described
that could further increase the efficiency and perfor-
mance of the setup depicted in this paper.

The effectiveness of the setup is largely defined
by the detection model that is being used. Further
extending the types of Personally Identifiable Infor-
mation that could be detected would greatly benefit
the real-life implementation and make the setup more
versatile.

The impact of using different encryption algo-
rithms with various strengths will further increase
the granularity of the results presented in this paper.
The same can be said about using different codecs.
In our research, we only took the H264 codec into
consideration. Therefore, it could be interesting to
testing different codecs. This will further increase the
granularity of the results depicted in this paper.

The anonymization techniques included in this
paper can be further expanded to incorporate
other anonymization techniques, as well as testing
anonymization techniques on different strength lev-
els.

A possible way to increase the performance of the
interception devices is to split the tasks over multiple
devices. Distribution or clustering techniques could
potentially increase the performance of the setup
depicted in this paper. The overclocking capabilities
of the Raspberry Pi were not taken into account.
Overclocking the device could potentially leverage
more performance. But then again, the cooling issues
also have to be taken into account.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

T. Piatrik, V. Fernandez, and E. Izquierdo.
“The privacy challenges of in-depth video
analytics”. In: 2012 IEEE 14th International
Workshop on Multimedia Signal Processing
(MMSP). Sept. 2012, pp. 383-386. DoT1: 10.
1109/MMSP.2012.6343473.

H. Liu, S. Chen, and N. Kubota. “Intelligent
Video Systems and Analytics: A Survey”. In:
IEEE Transactions on Industrial Informatics
9.3 (Aug. 2013), pp. 1222-1233. 1SSN: 1551-
3203. por: [10.1109/T11.2013.2255616.

P. Korshunov and T. Ebrahimi. “Using warping
for privacy protection in video surveillance”.
In: 2013 18th International Conference on
Digital Signal Processing (DSP). July 2013,
pp. 1-6. DOI: 10.1109/ICDSP.2013.6622791.
Matthias Huber et al. “A Provably Privacy
Preserving Video Surveillance Architecture
for an Assisted Living Community.” In: GI-
Jahrestagung. 2014, pp. 563-574.
Nederlandse Spoorwegen. Meten is weten: re-
altime reizigers tellen op zes drukke stations
(Article in Dutch). 2017 (accessed February
1, 2018). URL: http://nieuws.ns.nl/meten -
is - weten - realtime - reizigers - tellen - op - zes -
drukke-stations/.

Nederlandse Omroep Stichting (NOS).
Reclameborden op A’dam CS weten wanneer
en hoelang jij kijkt (Article in Dutch).
2017 (accessed February 6, 2018). URL:
https://nos.nl/artikel/2191341-reclameborden-
op-a-dam-cs-weten- wanneer-en- hoelang-jij-
kijkt.html.

“Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April
2016 on the protection of natural persons
with regard to the processing of personal data
and on the free movement of such data, and
repealing Directive 95/46/EC (General Data
Protection Regulation)”. In: Official Journal
of the European Union L119 (May 2016),
pp- 1-88. URL: http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=0J:1.:2016:119: TOC.
University of Illinois at Chicago. Data Clas-
sifications - Information Security and Privacy
Office. 2017 (accessed Januari 16, 2018). URL:
https://security.uic.edu/data-classifications/.
Jehan Wickramasuriya et al. “Privacy pro-
tecting data collection in media spaces”. In:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Proceedings of the 12th annual ACM interna-
tional conference on Multimedia. ACM. 2004,
pp. 48-55.

Cesar Pantoja, Virginia Fernandez Arguedas,
and Ebroul Izquierdo. “Anonymization and
De-identification of Personal Surveillance Vi-
sual Information: A Review”. In: ().
Maneesh Upmanyu et al. “Efficient privacy
preserving video surveillance”. In: Computer
Vision, 2009 IEEE 12th International Confer-
ence on. IEEE. 2009, pp. 1639-1646.
Natacha Ruchaud and Jean-Luc Dugelay. “Au-
tomatic Face Anonymization in Visual Data:
Are we really well protected?” In: Electronic
Imaging 2016.15 (2016), pp. 1-7. ISSN: 2470-
1173. DOT: |doi: 10.2352/ISSN.2470-1173.
2016 . 15 . IPAS - 181, URL: http: // www .
ingentaconnect . com / content / ist / ei/ 2016 /
00002016/00000015/art00014.

Sk Md Mizanur Rahman et al. “A real-time
privacy-sensitive data hiding approach based
on chaos cryptography”. In: Multimedia and
Expo (ICME), 2010 IEEE International Con-
ference on. 1IEEE. 2010, pp. 72-717.

J. Cichowski and A. Czyzewski. “Reversible
video stream anonymization for video surveil-
lance systems based on pixels relocation and
watermarking”. In: 2011 IEEE International
Conference on Computer Vision Workshops
(ICCV Workshops). Nov. 2011, pp. 1971-
1977. pot: 10.1109/ICCVW.2011.6130490.
Swann Scholtes and Chris Kuipers. RPI
- VideoStreamFiltration - Proof of Concept
code. Jan. 2018. URL: https://gitlab.0s3.nl/
ckuipers/RP1-VideoStreamFiltration.

Jeff Donahue. BAIR/BVLC CaffeNet Model.
2017 2017 (accessed January 12, 2018). URL:
https://github.com/BVLC/caffe/tree/master/
models/bvlc_reference_caffenet.

https://doi.org/10.1109/MMSP.2012.6343473
https://doi.org/10.1109/MMSP.2012.6343473
https://doi.org/10.1109/TII.2013.2255616
https://doi.org/10.1109/ICDSP.2013.6622791
http://nieuws.ns.nl/meten-is-weten-realtime-reizigers-tellen-op-zes-drukke-stations/
http://nieuws.ns.nl/meten-is-weten-realtime-reizigers-tellen-op-zes-drukke-stations/
http://nieuws.ns.nl/meten-is-weten-realtime-reizigers-tellen-op-zes-drukke-stations/
https://nos.nl/artikel/2191341-reclameborden-op-a-dam-cs-weten-wanneer-en-hoelang-jij-kijkt.html
https://nos.nl/artikel/2191341-reclameborden-op-a-dam-cs-weten-wanneer-en-hoelang-jij-kijkt.html
https://nos.nl/artikel/2191341-reclameborden-op-a-dam-cs-weten-wanneer-en-hoelang-jij-kijkt.html
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://security.uic.edu/data-classifications/
https://doi.org/doi:10.2352/ISSN.2470-1173.2016.15.IPAS-181
https://doi.org/doi:10.2352/ISSN.2470-1173.2016.15.IPAS-181
http://www.ingentaconnect.com/content/ist/ei/2016/00002016/00000015/art00014
http://www.ingentaconnect.com/content/ist/ei/2016/00002016/00000015/art00014
http://www.ingentaconnect.com/content/ist/ei/2016/00002016/00000015/art00014
https://doi.org/10.1109/ICCVW.2011.6130490
https://gitlab.os3.nl/ckuipers/RP1-VideoStreamFiltration
https://gitlab.os3.nl/ckuipers/RP1-VideoStreamFiltration
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

Appendices

IX. HARDWARE SPECIFICATIONS

Description Model Dell Optiplex 7010
Type Desktop
CPU Intel i5-3570S
Architecture x86_64
CPU Clockspeed 3.1GHz
Cores/Threads | 4c/8t
Type DDR3
Memory Size 12GB
Speed 1600 MHz
Graphics card | Intel HD Graphics
Chipset Chipset
Speed
Type Solid State Disk
Storage Model Samsung SM8&4
Size 128GB
. NICs 1x
Networking Speed T Gbps
(0N} Ubuntu Desktop 16.04.3 LTS
Software Librarics Python 3.5.1
) OpenCV 3.3.0

Table IV: Dell Desktop hardware specifications

Description Model Raspberry Pi3 model B
Type System on a Chip (SoC)
CPU Broadcom BCM2837
Architecture ARMvS

CPU Clockspeed 1,2 GHz
Cores/Threads | 4c
Type DDR2

Memory Size 1GB
Speed 400MHz
Graphics card | VideoCore IV

Chipset Chipset Broadcom BCM2837
Speed 400MHz
Type SD Card

Storage Model SanDisk
Size 16GB

. NICs 1x

Networking = 100 Mbps
oS Raspbian 9.3

Software oo Python 3.5.1
Libraries oypencv 33.0

Table V: Raspberry Pi 3 hardware specifications

Description Model Kimsufi KS-1
Type Server
CPU Intel Atom N2800
Architecture x86_64
CPU Clockspeed 1.86GHz
Cores/Threads | 2c/4t
Type DDR3
Memory Size 2GB
Speed 1066 MHz
Graphics card
Chipset Chipset
Speed
Type Magnetic Hard Disk
Storage Model Western Digital
Size 500GB
. NICs 1x
Networking = 3 T00 Mbps
oS Ubuntu Server 16.04.3 LTS
Software Libraries Python 3.5.1
OpenCV 3.3.0

Table VI: Intel Atom Server hardware specifications

Description Model Samsung NC10
Resolution Netbook
CPU Intel Atom N270
Architecture x86
CPU Clockspeed 1.6GHz
Cores/Threads | 2c
Type DDR2
Memory Size 1GB
Speed 1066 MHz
Graphics card | Intel GMA 950
Chipset Chipset Intel 945GSE
Speed
Type SSD
Storage Model MX300
Size 275GB
. NICs 1x
Networking |~ g 100 Mbps
(0N} Ubuntu Server 16.04.3 LTS
Software Librarics Python 3.5.1
) OpenCV 3.3.0

Table VII: Intel Atom Laptop hardware specifications

Model Ubiquiti UVC-G3-DOME camera
Description | Resolution 1920x1080 (Full HD)

FPS 30fps

NICs Ix
Networking | Speed 1Gbps

Video protocol | RTSP

Table VIII: Ubiquiti IP-camera specifications

X. DEEP NEURAL NETWORK MODEL ACCURACY

The model is a snapshot of iteration 310.000.
The statistics that are available are about iteration

313.000.

Validation accuracy | 51,412%
Description Loss 1,82328

Top-1 accuracy 57,4%

Top-5 accuracy 80,4%

Table IX: DNN model accuracy at iteration 313.000

XI. TEST SETUP

Figure 9: Blur

Figure 6: Baseline

Figure 10: Blur padding

Figure 7: Boxes

ro— S
monitor: 99.05%

. e
monitor: B8.34%

Figure 8: Labels Figure 11: Guassian blur

11

- -.'h‘
monitor: 98.62%

Figure 12: Gaussian padding

Figure 13: Masking

XII. PRACTICALITIES

Figure 14: Raspberry Pi 3 extra cooling

12

	Introduction
	Research Questions
	Related Work
	Personally Identifiable Information
	Approaches to reversibility
	One-way method
	Two-way method
	Splitting up

	Level of anonymity
	One-way method
	Two-way method
	Splitting up

	Methods
	Unit of measurement
	Measurement technique
	Experiment layout
	Cumulative testing

	Results
	Discussion
	Conclusion
	Future Work
	Hardware specifications
	Deep Neural Network model accuracy
	Test setup
	Practicalities

