Introduction	Methodology	Results	Discussion	Conclusion

Opcode statistics for detecting compiler settings

Kenneth van Rijsbergen¹

¹ MSc student System and Network Engineering Faculty of Science University of Amsterdam

5 February 2018

Introduction	Methodology	Results	Discussion	Conclusion
INTRODUCTION				

Reproducible builds

- How to match the binary with the source code?
 - Reproducible builds : binaries that can be reproduced from source code byte-for-byte

Introduction	Methodology	Results	Discussion	Conclusion
INTRODUCTION				

- Reproducible builds
 - How to match the binary with the source code?
 - Reproducible builds : binaries that can be reproduced from source code byte-for-byte
- Build-environment
 - Used tool-chains, version of the compiler, compiler flags
 - Lost after compilation and stripping

Introduction	Methodology	Results	Discussion	Conclusion
INTRODUCTION				

- Reproducible builds
 - How to match the binary with the source code?
 - Reproducible builds : binaries that can be reproduced from source code byte-for-byte
- Build-environment
 - Used tool-chains, version of the compiler, compiler flags
 - Lost after compilation and stripping
- Opcode statistics
 - Main approach
 - Related work in metamorphic malware detection

Introduction	Methodology	Results	Discussion	Conclusion
Related work /	Background			

- Bilar [2007]: Distribution of opcodes and statistical differences between goodware and malware
- Austin et al [2013]: 90% accuracy in distinguishing different compilers, using Hidden Markov models (HMM).

Introduction	Methodology	Results	Discussion	Conclusion
Related work / B	BACKGROUND			

- Bilar [2007]: Distribution of opcodes and statistical differences between goodware and malware
- Austin et al [2013]: 90% accuracy in distinguishing different compilers, using Hidden Markov models (HMM).

Hidden Markov Model, Graph embedding, ML classifiers

- Wong & Stamp [2006], Santos et al., and many others.
- Mohammad et al [2016]: Using Feature extraction and DT (Random Forest) scored 100% accuracy.

Introduction	Methodology	Results	Discussion	Conclusion
Related work / B	BACKGROUND			

- Bilar [2007]: Distribution of opcodes and statistical differences between goodware and malware
- Austin et al [2013]: 90% accuracy in distinguishing different compilers, using Hidden Markov models (HMM).

Hidden Markov Model, Graph embedding, ML classifiers

- Wong & Stamp [2006], Santos et al., and many others.
- Mohammad et al [2016]: Using Feature extraction and DT (Random Forest) scored 100% accuracy.

N-gram analysis

- N-gram is a sequence of n-items or larger
- Santos et al [2010]. Santos et al [2013]. Kang et al [2016].
- Kang et al [2016]: Showed using a 4-gram was best, detecting Android Malware, using SVM (Support vector machine).

Introduction	Methodology	Results	Discussion	Conclusion
RESEARCH QUESTIC	NS			

Research questions :

- How significant are the differences in the opcode frequencies when using different compiler versions?
- How significant are the differences in the opcode frequencies when using different compiler flags?
- What opcodes are responsible for the differences in the opcode frequencies?
- Are differences significant enough to detect what compiler flag or version is used for a binary?

Introduction	Methodology	Results	Discussion	Conclusion
Methodology				

Approach :

- Compiled a collection of applications
 - 6 different optimisation flags
 - 8 different GCC versions
- Count the opcodes of the collections
 - Single opcodes (1-gram)
 - Opcode pairs (2-gram)
- Statistical analysis

Introduction	Methodology	Results	Discussion	Conclusion
Compiled proc	GRAMS			
Compiled pro barcode bash - p cp - par find - pc gap* - p gcal2txt gcal - pc git-shell git - par lighttpd locate - ls - par	ograms : - part of barcode-0.99 art of bash-4.4 t of coreutils-8.28 - part of enscript-1.6.0 art of gap-4.8.9 - part of gcal-4 art of gcal-4 - part of git 2.7.4 t of git 2.7.4 - part of lighttpd-1.4.4 part of findutils-4.6.0 of coreutils-8.28 t of coreutils-8.28	9 5 68		

- openssl* part of openssl-1.0.2n
- postgresql* part of postgresql-10.1
- sha256sum part of coreutils-8.28
- sha384sum part of coreutils-8.28
- units part of units-2.16
- vim part of vim version 8.0.1391

(Not included in the flag dataset (*))

Introduction	Methodology	Results	Discussion	Conclusion
SIZES OF PROGRAM	IS			

FIGURE - Sizes of programs

Introduction	Methodology	Results	Discussion	Conclusion
COMPILER VERSION	IS			

Compiler versions :

- GCC : (Ubuntu/Linaro 4.4.7-8ubuntu7) 4.4.7
- GCC : (Ubuntu/Linaro 4.6.4-6ubuntu6) 4.6.4
- GCC : (Ubuntu/Linaro 4.7.4-3ubuntu12) 4.7.4
- GCC : (Ubuntu 4.8.5-4ubuntu2) 4.8.5
- GCC : (Ubuntu 4.9.4-2ubuntu1 16.04) 4.9.4
- GCC : (Ubuntu 5.4.1-2ubuntu1 16.04) 5.4.1 20160904
- GCC : (Ubuntu/Linaro 6.3.0-18ubuntu2 16.04) 6.3.0 20170519
- GCC : (Ubuntu 7.2.0-1ubuntu1 16.04) 7.2.0

Introduction	Methodology	Results	Discussion	Conclusion
Optimization fla	\GS			

TABLE - Optimization flags

Flag		Description
-00	Default	
-01	Light optimization	Acts as a macro.
-02	Increased entimization	All optimization of -O1
02	increased optimization	Plus additional flags without space trade-off.
-03	Additional optimization	All optimizations of -O2
05		Plus additional flags.
-06	Optimizo for sizo	All the -O2 optimizations
03	optimize for size	Plus other flags that reduce the size.
		All the -O3 optimizations
-Ofast	Optimize for speed	Plus other flags such as -fast-math.
		Some program refuse to compile.

Introduction	Methodology	Results	Discussion	Conclusion
STATISTICAL AI	NALYSIS			

Chi-squared test :

- Measures the difference or fit of data
- Difference between the actual data and the expected data
- Need Cramer's V due to large dataset

Introduction	Methodology	Results	Discussion	Conclusion
STATISTICAL AN	IALYSIS			

Chi-squared test :

- Measures the difference or fit of data
- Difference between the actual data and the expected data
- Need Cramer's V due to large dataset

Cramer's V:

- Indicates strength of relationship between 0 and 1
 - <0.10 indicates a weak relationship between the variables
 0.10 0.30 indicates a moderate relationship
 >0.30 indicates a strong relationship

Introduction	Methodology	Results	Discussion	Conclusion
STATISTICAL AN	IALYSIS			

Chi-squared test :

- Measures the difference or fit of data
- Difference between the actual data and the expected data
- Need Cramer's V due to large dataset

Cramer's V:

- Indicates strength of relationship between 0 and 1
 - <0.10 indicates a weak relationship between the variables
 0.10 0.30 indicates a moderate relationship

 - >0.30 indicates a strong relationship

Z-scores :

- Number of std.dev an observation deviates from the mean
 - 0 = no deviation.
 - -2 or 2 = deviates 2 std.dev. from the mean
- The greater the Z-score, the more a value deviates from the mean

Introduction	Methodology	Results	Discussion	Conclusion
RESULTS				

GCC versions 1-gram

Introduction	Methodology	Results	Discussion	Conclusion

GCC VERSIONS 1-GRAM

Pearson's c Cramér's V	hi-squared	test (χ2)		116455.3 0.025513						
р				0						Differences in
Opcode	Average	GCC 4.4	GCC 4.6	GCC 4.7	GCC 4.8	GCC 4.9	GCC 5	GCC 6	GCC 7	relative frequencies
mov	34.90%	36.78%	36.56%	36.22%	34.27%	33.94%	33.98%	34.07%	33.70%	96 0.08
callq	8.30%	8.23%	8.43%	8.30%	8.21%	8.31%	8.28%	8.29%	8.30%	96 0.03
test	5.00%	4.94%	5.11%	5.01%	4.95%	4.86%	4.92%	4.95%	4.98%	96 0.05
je	4.70%	4.74%	4.81%	4.85%	4.68%	4.58%	4.66%	4.67%	4.70%	96 0.06
xor	4.60%	4.42%	4.66%	4.43%	4.45%	4.64%	4.63%	4.59%	4.59%	% 0.05 mov
cmp	3.30%	3.33%	3.31%	3.36%	3.31%	3.29%	3.32%	3.30%	3.33%	% 0.02 callq
jne	3.10%	2.93%	3.00%	3.00%	3.00%	3.15%	3.15%	3.15%	3.21%	S 0.09 le .
jmpq	3.00%	3.02%	2.91%	3.10%	3.04%	3.02%	3.03%	3.03%	3.01%	% 0.06 xor -
lea	3.00%	2.62%	2.71%	2.87%	3.11%	3.12%	3.06%	3.06%	3.13%	56 0.16 cmp -
рор	2.90%	2.05%	2.07%	2.10%	3.67%	3.46%	3.43%	3.34%	3.33%	% 0.44 jne -
add	2.90%	2.98%	3.14%	3.09%	2.87%	2.88%	2.85%	2.84%	2.79%	5 0.11 Jmpg
push	2.40%	1.55%	1.57%	1.59%	2.53%	3.01%	2.98%	2.97%	2.95%	% 0.49 ppp
nopl	2.30%	2.55%	2.25%	2.31%	2.33%	2.23%	2.20%	2.20%	2.31%	% 0.14 add -
sub	1.50%	1.51%	1.51%	1.52%	1.41%	1.55%	1.55%	1.58%	1.58%	% 0.11 push -
nopw	1.40%	1.41%	1.38%	1.44%	1.41%	1.39%	1.37%	1.36%	1.43%	% 0.05 nopl
retq	1.10%	1.07%	1.08%	1.12%	1.22%	1.12%	1.12%	1.10%	1.11%	% 0.12 SUD
movi	1.10%	1.17%	1.18%	1.18%	1.18%	1.02%	1.03%	1.03%	0.94%	S 0.20 reto
jmp	1.00%	1.03%	0.92%	0.99%	0.99%	0.97%	0.98%	0.97%	0.94%	% 0.11 movi -
movq	1.00%	0.95%	0.97%	0.97%	0.96%	0.93%	0.95%	0.95%	0.96%	% 0.04 jmp -
movzbl	0.90%	1.04%	0.95%	0.93%	0.93%	0.91%	0.89%	0.98%	0.91%	% 0.15 movq -
and	0.70%	0.65%	0.63%	0.66%	0.66%	0.67%	0.68%	0.69%	0.68%	% 0.08 movzbl
movslq	0.60%	0.67%	0.64%	0.66%	0.67%	0.63%	0.64%	0.64%	0.63%	% 0.07 movia
cmpb	0.60%	0.54%	0.60%	0.60%	0.59%	0.59%	0.58%	0.57%	0.56%	% 0.09 cmpb -
jle	0.50%	0.48%	0.48%	0.47%	0.48%	0.47%	0.47%	0.47%	0.45%	% 0.06 jle -
movb	0.50%	0.46%	0.48%	0.48%	0.48%	0.46%	0.46%	0.46%	0.41%	8 0.14 movb
shr	0.40%	0.37%	0.39%	0.41%	0.42%	0.41%	0.42%	0.42%	0.40%	% 0.12 shr
nop	0.40%	0.47%	0.41%	0.41%	0.41%	0.37%	0.37%	0.37%	0.39%	% 0.22 nop
movzwl	0.40%	0.37%	0.39%	0.38%	0.38%	0.37%	0.37%	0.37%	0.37%	8 0.06 cmpg
cmpq	0.40%	0.38%	0.38%	0.41%	0.36%	0.36%	0.36%	0.36%	0.33%	% 0.18 shi -
shl	0.40%	0.40%	0.38%	0.38%	0.37%	0.37%	0.35%	0.34%	0.34%	8 0.15 OTHER
OTHER	6.90%	6.88%	6.70%	6.76%	6.67%	6.91%	6.91%	6.90%	7.23%	5 0.08 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Relative frequencies of opcodes for different GCC versions (1-gram).

Results

GCC VERSIONS 1-GRAM

Opcode	GCC 4.4	GCC 4.6	GCC 4.7	GCC 4.8	GCC 4.9	GCC 5	GCC 6	GCC 7
mov	1.74	1.08	0.58	-1	-0.65	-0.54	-0.46	-0.75
callq	-1.13	-0.25	-1.28	-0.89	0.89	0.76	0.82	1.09
test	-1.21	0.6	-0.99	-0.65	-0.55	0.34	0.79	1.65
je	-0.38	0.07	0.67	-1.12	-1.55	0.27	0.48	1.56
xor	-1.2	0.07	-1.41	-0.82	0.95	0.96	0.65	0.8
cmp	-0.49	-1.51	-0.76	-0.61	0.34	1.02	0.59	1.42
jne	-1.2	-0.91	-0.95	-0.58	0.76	0.81	0.8	1.28
jmpq	-0.44		0.09	0.04	0.55	0.77	0.65	0.6
lea	-1.55	-1.28	-0.65	0.55	0.81	0.61	0.58	0.93
рор	-1.22	-1.21	-1.18	0.94	0.75	0.71	0.59	0.6
add	0.29	1.8	1.08	-0.88	-0.15	-0.5	-0.57	-1.07
push	-1.19	-1.17	-1.16	0.15	0.88	0.84	0.83	0.82
nopl	2.18	-0.9	-0.34	0.2	-0.4	-0.6	-0.69	0.54
sub	-0.47	-0.61	-0.61	-1.71	0.61	0.68	1	1.12
nopw	-0.14	-1.63	0.31	0.15	0.31	-0.41	-0.51	1.92
retq	-1.19	-1.18	-0.51	1.9	0.4	0.34	0.05	0.19
movl	0.83	0.85	0.74	1.08	-0.73	-0.55	-0.55	-1.66
jmp	1.17		-0.1	0.37	0.36	0.61	0.2	-0.44
movq	-1.03	-0.68	-0.41	-0.12	-0.89	0.59	0.59	1.95
movzbl	1.97	-0.23	-0.74	-0.38	-0.37	-0.89	1.11	-0.47
and	-0.88	-1.63	-0.65	-0.28	0.62	0.93	1.11	0.77
movslq	1.49	-1.57	0.1	1.17	-0.54	0.1	0.05	-0.8
cmpb	-2.22	0.46	0.36	0.52	0.9	0.55	-0.02	-0.56
jle	1.22	-0.64	-1.28	0.49	0.21	0.91	0.54	-1.44
movb	-0.23	0.36	0.45	0.84	0.19	0.45	0.31	
shr	-1.62	-1.3	-0.31	0.76	0.63	0.92	0.87	0.06
nop	2.14	-0.04	0.16	0.45	-0.77	-0.82	-0.95	-0.18
movzwl	-1.27	1.83	-1.15	0.59	-0.34	0.47	-0.18	0.04
cmpq	0.51	0.02	1.82	-0.29	-0.07	-0.12	-0.04	-1.82
shl	1.82	0.42	0.1	-0.16	0.72	-0.66	-1.23	-1
OTHER	-0.24	-1.14	-0.98	-0.88	0.49	0.51	0.47	1.78

Z-scores and the 2 greatest deviators for different GCC versions (1-gram).

Introduction	Methodology	Results	Discussion	Conclusion
RESULTS				

GCC versions 2-gram

GCC VERSIONS 2-GRAM

Pearson's c Cramér's V	hi-squared	test (χ2)		146756.3 0.036947						
р				0						Differences in
Opcode	Average	GCC 4.4	GCC 4.6	GCC 4.7	GCC 4.8	GCC 4.9	GCC 5	GCC 6	GCC 7	relative frequencies
mov,mov	15.50%	17.54%	17.23%	16.96%	14.84%	14.43%	14.49%	14.51%	14.15%	8 0.19
mov,callq	5.49%	5.56%	5.57%	5.60%	5.51%	5.45%	5.42%	5.42%	5.43%	% 0.03
callq,mov	3.97%	4.06%	4.12%	4.02%	4.01%	3.90%	3.89%	3.88%	3.90%	% 0.06
mov,xor	2.18%	2.05%	2.23%	2.03%	2.02%	2.28%	2.28%	2.28%	2.28%	6.12
test, je	2.11%	2.08%	2.13%	2.15%	2.08%	2.04%	2.12%	2.12%	2.14%	% 0.05 mov,mov
je,mov	2.09%	2.16%	2.15%	2.18%	2.07%	2.02%	2.05%	2.05%	2.04%	% 0.07 mov,callg
pop,pop	1.97%	1.35%	1.36%	1.37%	2.48%	2.34%	2.32%	2.25%	2.25%	% 0.46 may xor
mov,test	1.61%	1.58%	1.57%	1.60%	1.64%	1.61%	1.64%	1.65%	1.61%	% 0.05 test.je -
callq,test	1.57%	1.59%	1.62%	1.64%	1.55%	1.54%	1.53%	1.54%	1.54%	6.07 je,mov
xor, mov	1.45%	1.47%	1.42%	1.42%	1.36%	1.46%	1.46%	1.50%	1.50%	0.09 pop.pop
test, ine	1.28%	1.27%	1.30%	1.29%	1.28%	1.27%	1.29%	1.28%	1.25%	0.04 mov,test
ine,mov	1.22%	1.20%	1.25%	1.21%	1.21%	1.21%	1.23%	1.24%	1.25%	S 0.04 xpr.mpy
lea,mov	1.16%	1.03%	1.09%	1.17%	1.22%	1.19%	1.19%	1.18%	1.18%	% 0.15 test.jne -
mov,jmpq	1.13%	1.09%	1.04%	1.12%	1.15%	1.15%	1.16%	1.16%	1.16%	8 0.10 jne,may -
push,push	1.12%	0.63%	0.60%	0.63%	0.93%	1.52%	1.53%	1.53%	1.53%	% 0.61 lea,mov
xor,callq	1.06%	1.02%	1.18%	1.05%	1.02%	1.06%	1.05%	1.06%	1.06%	% 0.14 mov.jmpq
cmp,je	1.06%	1.01%	1.08%	1.12%	1.07%	1.04%	1.06%	1.06%	1.05%	% 0.09 xor,callg
push,mov	0.95%	0.66%	0.71%	0.67%	1.18%	1.13%	1.08%	1.06%	1.06%	% 0.44 cmp.je -
nopl,mov	0.92%	1.00%	0.93%	0.95%	0.88%	0.89%	0.89%	0.88%	0.95%	% 0.12 push,mov
mov,add	0.89%	1.11%	1.10%	1.10%	0.77%	0.77%	0.78%	0.77%	0.75%	0.33 nopl,mov
test,mov	0.87%	0.86%	0.96%	0.86%	0.86%	0.86%	0.81%	0.84%	0.88%	% 0.16 mov,add
mov,lea	0.83%	0.72%	0.71%	0.76%	0.90%	0.89%	0.88%	0.89%	0.89%	% 0.21 mov.lea
jmpq,nopl	0.82%	0.87%	0.80%	0.82%	0.82%	0.78%	0.78%	0.78%	0.87%	0.10 jmpq,nopl -
jmpq,mov	0.75%	0.77%	0.71%	0.78%	0.76%	0.75%	0.77%	0.77%	0.68%	5 0.12 jmpq,may
add,mov	0.69%	0.63%	0.71%	0.68%	0.74%	0.70%	0.69%	0.70%	0.68%	% 0.14 add, mov
pop,retq	0.69%	0.52%	0.54%	0.55%	0.87%	0.77%	0.76%	0.74%	0.76%	% 0.41 pop,retq
mov,je	0.68%	0.64%	0.72%	0.68%	0.68%	0.68%	0.65%	0.67%	0.71%	5 0.10 sub.mov
sub,mov	0.65%	0.62%	0.61%	0.61%	0.52%	0.72%	0.71%	0.72%	0.72%	0.28 mov.sub -
mov,sub	0.65%	0.72%	0.72%	0.69%	0.53%	0.65%	0.62%	0.63%	0.63%	% 0.26 cmp,jne -
cmp,jne	0.59%	0.54%	0.55%	0.59%	0.60%	0.59%	0.60%	0.60%	0.65%	0.16 OTHER -
OTHER	44.04%	43.63%	43.29%	43.70%	44.42%	44.30%	44.23%	44.24%	44.47%	0.03 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Relative frequencies of opcodes for different GCC versions (2-gram).

GCC VERSIONS 2-GRAM

Opcode	GCC 4.4	GCC 4.6	GCC 4.7	GCC 4.8	GCC 4.9	GCC 5	GCC 6	GCC 7
mov,mov	1.52	1.14	0.89	-0.61	-0.73	-0.66	-0.65	-0.91
mov,callq	0.21	-1.73	-0.87	-0.35	1.11	0.21	0.07	1.35
callq,mov	1.21	1.52	-1.14	0.6	-0.53	-0.53	-0.98	-0.15
mov,xor	-1.02	0	-1.27	-1.16	0.85	0.84	0.85	0.91
test, je	-1.13	-0.38	-0.17	-0.82	-0.92	0.96	0.97	1.48
je,mov	1.54	0.51	1.2	-1.01	-1.25	-0.3	-0.25	-0.44
pop,pop	-1.2	-1.21	-1.2	0.94	0.75	0.72	0.59	0.6
mov,test	-0.93	-1.54	-0.94	0.4	0.4	1.04	1.14	0.43
callq,test	0.22	0.85	1.89	-1.33	-0.38	-0.71	-0.48	-0.05
xor,mov	0.01	-0.9	-0.95	-1.48	0.51	0.58	1.06	1.18
test, jne	-1.4	-0.36	-0.86	-0.33	0.48	1.64	1.06	-0.22
jne,mov	-1.2	-0.11	-1.23	-0.71	0.05	0.87	0.94	1.38
lea,mov	-1.85	-1.18	-0.2	0.74	0.7	0.64	0.52	0.64
mov,jmpq	-0.83	-1.85	-0.62	0.2	0.57	0.82	0.79	0.92
push,push	-1.05	-1.12	-1.07	-0.4	0.9	0.91	0.92	0.92
xor,callq	-1.15	1.96	-0.79	-0.98	0.19	0.17	0.23	0.37
cmp,je	-2.16	-0.03	1.24	0.04	-0.4	0.66	0.43	0.21
push,mov	-1.25	-1.08	-1.26	0.97	0.84	0.64	0.57	0.57
nopl,mov	1.8	-0.22	0.24	-1.18	-0.47	-0.52	-0.76	1.09
mov,add	1.28	1.19	1.14	-0.79	-0.71	-0.61	-0.68	-0.82
test,mov	-0.51	1.99	-0.61	-0.2	0.2	-1.27	-0.37	0.76
mov,lea	-1.23	-1.44	-0.92	0.68	0.76	0.64	0.71	0.79
jmpq,nopl	1.25	-0.78	-0.39	-0.03	-0.63	-0.54	-0.74	1.86
jmpq,mov	0.38	-1.53	0.32	0.37	0.33	0.86	0.89	-1.62
add,mov	-2.04	0.06	-0.71	1.31	0.5	0.29	0.55	0.03
pop,retq	-1.26	-1.16	-1.09	1.26	0.63	0.57	0.44	0.61
mov, je	-1.72	0.89	-0.44	-0.17	0.46	-0.6	0.02	1.56
sub,mov	-0.53	-0.67	-0.72	-1.61	0.85	0.83	0.92	0.94
mov,sub	1.2	0.91	0.44	-2.1	0.11	-0.28	-0.2	-0.07
cmp,jne	-1.39	-1.25	-0.44	0.23	0.28	0.48	0.42	1.66
OTHER	-0.8	-1.46	-1.18	0.14	0.75	0.73	0.73	1.09

GCC 4.4 GCC 4.6 GCC 4.7 GCC 4.8 GCC 4.9 GCC 5 GCC 6 GCC 7

Z-scores and the 2 greatest deviators for different GCC versions (2-gram).

Introduction	Methodology	Results	Discussion	Conclusion
RESULTS				

Flags 1-gram

Introduc	tion		Ν	lethod	ology			Resu	lts			Discus	sion				Conclusic	on
FLAGS	5 1-GI	RAM																
	Pearson's o Cramér's V	hi-squared t	est (χ2)		668066.8 0.115758													
	p				0				Difference	is in								
	Opcode	Average	0	1	2	3 5	20.70%	fast	relative fr	equencie	5							
	mov	30.90%	49.92%	37.25%	32.75%	33.00%	32.72%	33.07%	0.34									
	io	8.30% 4.90%	2.55%	9.23%	5.00%	5.42%	9.38%	5.44%	0.19									
	test	4.50%	3.00%	4.55%	5.37%	5 70%	4 56%	5 70%	0.35								-	
	cmn	3 40%	2 19%	3.69%	3 53%	3.96%	3.46%	3.96%	0.45	mov	-	_						
	ine	3,30%	2.65%	3.58%	3.44%	3.52%	3,53%	3.52%	0.26	callq								
	xor	3,10%	0.73%	0.82%	4.36%	4.06%	4,90%	4.06%	0.85	test								
	nush	3.10%	1.97%	3.61%	3.42%	2.85%	4.60%	2.85%	0.57	cmp	-	_						
	lea	3.10%	2.32%	3.40%	3.11%	3.23%	3.37%	3.24%	0.32	jne	-	-						
	add	2.80%	3,13%	2.86%	2,93%	2.80%	1,96%	2.80%	0.37	xor								
	impa	2.70%	1.58%	2.26%	3.31%	3.39%	2.17%	3.38%	0.53	lea			_					
	gog	2.50%	0.54%	2.59%	3.40%	2.84%	3.66%	2.84%	0.85	add	-							
	sub	1.70%	1.89%	1.93%	1.75%	1.65%	1.04%	1.65%	0.46	jmpq	-	_						
	jmp	1.60%	2.31%	2.46%	1.06%	0.96%	2.39%	0.96%	0.61	pop			-	_				
	movl	1.40%	1.47%	1.46%	1.33%	1.34%	1.32%	1.34%	0.10	sub			_					
	nopl	1.10%	0.01%	0.01%	2.22%	2.09%	0.01%	2.09%	1.00	movi								
	movzbl	1.10%	1.65%	1.06%	0.87%	1.07%	0.32%	1.07%	0.81	nopl		_	_	_	_			
	movq	1.00%	0.89%	1.13%	1.06%	1.06%	1.04%	1.06%	0.21	movzbl				_				
	retq	1.00%	1.17%	1.12%	1.09%	0.82%	1.20%	0.82%	0.32	movq								
	movslq	0.80%	0.71%	0.87%	0.72%	0.80%	0.79%	0.80%	0.18	movsla	_	_						
	cmpl	0.70%	1.13%	1.35%	0.27%	0.26%	1.37%	0.26%	0.81	cmpl	-	_	_					
	and	0.70%	0.76%	0.56%	0.62%	0.74%	0.61%	0.74%	0.27	and	-	-						
	nopw	0.70%	0.01%	0.01%	1.37%	1.18%	0.01%	1.18%	1.00	nopw					_			
	cmpb	0.60%	0.07%	0.74%	0.67%	0.68%	0.65%	0.68%	0.90	nusha								
	pushq	0.50%	0.50%	0.50%	0.47%	0.41%	0.55%	0.41%	0.26	cmpg	-	_	_					
	cmpq	0.50%	0.87%	0.38%	0.33%	0.35%	0.42%	0.35%	0.62	movb	-	_	-					
	movb	0.50%	0.28%	0.52%	0.48%	0.53%	0.40%	0.53%	0.48	jle	-							
	jle	0.40%	0.33%	0.46%	0.47%	0.51%	0.41%	0.51%	0.36	shl								
	shl	0.40%	0.63%	0.31%	0.27%	0.33%	0.22%	0.33%	0.65	OTHER				-				
	or	0.30%	0.24%	0.26%	0.28%	0.30%	0.76%	0.30%	0.68	0	.00 0.2	0 0.40	0.60	0.80	1.00	1.20		
	OTHER	6.10%	5.72%	6.23%	5.83%	6.09%	7.03%	6.08%	0.19									

Relative frequencies of opcodes for different Flags (1-gram).

Introduction	Methodology	Results	Discussion	Conclusion
Flags 1-gram				

Opcode	0	1	2	3	s	fast
mov	1.84	-0.42	-0.62	0.11	-1.01	0.11
callq	0.69	-0.43	-0.91	0.97	-1.28	0.97
je	-0.64	-0.62	-0.36	1.27	-0.91	1.27
test	-0.72	-0.73	-0.01	1.22	-0.98	1.22
cmp	-0.94	-0.32	-0.3	1.24	-0.91	1.24
jne	-0.37	-0.5	-0.44	1.24	-1.17	1.24
xor	-1.21	-1.31	0.45	0.87	0.33	0.87
push	-1.89	-0.03	-0.04	0.51	0.95	0.51
lea	-0.63	-0.34	-0.54	1.25	-1.02	1.26
add	1.16	-0.44	-0.19	0.57	-1.66	0.57
jmpq	-0.8	-0.75	0.26	1.16	-1.03	1.15
рор	-1.87	-0.33	0.51	0.74	0.22	0.73
sub	1.13	-0.05	-0.22	0.47	-1.8	0.47
jmp	1.56	0.67	-0.97	-0.74	0.23	-0.75
movl	1.32	-0.48	-0.66	0.6	-1.38	0.6
nopl	-0.91	-0.91	0.69	1.02	-0.91	1.02
movzbl	1.56	-0.27	-0.49	0.31	-1.43	0.32
movq	0.09	-0.43	-0.47	1.12	-1.44	1.12
retq	2.02	-0.35	-0.2	-0.42	-0.63	-0.41
movslq	0.47	-0.26	-0.92	1.02	-1.34	1.02
cmpl	1.22	0.85	-0.98	-0.85	0.61	-0.85
and	1.05	-1.01	-0.59	0.82	-1.08	0.82
nopw	-0.91	-0.91	0.79	0.97	-0.91	0.97
cmpb	-1.83	0.26	0.15	0.86	-0.29	0.86
pushq	1.89	-0.6	-0.64	0.07	-0.8	0.07
cmpq	2.02	-0.48	-0.58	-0.22	-0.53	-0.22
movb	-0.94	-0.1	-0.19	1.17	-1.13	1.19
jle	-0.52	-0.48	-0.24	1.22	-1.2	1.22
shl	1.86	-0.47	-0.58	0.08	-0.98	0.09
or	-0.4	-0.93	-0.68	0.07	1.87	0.07
OTHER	0.72	-0.88	-0.95	1.01	-0.89	0.99

Z-scores and the 2 greatest deviators for different Flags (1-gram).

Introduction	Methodology	Results	Discussion	Conclusion
RESULTS				

Flags 2-gram

Introdu	ction		Ν	Aethod(ology			Resu	lts		Disc	cussio				C	onclusion
FLAG	s 2-gi	RAM															
	Pearson's o	:hi-squared t	est (x2)		570972.1												
	Cramér's V				0.13632												
	р				0				Differences	s in							
	Opcode	Average	0	1	2	3 s	1	fast	relative fre	quencies							
	mov,mov	36.90%	27.90%	18.26%	13.04%	13.22%	12.51%	13.23%	0.55								
	mov,callq	8.30%	6.72%	7.30%	5.17%	5.05%	5.79%	5.05%	0.31								
	callq,mov	4.90%	4.09%	4.71%	3.62%	3.58%	3.78%	3.58%	0.24								
	je,mov	4.80%	2.33%	2.13%	2.14%	2.38%	1.96%	2.37%	0.18	movimovi							
	test, je	3.40%	1.74%	2.38%	2.29%	2.50%	2.02%	2.50%	0.30	mov.callg -			-				
	mov,test	3.30%	1.39%	1.79%	1.96%	2.23%	0.98%	2.23%	0.56	callq,mov -	_						
	pop,pop	3.10%	0.20%	1.84%	2.29%	2.00%	2.42%	2.00%	0.92	je,mov -							
	mov,xor	3.10%	0.60%	0.63%	2.33%	2.16%	2.58%	2.16%	0.77	test,je		1	_				
	jne,mov	3.10%	1.90%	1.55%	1.31%	1.40%	1.42%	1.40%	0.31	non non			-				
	callq,test	2.80%	0.99%	1.30%	1.61%	1.56%	2.06%	1.56%	0.52	mov,xor -				-			
	push,push	2.70%	0.11%	2.49%	1.72%	1.51%	1.98%	1.51%	0.96	jne,mov -	_						
	lea,mov	2.50%	1.93%	1.52%	1.24%	1.26%	1.35%	1.26%	0.36	callq,test -							
	test, jne	1.70%	1.19%	1.32%	1.52%	1.60%	1.09%	1.59%	0.32	push, push		_					
	push,mov	1.60%	1.40%	0.32%	1.30%	1.00%	1.98%	1.00%	0.84	test.ine -		-					
	mov,lea	1.40%	1.22%	1.30%	0.92%	0.96%	0.99%	0.96%	0.29	push, mov -		_	_	-			
	cmp,je	1.10%	0.60%	0.93%	1.14%	1.23%	0.83%	1.23%	0.51	mov,lea -	_						
	xor,mov	1.10%	0.20%	0.21%	1.43%	1.31%	1.58%	1.31%	0.88	cmp,je -							
	mov,jmpq	1.00%	0.70%	0.72%	1.13%	1.24%	0.57%	1.24%	0.54	xor, mov							
	mov,add	1.00%	1.58%	0.72%	0.87%	0.82%	0.57%	0.82%	0.64	mov,add			-				
	sub,mov	0.80%	1.57%	0.99%	0.85%	0.76%	0.49%	0.76%	0.69	sub, mov	_	_	-				
	add,mov	0.70%	1.66%	0.82%	0.71%	0.68%	0.51%	0.68%	0.70	add, mov			_				
	jmpq,mov	0.70%	0.90%	0.96%	0.78%	0.87%	0.66%	0.87%	0.31	jmpq,mov -							
	mov,cmp	0.70%	1.14%	0.94%	0.62%	0.71%	0.69%	0.71%	0.46	mov.sub							
	mov,sub	0.60%	1.52%	0.39%	0.71%	0.65%	0.57%	0.65%	0.74	cmp,jne -		_		-			
	cmp,jne	0.50%	0.69%	1.09%	0.64%	0.67%	0.81%	0.67%	0.42	mov,push -	_	_	_	_			
	mov,push	0.50%	0.62%	0.08%	0.88%	0.71%	1.31%	0.71%	0.94	jmp,mov -			-	-			
	jmp,mov	0.50%	1.52%	1.50%	0.13%	0.13%	0.97%	0.13%	0.91	xor,callq -							
	xor,callq	0.40%	0.01%	0.02%	1.01%	0.99%	1.09%	0.99%	0.99	pop.reta							
	mov,jmp	0.40%	1.08%	1.04%	0.42%	0.38%	0.76%	0.38%	0.64	OTHER -							
	pop,retq	0.30%	0.33%	0.70%	0.76%	0.60%	0.84%	0.60%	0.61	0.0	0 0.20	0.40	0.60	0.80	1.00	1.20	
	OTHER	6 10%	32,18%	40.04%	45 44%	45 84%	44 86%	45 83%	0.30	1							

Relative frequencies of opcodes for different Flags (2-gram).

Introduction	Methodology	Results	Discussion	Conclusion
Flags 2-gram				

Opcode	0	1	2	3	s	fast
mov,mov	1.95	-0.14	-0.6	-0.17	-0.87	-0.17
mov,callq	1.67	0.33	-0.91	0.02	-1.13	0.02
callq,mov	1.37	0.21	-0.87	0.37	-1.44	0.37
je,mov	0.9	-0.75	-0.56	0.87	-1.34	0.87
test,je	-0.34	-0.39	-0.33	1.19	-1.33	1.19
mov,test	-0.23	-0.39	-0.06	1.11	-1.53	1.11
pop,pop	-1.9	-0.19	0.44	0.76	0.13	0.76
mov,xor	-1.15	-1.35	0.44	0.9	0.26	0.9
jne,mov	1.73	-0.44	-0.78	0.26	-1.03	0.26
callq,test	-1.04	-1.24	-0.11	1.07	0.26	1.07
push,push	-1.93	0.95	0.12	0.41	0.04	0.41
lea,mov	1.88	-0.31	-0.72	0.04	-0.93	0.04
test,jne	0.02	-0.69	-0.07	1.1	-1.45	1.09
push,mov	1.06	-1.83	0.04	0.01	0.72	0.01
mov,lea	1.55	0.21	-0.92	0.21	-1.27	0.22
cmp,je	-0.83	-0.58	0.07	1.19	-1.05	1.2
xor,mov	-1.22	-1.31	0.49	0.85	0.34	0.85
mov,jmpq	-0.3	-0.83	0.15	1.13	-1.28	1.13
mov,add	1.87	-0.64	-0.29	0.03	-1	0.03
sub,mov	1.88	-0.18	-0.34	-0.1	-1.14	-0.1
add,mov	1.96	-0.32	-0.43	-0.16	-0.9	-0.16
jmpq,mov	0.99	-0.12	-0.67	0.7	-1.6	0.71
mov,cmp	1.81	-0.03	-0.87	0.04	-0.99	0.04
mov,sub	1.93	-0.85	-0.28	-0.06	-0.68	-0.06
cmp,jne	0.51	1.39	-1.29	0.21	-1.02	0.21
mov,push	0.11	-1.97	0.28	0.35	0.87	0.35
jmp,mov	1.55	0.82	-0.83	-0.79	0.04	-0.79
xor,callq	-1.26	-1.24	0.45	0.89	0.27	0.89
mov,jmp	1.74	0.64	-0.83	-0.64	-0.27	-0.64
pop,retq	-1.93	-0.15	0.61	0.65	0.17	0.64
OTHER	-0.47	-0.91	-0.14	1.23	-0.95	1.23

Z-scores and the 2 greatest deviators for different Flags (2-gram).

Introduction	Methodology	Results	Discussion	Conclusion
Discussion				

- Z-scores can act as weights for machine learning
- Flags will be easy-er to differentiate then GCC versions

	Chi-squared	р	Cramérs V
Dataset (GCC 5)	184522.4	0	0.055
Versions 1-gram	116455.3	0	0.025
Versions 2-gram	146756.3	0	0.037
Flags 1-gram	668066.8	0	0.116
Flags 2-gram	570972.1	0	0.136

TABLE - Analysis of matrixes

Cramer's V:

- Indicates strength of relationship between 0 and 1
 - <0.10 indicates a weak relationship between the variables
 0.10 0.30 indicates a moderate relationship
 >0.30 indicates a strong relationship

Introduction	Methodology	Results	Discussion	Conclusion
Discussion				

- Z-scores can act as weights for machine learning
- Flags will be easy-er to differentiate then GCC versions

	Chi-squared	р	Cramérs V
Dataset (GCC 5)	184522.4	0	0.055
Versions 1-gram	116455.3	0	0.025
Versions 2-gram	146756.3	0	0.037
Flags 1-gram	668066.8	0	0.116
Flags 2-gram	570972.1	0	0.136

TABLE - Analysis of matrixes

Cramer's V :

- Indicates strength of relationship between 0 and 1
 - <0.10 indicates a weak relationship between the variables
 0.10 0.30 indicates a moderate relationship
 >0.30 indicates a strong relationship
- Enough to train a classifier?
 - Successful in distinguishing malware
 - Unable to distinguish between hand-written assembly and compiled code
- 2-grams perform better than 1-grams. Confirms related work.
- Improvements to this research : Dataset

Introduction	Methodology	Results	Discussion	Conclusion
Conclusion and I	UTURE WORK			

Conclusion

- Differences do occur
- However weak, patterns are visible
- Ground for future research (machine learning)

Future Work

- Create larger dataset
 - Using existing reproducible build or build automation tools
- Train and apply ML classifiers
- System call and library call statistics
- Measure changes on individual applications

Introduction	Methodology	Results	Discussion	Conclusion
FIN				

Thank you. Questions?

Introduction	Methodology	Results	Discussion	Conclusion
[References]				

Citations in this presentation :

- D. Bilar, "Opcodes as predictor for malware," vol. 1, 01 2007.
- T. H. Austin, E. Filiol, S. Josse, and M. Stamp, "Exploring hidden markov models for virus analysis : a semantic approach," in System Sciences (HICSS), 2013 46th Hawaii International Conference on IEEE, 2013, pp. 5039–5048.
- W. Wong and M. Stamp, "Hunting for metamorphic engines," Journal in Computer Virology, vol. 2, no. 3, pp. 211-229, 2006
- M. Fazlali, P. Khodamoradi, F. Mardukhi, M. Nos- rati, and M. M. Dehshibi, "Metamorphic malware detection using opcode frequency rate and decision tree," International Journal of Information Security and Privacy (IJISP), vol. 10, no. 3, pp. 67-86, 2016
- I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and P. G. Bringas, "Idea : Opcode- sequence-based malware detection," in International Symposium on Engineering Secure Software and Sys- tems. Springer, 2010, pp. 35–43
- I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, "Opcode sequences as representation of executables for data-mining-based unknown malware detection," Information Sciences, vol. 231, pp. 64–82, 2013.
- B. Kang, S. Y. Yerima, S. Sezer, and K. McLaugh-lin, "N-gram opcode analysis for android malware detection," arXiv preprint arXiv:1612.01445, 2016.