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Introduction

Reproducible builds
How to match the binary with the source code?

Reproducible builds : binaries that can be reproduced from source code byte-for-byte

Build-environment
Used tool-chains, version of the compiler, compiler flags
Lost after compilation and stripping

Opcode statistics
Main approach
Related work in metamorphic malware detection
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Related work / Background

Bilar [2007] : Distribution of opcodes and statistical differences between
goodware and malware
Austin et al [2013] : 90% accuracy in distinguishing different compilers, using
Hidden Markov models (HMM).

Hidden Markov Model, Graph embedding, ML classifiers

Wong & Stamp [2006], Santos et al., and many others.
Mohammad et al [2016] : Using Feature extraction and DT (Random Forest)
scored 100% accuracy.

N-gram analysis

N-gram is a sequence of n-items or larger
Santos et al [2010]. Santos et al [2013]. Kang et al [2016].
Kang et al [2016] : Showed using a 4-gram was best, detecting Android Malware,
using SVM (Support vector machine).
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Research questions

Research questions :

1 How significant are the differences in the opcode frequencies when using
different compiler versions?

2 How significant are the differences in the opcode frequencies when using
different compiler flags?

3 What opcodes are responsible for the differences in the opcode frequencies?
4 Are differences significant enough to detect what compiler flag or version is used

for a binary?
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Methodology

Approach :

Compiled a collection of applications
6 different optimisation flags
8 different GCC versions

Count the opcodes of the collections
Single opcodes (1-gram)
Opcode pairs (2-gram)

Statistical analysis
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Compiled programs

Compiled programs :

barcode - part of barcode-0.99
bash - part of bash-4.4
cp - part of coreutils-8.28
enscript - part of enscript-1.6.6
find - part of findutils-4.6.0
gap* - part of gap-4.8.9
gcal2txt - part of gcal-4
gcal - part of gcal-4
git-shell - part of git 2.7.4
git - part of git 2.7.4
lighttpd - part of lighttpd-1.4.48
locate - part of findutils-4.6.0
ls - part of coreutils-8.28
mv - part of coreutils-8.28
openssl* - part of openssl-1.0.2n
postgresql* - part of postgresql-10.1
sha256sum - part of coreutils-8.28
sha384sum - part of coreutils-8.28
units - part of units-2.16
vim - part of vim version 8.0.1391

(Not included in the flag dataset (*))
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Sizes of programs

Figure – Sizes of programs
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Compiler versions

Compiler versions :

GCC : (Ubuntu/Linaro 4.4.7-8ubuntu7) 4.4.7
GCC : (Ubuntu/Linaro 4.6.4-6ubuntu6) 4.6.4
GCC : (Ubuntu/Linaro 4.7.4-3ubuntu12) 4.7.4
GCC : (Ubuntu 4.8.5-4ubuntu2) 4.8.5
GCC : (Ubuntu 4.9.4-2ubuntu1 16.04) 4.9.4
GCC : (Ubuntu 5.4.1-2ubuntu1 16.04) 5.4.1 20160904
GCC : (Ubuntu/Linaro 6.3.0-18ubuntu2 16.04) 6.3.0 20170519
GCC : (Ubuntu 7.2.0-1ubuntu1 16.04) 7.2.0

Kenneth van Rijsbergen RP2 #20 5 February 2018 8 / 26



Introduction Methodology Results Discussion Conclusion

Optimization flags

Table – Optimization flags

Flag Description
-O0 Default
-O1 Light optimization Acts as a macro.

-O2 Increased optimization All optimization of -O1
Plus additional flags without space trade-off.

-O3 Additional optimization All optimizations of -O2
Plus additional flags.

-Os Optimize for size All the -O2 optimizations
Plus other flags that reduce the size.

-Ofast Optimize for speed
All the -O3 optimizations
Plus other flags such as -fast-math.
Some program refuse to compile.
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Statistical analysis

Chi-squared test :
Measures the difference or fit of data
Difference between the actual data and the expected data
Need Cramer’s V due to large dataset

Cramer’s V :
Indicates strength of relationship between 0 and 1

<0.10 indicates a weak relationship between the variables
0.10 - 0.30 indicates a moderate relationship
>0.30 indicates a strong relationship

Z-scores :
Number of std.dev an observation deviates from the mean

0 = no deviation.
-2 or 2 = deviates 2 std.dev. from the mean

The greater the Z-score, the more a value deviates from the mean
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Results

GCC versions 1-gram
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GCC versions 1-gram

Relative frequencies of opcodes for different GCC versions (1-gram).
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GCC versions 1-gram

Z-scores and the 2 greatest deviators for different GCC versions (1-gram).
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Results

GCC versions 2-gram
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GCC versions 2-gram

Relative frequencies of opcodes for different GCC versions (2-gram).
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GCC versions 2-gram

Z-scores and the 2 greatest deviators for different GCC versions (2-gram).
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Flags 1-gram
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Flags 1-gram

Relative frequencies of opcodes for different Flags (1-gram).
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Flags 1-gram

Z-scores and the 2 greatest deviators for different Flags (1-gram).
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Results

Flags 2-gram
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Flags 2-gram

Relative frequencies of opcodes for different Flags (2-gram).
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Flags 2-gram

Z-scores and the 2 greatest deviators for different Flags (2-gram).
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Discussion

Z-scores can act as weights for machine learning
Flags will be easy-er to differentiate then GCC versions

Chi-squared p Cramérs V
Dataset (GCC 5) 184522.4 0 0.055
Versions 1-gram 116455.3 0 0.025
Versions 2-gram 146756.3 0 0.037
Flags 1-gram 668066.8 0 0.116
Flags 2-gram 570972.1 0 0.136

Table – Analysis of matrixes

Cramer’s V :
Indicates strength of relationship between 0 and 1

<0.10 indicates a weak relationship between the variables
0.10 - 0.30 indicates a moderate relationship
>0.30 indicates a strong relationship

Enough to train a classifier?
Successful in distinguishing malware
Unable to distinguish between hand-written assembly and compiled code

2-grams perform better than 1-grams. Confirms related work.
Improvements to this research : Dataset
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Conclusion and Future work

Conclusion

Differences do occur
However weak, patterns are visible
Ground for future research (machine learning)

Future Work

Create larger dataset
Using existing reproducible build or build automation tools

Train and apply ML classifiers
System call and library call statistics
Measure changes on individual applications
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fin

Thank you. Questions?
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