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Abstract—One aspect of software archaeology is retracing
(part of) the build environment that was used to compile the
binary. The problem is that much of the information about
the build-environment gets lost after compilation or due to
stripping. The approach taken in this paper is to statistically
analyse the distribution of the opcodes in a binary. Opcode
statistics are already proven to be effective at detecting
metamorphic malware. Work has been done to answer the
research question: ”Can opcode frequencies be useful for
determining the build environment of a binary?”.

A collection of binaries were compiled with 6 different op-
timisation flags and 8 different GCC versions. Single opcodes
and opcode combinations (2-grams) were analysed. Statistical
differences in opcode frequencies were then measured.

The opcode combinations show a slightly stronger re-
lationship as opposed to single opcodes. Statistically, the
relationships are weak for the different versions but moderate
for the optimisation flags. But however weak, patterns are
visible and detectable differences do occur. Looking at the
success of detecting metamorphic software using opcode
frequencies, there is at least ground for further research.
By seeing if a machine learning can be applied to detect
compiler versions and/or compiler flags.

I. INTRODUCTION: MOTIVATION

With legacy software there are cases that source code
or documentation of the software get lost. All that is left
is a binary for which it is unclear on exactly what it does,
how it works or how it was designed. Recovering design
information and functionality from legacy software can be
called software archaeology [1].

One aspect of software archaeology is retracing (part
of) the build environment that was used to compile the
binary. Being able to retrace the build environment may
also have its uses in similar fields such as forensics, reverse
engineering and compliance engineering. The problem is
that much of the information about the build-environment
gets lost after compilation or due to stripping. Used tool-
chains, version of the compiler and compiler flags are
essential parts of the build environment that get lost
after compilation. However, different versions of compilers
and different compiler optimization flags should generate
(slightly) different binary files.

The approach taken in this paper is to statistically anal-
yse the distribution of the opcodes in a binary. An opcode

(short for operation code) is used to specify in a machine
instruction what operation needs to be performed by the
CPU. Opcode instructions can differ depending on the
instruction set architecture of the CPU. Most executables
are first written in a higher level programming language
such as Python or C before they are translated to machine
language (aimed for the target computer architecture).
This process of translating from higher level code to
machine code is called compiling. A binary executable
is, in essence, a collection or container of these opcodes
(along with strings constants, variable declarations and
others).

Opcode statistics are already proven to be effective at
detecting metamorphic malware. This is done by training
machine learning classifiers to distinguish between good-
ware and malware. The goal of this paper is to determine
if there is potential to apply the same techniques to extract
information about the build-environment of the binary. The
scope will be the on different versions of GCC (GNU
Compiler Collection) and different optimisation flags.

Section 1A will describe the research questions and
section 1B the related work regarding the subject. Section
2 covers the methods used to conduct the experiments and
the results of these experiments are covered in section 3.
A discussion of the results is given in section 4 and the
conclusion in section 5, along with some ideas for future
work. The appendixes can be found in section 6.

A. Research questions

The main research question is as follows:
”Can opcode frequencies be useful for determining the

build environment of a binary?”
This research question is divided into four sub-questions:

1) How significant are the differences in the opcode
frequencies when using different compiler versions?

2) How significant are the differences in the opcode
frequencies when using different compiler flags?

3) What opcodes are responsible for the differences in
the opcode frequencies?

4) Are differences significant enough to detect what
compiler flag or version is used for a binary?



B. Related work

Much research has been done on using opcode statistics
on malware.

Bilar [2][3] measured the distribution of opcodes on a
collection of goodware and a collection of malware. This
malware collection consisted out of 7 different malware
classes (viruses, bots, rootkits, etc). The goal was to find
out whether there is a statistically significant difference
in the opcode frequency between the goodware and the
seven malware classes. The mov and push codes were
the most common opcodes in all cases, but variations
in the frequencies of appearance could be seen. The
final conclusion was that the less common opcodes (such
as int, imul, bt, etc.) show the largest variation
in frequency and gave the strongest predictions, which
could explain 12-63% of the variation. This affirmed that
opcodes statistics can be useful in representing binaries.

Santos et al [4] used opcode frequencies to detect
malware variants. The best results were measured when
using opcode sequences of 2 (instead of using a single
opcode). The Mutual Information (MI) equation was used
to measure the statistical dependence between an opcode
and malware. Weights were then applied to these opcodes
so a feature vector could be build from the executables.
It was able to identify and distinguish malware variants
from benign executables.

Related work most closely related to this paper
was done by Austin et al. who [5] tested four different
compilers. The test data consisted of 92 separate programs:
24 were compiled with GCC, 24 with CLANG, 21 with
Turbo C, and 23 with MinGW. Hidden Markov models
(HMM) were then built for each program and for each
compiler. Initially, the results were not very good.
However, accuracy did improve to more than 90%, when
the dataset was limited to the opcodes that account for at
least 20% of the observations. It was unable to reliably
distinguish between programs built from hand-written
assembly and compiled code. The HMM did manage to
accurately identify certain virus families.

N-gram analysis: N-gram scoring mechanisms were
also being developed and analyzed to use with opcodes.
An n-gram is a sequence of n items from a larger sequence
of f.g. text or speech. In the case of opcodes, a 3-
gram opcode of "a1" "b2" and "c3" would become
"a1b2c3". The amount of n-gram opcodes increases ex-
ponentially as n increases [6] so feature selection becomes
necessary to filter out the less significant features. In the
research of Santos [7], feature selection (FS) was used
to reduce the training sets. Another method to reduce the
training set is to use Instance Selection (IS).

The research of Kang et al. [6] focused specifically on
Android Malware detection. Up to 10-gram opcodes were
tested with different machine learning algorithms. The

best performing algorithm was Support vector machine
(SVM) when using 4-grams, which showed a 98%
detection rate. Random Forest (RF) and partial decision
tree (PART) came close.

Hidden Markov model (HMM): Combining opcode
statistics with machine learning techniques proved to be
quite effective to detect metamorphic malware. Wong &
Stamp [8] set the benchmark by using tools based on
HMM to detect metamorphic viruses. Many variations of
using HMM have been proposed since then [5], including
using chi-squared in combination with HMM [9].

Graphing: Anderson et al. [10] and Runwal et al. [11]
were processing the opcodes using graphing techniques.

Deshpande [12] investigated algebra methods such as
eigenvalue and eigenvectors to preprocess the graph for
machine learning. This was to detect the highly metamor-
phic MWOR worm. This extended the work of Saleh et
al [13].

Hashemi et al. [14] did graph normalization and
graph embedding using a “power iteration” method.
Machine learning classifiers k-nearest neighbors (KNN)
and SVM were then used and applied. The classifier
Adaboost offered the highest accuracy (96,09%) on a
dataset with 2000 samples. SVM and KNN (K=10)
scored 95.62% and 95.09% respectively. On a larger
dataset with 22,200 samples, SVM, Decision Tree (DT),
KNN (K=1000) and Adaboost performed the best. Their
proposed method also showed advancements compared
to the methods of Santos et al. [7] and Eskandari et al [15].

ML classifiers: Shabtai et al. [16] did a comprehen-
sive test on 8 commonly used classification algorithms
and settings to distinguish between malicious and benign
executables. The best-averaged settings were 2-gram (up
to 6-grams were tested), normalised term frequency (TF)
representation and 300 top features selected by the docu-
ment frequency (DF) measure. The best classifier turned
out to be Random Forest (RF) with 95.146% accuracy,
with Boosted Decision Tree (BDT) and Decision Tree
(DT) being 2nd and 3rd respectively. Finally, a clear
performance improvement was shown when one would
keep the training set up to date with recent malware on a
yearly basis.

Santos et al. [7] extracted the assembly code of benign
and malware executables and trained machine-learning
algorithms to make a distinction between the two. This
was done with opcode sequences of 2, which resulted in a
high accuracy. Four machine learning models were trained,
each with different learning algorithms for that model:
DT, KNN, Bayesian networks (BN) and SVM. SVM: Nor-
malised Polynomial scored the best with 95,90% accuracy.
DT: Random Forest N=10 and SVM: Polynomial scored
94,98% and 95,50% respectively.



Finally, Mohammad et al. [17] used feature extraction
and DT learning to decide whether a binary contains
malware. 6 different decision trees were constructed. The
most efficient was the random forest (RF) algorithm,
which resulted in zero false positives from sets of
227, 120 and 20 opcodes. The performance was also
acceptable. It managed to detect all tested classes of
malware (NGVCK, G2, MPCGEN, and VCL).

Others: Shanmugam et al. [18] took a slightly dif-
ferent approach for measuring the similarities in opcode
sequences. The method used is inspired by substitution
cypher analysis. The opcode sequence of a file is given
a score on how close it comes statically to a certain
metamorphic family. If the statistics fit with the family
statistics than the file is classified as a member of that
metamorphic family.

Another approach is to use the structural entropy of
the binary for matching. This technique showed excellent
results on MWOR Worms but was moderately successful
against detecting the NGVCK virus [19].

II. METHODS

This paper primarily focused on the statistical differ-
ences in opcode frequencies for different compiler scenar-
ios. So instead of comparing different classes of malware,
different compiler settings are compared.

The statistics are done on a collection of applications.
Meaning a collection of applications are compiled with
a certain setting and then all opcodes of that collection
are combined before statistics are done on them. This
approach is chosen because:

• Not all programs have exactly the same distributions
of opcodes and some programs may react differently
to certain compiler settings as opposed to others. To
generalise these changes between compiler environ-
ments, the applications were combined.

• This is the main approach taken in almost all of
the related works. Billar [2], for example, analysed
the opcode frequencies of different collections of
malware versus a collection of goodware. Machine
learning classifiers were also trained using large col-
lections of malware.

First, the collection of applications had to be compiled
with different GCC versions and different compiler flags.
This resulted in two datasets:

• A collection of binaries that have been compiled with
6 different compiler flags.

• A collection of binaries that have been compiled with
8 different GCC versions.

The opcodes were extracted for each collection of
binaries using objdump. Then the opcodes were counted
for each collection of binaries.

First the frequency of individual opcodes (1-gram) and
then the frequency of opcode pairs (2-gram). According

to the related works, opcode pairs should show stronger
variations.

The top 30 opcodes are then taken and compared
with each compiled version and setting. The rest of the
opcodes are grouped into ”OTHER”. Finally, a statistical
analysis was done on the data to find out significant
differences in the opcode distribution and to identify
opcodes with the largest deviations.

A. Chosen applications

Commonly used applications and Linux utils were cho-
sen for the dataset. The source code of the programs had
to be primarily written in C. The dataset contains math-
ematical software (gap), web services, crypto software,
and hashing software, common system utilities and other
common software. This in an attempt to create a balanced
dataset.

The following contains the list of all programs that
have been compiled. Some programs could not compile
with certain optimisation flags and are not included in the
dataset for the different compiler flags (*):

• barcode - part of barcode-0.99
• bash - part of bash-4.4
• cp - part of coreutils-8.28
• enscript - part of enscript-1.6.6
• find - part of findutils-4.6.0
• gap* - part of gap-4.8.9
• gcal2txt - part of gcal-4
• gcal - part of gcal-4
• git-shell - part of git 2.7.4
• git - part of git 2.7.4
• lighttpd - part of lighttpd-1.4.48
• locate - part of findutils-4.6.0
• ls - part of coreutils-8.28
• mv - part of coreutils-8.28
• openssl* - part of openssl-1.0.2n
• postgresql* - part of postgresql-10.1
• sha256sum - part of coreutils-8.28
• sha384sum - part of coreutils-8.28
• units - part of units-2.16
• vim - part of vim version 8.0.1391

Some of the binaries take up more space then others,
which can be seen in the pie-chart in Figure 1. However,
the dataset still remains relatively balanced:



Figure 1: Pie chart that represents the sizes of the compiled
binaries.

All of the binaries have been compiled from the same
machine, running Ubuntu 16.04.3 LTS. The executable
file format for all binaries in the datasets are 64-bit ELF
(Executable and Linking Format), which is one of the
standard binary formats of Unix-like systems.

B. Compiler versions

The following versions of GCC were used to compile
the programs:

• GCC: (Ubuntu/Linaro 4.4.7-8ubuntu7) 4.4.7
• GCC: (Ubuntu/Linaro 4.6.4-6ubuntu6) 4.6.4
• GCC: (Ubuntu/Linaro 4.7.4-3ubuntu12) 4.7.4
• GCC: (Ubuntu 4.8.5-4ubuntu2) 4.8.5
• GCC: (Ubuntu 4.9.4-2ubuntu1 16.04) 4.9.4
• GCC: (Ubuntu 5.4.1-2ubuntu1 16.04) 5.4.1 20160904
• GCC: (Ubuntu/Linaro 6.3.0-18ubuntu2 16.04) 6.3.0

20170519
• GCC: (Ubuntu 7.2.0-1ubuntu1 16.04) 7.2.0
The GCC version can be selected by supplying the

CC= flag to the shell. No other parameters were supplied
to the compiler other than the parameters that are already
in the makefile of the program.

Strip
Binaries found in /usr/bin/ and retrieved from repositories
are often stripped. Stripping is a common practice where
strings and comments are removed from the binary to
save space. Stripping away comments and strings should
not affect the number of opcodes in a binary. This was
confirmed with the binaries git, sha256sum and ls.
Therefore all binaries have been analysed unstripped for
this experiment.

C. Compiler optimisation flags

The GCC optimization flags can be selected by
supplying the CLAGS== flag to the shell. GCC:
(Ubuntu 5.4.1-2ubuntu1 16.04) 5.4.1
20160904 was the compiler version used to compile
the binaries for this dataset.

-O0
Default optimisation of GCC. [20]
-O1

Light optimization. This optimizes the binary without
significantly increasing the compilation time. This acts as
a macro for numerous optimizations that can be also be
defined separately.

-O2
Increased optimization. This enables all optimizations

that don’t come with a space trade-off. All optimisation
flags of -01 are enabled along with additional flags.

-O3
Turns on all optimizations of -02, along with additional

flags. Compilation using this flag should take longer to
complete.

-Os
A flag to optimize a binary for size. This enables all the

-02 optimizations along with other flags that reduce the
size.

-Ofast
Optimize for speed. This enables all -O3 optimiza-

tions along with other (non-standardized) flags such as
-fast-math. Some programs refuse to compile with this
optimization such as OpenSSL.

D. Statistical Analysis:

Each collection of binaries has been analyzed by the
individual (1-gram) and opcode pair (2-grams) statistics.
The statistical analysis has been applied to the absolute
number of opcodes. The absolute numbers can be found
in the Appendix.

Relative frequencies
The results are presented in relative frequencies (in per-

centages %). Tables with the absolute number of opcodes
can be found in the Appendixes.

The differences in relative frequencies have also
been added to the tables. This has been calculated by
subtracting the smallest relative frequency from the largest.

Z-scores
The Z score indicates the number of standard deviations

an observation deviates from the mean. This will give in-
sight into what opcode went through the strongest change
at a certain setting. At the same time, it is easier to observe
what opcode increased or decreased by value. The Z-score
is calculated for each cell as such [21]

Z =
X − µ
σ

(1)

where X is the value of the cell, µ is the mean of the
row and σ is the standard deviation of the row. The more
the Z-score of a cell has moved away from 0 (either
positive or negatively), the more the value has deviated
from the mean. Note that the Z-scores have been applied
per row.

Chi-squared test



The Chi-squared test is a statistical test that can be
applied on matrices. It works by comparing the measured
(or sampled) data with the expected data. In the case of
this experiment, the expected amount of opcode values are
calculated cell by cell. The expected value of a cell is an
average number that is calculated by multiplying the total
of the cell’s entire row and column and then dividing it
by the total sum of the entire table [22]. The formula used
to calculate the expected values of the cells is:

Ei,j =
Ri · Cj

N
(2)

where Ri is the total of the cell’s entire row, Cj the
total of the cell’s entire column and N the total sum of
the entire table. All of the expected cells will then be
compared with the real measured values. The chi-squared
number is then calculated as such:

x2 =
∑
i,j

(Oi,j − Ei,j)
2

Ei,j
(3)

where Oi,j is the cell’s real value and Ei,j is the cell’s
expected value. This formula returns the chi-squared value.
The higher the chi-squared value, the more significant
the differences. Using the chi-squared distribution table,
a probability value (p) can be determined. This will test
the probability that the null hypothesis is true. The null
hypothesis means that there are no statistically significant
differences between the measured and expected data. F.g. a
placebo medicine would likely confirm the null hypothesis
in that the symptoms of the patients do not change
compared to that of the untreated patients.

A low probability value such as <0.05 indicates that
the results differ from the expected data. In the case of the
opcodes, such probability would indicate that they are not
uniform, meaning, some opcode quantities are relatively
larger than in comparison with other opcodes.

The chi-squared calculation has been done on a matrice
containing the top 30 opcodes. The remaining opcodes
that were listed under ”OTHER” have not been included
in this score. It has to be noted that for all tables in
this paper, p = 0. This means that there is a near 100%
probability that significant differences will be found
between the compiler settings/versions. However, it is
hard to tell if these differences are meaningful due to the
large sample size. So a way to measure the differences
between opcodes regardless of sample size (effect size) is
needed. This is done using Cramérs V.

Cramérs V
The Cramer’s V is a measure of association, which is

based on the chi-squared statistic. The Cramer’s V can be
used to determine differences in data on a scale between

0 and 1 that indicates the strength of a relationship. The
Cramer’s V is calculated as such [23]

V =

√
x2

n ·min(r − 1, c− 1)
(4)

where x2 is the chi-squared value, n the total sum of the
entire table, r is the number of rows and c is the number
of columns. This returns a number between 1 and 0. The
following guidelines are used to interpret the Cramer’s V
numbers [24]:

• <0.10 indicates a weak relationship between the
variables

• 0.10 - 0.30 indicates a moderate relationship
• >0.30 indicates a strong relationship

III. RESULTS

The results of the experiments are laid-out in this
section. The implications of these results will be discussed
in the Discussion section.

A. GCC versions (1-gram)

In Figure 2 the relative frequencies of the opcodes are
shown for each version of GCC along with a bar chart of
the differences in relative frequencies. The mov opcode
is by far the most common opcode, followed by callq,
test and je. These four opcodes comprise 50% of all
opcodes. The bar chart in this figure show that these
opcodes do not show the largest variation in relative sizes.
The opcodes with the greatest variances were push,
pop, nop and movl.

Figure 3 shows the Z-scores and the 2 greatest deviators
after counting the opcode pairs. When looking at push
and pop opcodes more closely we can see that the number
of opcodes significantly increase at GCC 4.8, leading to
a difference of almost 50%. The Z-scores also show that
the top 15 opcodes generally increase in opcode size with
newer GCC versions, except for the mov opcode. Most
of the large opcode deviations can be found in the older
GCC versions.

Finally, the negative and positive Z-scores appear to
be for the largest part clustered together. Meaning that
a pattern of negative/positive z-scores is followed by a
pattern of positive/negative z-scores. This shows that the
opcode distribution is not random.

B. GCC versions (2-gram)

The opcode pairs (2-gram) of the binaries have also been
analysed. Figure 4 shows the relative frequencies along
with a bar chart. Figure 5 shows the Z-scores and the 2
greatest deviators after counting the opcode pairs.

Again, the mov and callq opcodes contribute the
most to the total amount of opcodes. mov,mov is the
most common opcode pair, followed by mov,callq ,
callq,mov and mov,xor.



Figure 2: Relative frequencies of opcodes for different GCC versions (1-gram).

The relative frequencies of the opcodes for each GCC version. The cells have been coloured based on size for each row. Green indicates the largest value and red visa
versa. Above the table are the results of the statistical analysis. The leftmost column holds the total average for each row. The rightmost column holds the differences

in relative frequencies, which has been calculated by subtracting the smallest relative frequency from the largest. The bar-chart on the right gives a visual representation
of the differences in relative frequency.

Figure 3: Z-scores and the 2 greatest deviators for different GCC versions (1-gram).

The Z-scores of the opcodes for each GCC version. The cells have been coloured based on size. This has been done for the entire table to put more emphasis on the
exceptional Z-scores. The stronger the colour, the greater the Z-score and therefore the greater the opcode has deviated from its mean. The two bargraphs on the right

represent the two opcodes that show the largest deviations overall. It shows the absolute number of opcodes between the compiler versions.



Figure 4: Relative frequencies of opcodes for different GCC versions (2-gram).

Figure 5: Z-scores and the 2 greatest deviators for different GCC versions (2-gram).



The barchart also shows that again push,push and
pop,pop bring the largest deviations. The 2-gram Z-
scores also looks somewhat similar to that of the 1-gram
Z-scores. For example, the cmpb opcode in figure 3 under
GCC 4.4 shows a large negative Z-score, which also holds
true for the cmpb-je combination in figure 5.

When comparing the differences in relative frequencies
between 1-gram and 2-grams, there seem to be larger vari-
ations with 2-grams compared to 1-grams. push,push
deviates more strongly (0.61) then the 1-gram push (0.49)
and other opcodes also show greater differences in relative
frequencies. Also, the Cramer’s V statistic is slightly
higher (0.037 vs 0.026), which indicates that there is
a larger relationship between frequency and GCC version,
even though overall it remains weak.

The Cramer’V of both the 1-gram and 2-gram tables are
>0.10, which indicates a moderate relationship between
opcode count and the optimisation flags.

C. Flags (1-gram)

Figure 6 and 7 show the results of the analysis of opcode
frequencies when compiling with different optimisation
flags. By looking at the Z-table for binaries that are not
optimised (flag -O0) it can be seen quite clearly that
the main optimisation lies with the mov opcode. Without
optimisation, the mov takes 50% of instructions. After
optimisation this is reduced to around 33%. Other opcodes
do increase in number but in absolute numbers, this is
less than what has been saved in the number of mov
opcodes (2093283 vs 1336385). The absolute numbers can
be found in the Appendix.

As expected, the differences in relative frequencies for
optimisation flags are much larger that of the GCC version
comparison. This is also reflected in the Cramers’V, which
is 0.136. A Cramer’s >0.10 indicates that there is a
moderate relationship between the number of opcodes and
the optimization flag used.

The greatest deviators were nopl, nopw, cmpb and
pop. By looking at the 2 greatest deviators (nopl and
nopw) we see a large difference between 0,1,s and
2,3,fast.

In the Z-table, the -Os flag (size optimisation) opcodes
stand out the most. Most of the opcodes deviate negatively
from the mean, with the exception of the or opcodes.

D. Flags (2-gram)

Figure 8 and 9 show the 2-gram analysis for the flags.
The differences between 1-gram and 2-gram are similar to
what has been observed with the GCC version dataset. The
differences in relative frequencies for 2-grams are larger
compared to that of the 1-gram opcodes frequencies. This
is reflected in the Cramers’V, which for the 2-gram is
slightly higher than that of the 1-gram table. The Z-scores
also look similar to that of the Z-scores of the 1-gram. F.g.
the 1-gram pop and push and the 2-gram pop,pop and

push,push both show strong deviations when the -O0
flag is used.

IV. DISCUSSION

In the related works section, we saw that opcode fre-
quencies can be used to detect if a binary belongs to
a certain malware class. The goal of this paper was to
determine if there is potential to apply the same techniques
for different GCC versions and optimisation flags.

The frequency tables and the Z-square tables show
visible patterns in the opcode frequencies. In other words,
some opcodes deviate more strongly than others, which
can serve as weights for machine learning training. I think
this shows that using opcode frequencies has potential
to detect different GCC versions and flags. However, in
the case of the GCC versions, this will likely be more
difficult. The Cramer’s V for the version matrices are poor
which means that there is a weak relationship between
opcode frequency and GCC version. Meaning the changes
between GCC versions are not so clear-cut and it remains
to be seen if a machine learning classifier can be accurate
in differentiating between GCC versions when supplied
with a binary.

The Flag matrices, on the other hand, show a moderate
Cramer’s V score. Meaning that detecting optimization
flags will be much more likely. But will this be enough
to successfully train a classifier? Opcodes can be used to
reliably identify certain virus families, but in the related
work of Austin et al. [5], opcodes were unable to reliably
distinguish between programs built from hand-written as-
sembly and compiled code.

In the related work on N-gram analysis by Kang et al.
[6] it was already pointed out that n-grams larger than 1
perform betten than 1-grams. This is also reflected in this
research. There is a higher Cramer’s V score for the 2-
gram matrixes (table I) compared to the 1-gram matrixes in
the results. This means that there is a stronger relationship
visible and so this would provide stronger detectable
variations. This, in turn, will improve the accuracy of the
classifier.

Chi-squared p Cramérs V
Dataset (GCC 5) 184522.4 0 0.055
Versions 1-gram 116455.3 0 0.025
Versions 2-gram 146756.3 0 0.037
Flags 1-gram 668066.8 0 0.116
Flags 2-gram 570972.1 0 0.136

Table I: Analysis of matrixes

Improvement to this research would be the dataset. The
opcode contributions per application could have been more
evenly distributed. The pie-chart in figure 1 shows that
5 programs are responsible for 79% of all the opcodes
and this may have degraded the statistics. The results
would have been better if most applications provide an
equal share of opcodes. Still, this doesn’t take away from



Figure 6: Relative frequencies of opcodes for different Flags (1-gram).

Figure 7: Z-scores and the 2 greatest deviators for different Flags (1-gram).



Figure 8: Relative frequencies of opcodes for different Flags (2-gram).

Figure 9: Z-scores and the 2 greatest deviators for different Flags (2-gram).



the fact that changing GCC settings have an effect on
the opcode distributions and frequencies. And that this
creates an avenue for future research for applying machine
learning to detect compiler environments.

V. CONCLUSION

The opcode frequency distributions of binaries were
measured that were compiled with different compiler ver-
sions and optimisation flags. The Z-scores were measured
as well as the Cramers V. Also the differences between
1-gram and 2-gram opcodes were measured.

The 2-gram opcodes (opcode pairs) show a slightly
stronger relationship then compared to single opcodes.
This confirms related work about n-grams.

Statistically, the relationships between opcode and GCC
versions are weak. The relationships between opcodes
and optimisation flags are moderate. But however weak,
patterns are visible and detectable differences do occur.
Looking at the success of detecting metamorphic software
using opcode frequencies, I believe that there is at least
ground for further research. By seeing if a machine
learning can be applied to detect compiler versions and/or
compiler flags. But this may only happen if a dataset large
enough can be created.

A. Future work

The challenge currently lies with the creation of the
dataset. There is plenty of related work for applying
machine learning on opcodes, but this requires a decent
dataset. There are large malware collections available, f.g.
the VX Heaven collection [25]. However, such collections
for different optimisations or GCC versions do not exist
yet. For this paper, the dataset was created manually, which
was quite labour intensive. Having an environment that
can automate this for a large set (around 200) applications
would be very useful, if not mandatory to train an accurate
classifier. Making use of existing reproducible build or
build automation tools might be the key to this.

After the dataset has been created, techniques can be
applied that proved to be successful for detecting malware.
F.g in the research of Hashemi et al [14] the opcodes
(2-gram) were transformed into graphs, which were then
turned into feature vectors. The feature vectors were then
used to classify between malware or benign.

Also, experimentation with different sorts of classifiers
can be done. To test the effectiveness of some of the more
successful classifiers that were mentioned in the related
works section (DT (Random Forest), BDT, PART, KNN,
BN, SVM and Adaboost).

Aside from using opcodes, exploring other artefacts of
the binary are also possible such as the appearance of
combinations of bytes or hexadecimals.

Currently, the measurements have been done on a col-
lection of binaries. But research can also be done on the
effects of different GCC flags and versions per application.

This to determine whether changes in the environment
would affect applications in the same manner.
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VII. APPENDIX

The appendix contains the following items:
1) Figure 1: Relative frequencies of opcodes between

the individual applications of the dataset.
2) Figure 2: Absolute number of opcodes between the

individual applications of the dataset.
3) Figure 3: Absolute number of opcodes for different

GCC versions (1-gram).
4) Figure 4: Absolute number of opcodes for different

GCC versions (2-gram).
5) Figure 5: Absolute number of opcodes for different

optimization flags (1-gram).
6) Figure 6: Absolute number of opcodes for different

optimization flags (2-gram).
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Figure 1: Relative frequencies of opcodes between the individual applications of the dataset.

The relative frequencies of the opcodes for each application of the dataset. The applications in this table are compiled using GCC 5
with no additional flags. The cells have been coloured based on size for each row. Green indicates the largest value and red visa versa.

Above the table are the results of the statistical analysis. The leftmost column holds the total average for each row.

Figure 2: Absolute number of opcodes between the individual applications of the dataset.

The absolute values of the opcodes for each application. The rightmost two column hold the mean and the standard deviations, which
are used for calculating the Z-scores.



Figure 3: Absolute number of opcodes for different GCC versions (1-gram).

The absolute values of the opcodes for different compiler versions. The rightmost two column hold the mean and the standard
deviations, which are used for calculating the Z-scores.

Figure 4: Absolute number of opcodes for different GCC versions (2-gram).

The absolute values of the 2-gram opcodes for different compiler versions. The rightmost two column hold the mean and the standard
deviations, which are used for calculating the Z-scores.



Figure 5: Absolute number of opcodes for different optimization flags (1-gram).

Figure 6: Absolute number of opcodes for different optimization flags (2-gram).
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