

DDoS Defense Mechanisms for IXP Infrastructures

Tim Dijkhuizen Lennart van Gijtenbeek

Supervisor: Stavros Konstantaras (AMS-IX)

03-07-2018

Introduction

- Distributed Denial of Service
- DDoS attacks on banks in NL [1]
- DDoS launched via botnets/booters
- Increase in size and complexity [2]
- IXP is a central entity
- Challenges:
 - High traffic loads
 - IXP neutrality
 - Complex infrastructure

What (automated) solution can be developed to identify and mitigate DDoS attacks in an IXP network?

Internet eXchange Points (IXPs)

- Peering LAN (BGP)
- Exchange of traffic
- Wide range of networks connected
 - Such as banks, content providers, etc.
- Layer 2 forwarding (no routing)
- Route servers

Amsterdam Internet Exchange (AMS-IX)

- ~820 peers
- 5 Tbit/s peaks each day
- Traffic forwarding: MPLS/VPLS
- Statistics collector: sFlow
- Route server: BIRD
- Current DDoS solution
 - Disable port(s), NaWas

Types of DDoS Attacks

Types of DDoS Attacks cont'd

- Volumetric attacks
 - Amplification attacks
 - E.g. DNS amplification
 - Small request, large response
- Protocol attacks
 - E.g. TCP SYN flood
 - State exhaustion
- Application attacks
 - Layer 7
- No single detection method
- Distinct in: bandwidth and packets per second

Design Principles

- 1. Mitigate as close to the source as possible
- 2. No configuration required on the CEs
- 3. No congestion in the IXP core
- 4. Identification and mitigation on lower layers is preferred
- 5. Detect most common DDoS attacks
- 6. Intelligence resides in the IXP
- 7. Minimal impact on good traffic
- 8. IXP neutrality
- 9. Compatibility

Detection Methods

- Traffic monitoring needed
 - PE switches
 - Sample data: sFlow/Netflow
- L2 detection
 - L2 headers are too limited
 - Frame size, CRC
 - Other parameters
 - Send rate, arrival interval
- L3/L4 detection

Detection Methods cont'd

- Threshold-based detection
 - Calculate thresholds based on destination IP(s)
 - Scalability: thresholds on prefixes
 - IXP environment: per source AS
 - Metrics:
 - L2/L3: BPS, PPS
 - L4: TCP flags, source ports, destination ports
- Fingerprint-based detection
 - DDoSDB [3]
 - False negatives

Mitigation Methods

- Scrubbing
 - On-site
 - Proprietary box
 - Off-site
 - NaWas
- Access Control Lists
- Software Defined Networking (SDN)
- BGP Blackholing

Blackholing Techniques with BGP

- Source-based blackholing
 - IXP neutrality
 - IP spoofing / false positives
- Destination-based blackholing on the CE
 - 1. Route withdrawal
 - 2. Static routing entry for prefix to NullO
 - and announce next-hop
- Destination-based blackholing on the PE
 - Set CE next-hop to ARP-dummy
 - L2 ACL

Design Proposal

Added Components to IXP

Component Interaction

Design Proposal

Threshold-based detection

Three-way mitigation

Design Workflow

Identification Start Phase (1.1)

- 1. Peer starts the process
- 2. Identify PE port(s) of the victim
- 3. Get the CE IP, and announced prefixes (RS)
- 4. Start the DTA/CTA
 - Based on victim ports, and destination prefixes
- 5. Perform threshold comparisons
- 6. Present customer with exceeded prefixes
 - Customer decides which prefixes to mitigate

Mitigation Start Phase (1.2)

- 1. Determine the culprit AS(es)
 - Compare current to historical traffic
 - ASes to mitigation prefix
- 2. Determine mitigation workflow
 - Culprit AS is peered with RS:
 - Perform mitigation via BGP route withdrawal (phase 2.1)
 - Culprit AS is NOT peered with RS:
 - Perform mitigation via ACL on the ingress PE (phase 2.3)

CE Route Withdrawal Mitigation (2.1)

 Instruct the RS to withdraw the destination prefix to culprit

- Wait for <BGP_convergence_timeout>
- Threshold is still exceeded:
 - Method *unsuccessful*, restore original BGP announcement
 - Perform mitigation via BGP blackhole nexthop (phase 2.2)
- Threshold is NOT exceeded:
 - Continue mitigation until DDoS no longer active
 - DDoS stopped or mitigation still working?

CE Blackhole Next-hop Mitigation (2.2)

 Instruct the RS to announce blackhole next-hop to culprit

- Wait for <BGP_convergence_timeout>
- Threshold is still exceeded:
 - Method unsuccessful, restore original BGP announcement
 - Perform mitigation via L2 ACL (phase 2.3)
- Threshold is NOT exceeded:
 - Continue mitigation until DDoS no longer active
 - Monitor on ingress PE

PE L2 ACL Mitigation (2.3)

 Determine MAC addresses and DDoS ingress PE

- Instruct the PE to set up L2 ACL on the ingress PE
 - Based on source CE and destination CE
 - Wait for <ACL_timeout>
- Threshold is still exceeded:
 - Identification *unsuccessful*, remove ACL and go to **phase 1.1**
- Threshold is NOT exceeded:
 - Continue mitigation until DDoS no longer active
 - Monitor on ingress PE

Proof of Concept

- Focused on mitigation phases
 - Prefix identification, DTA, culprit AS identification
- Four different scenarios
 - Peered with RS:
 - 2.1 V
 - 2.1 **X** , 2.2 **V**
 - 2.1 X, 2.2 X, 2.3 V

The **DTM** here also functions as the statistics collector **FastNetMon**: DDoS detector that supports multiple packet capture engines **iPerf** to generate traffic

- Culprit AS is peered with RS
- BGP route withdrawal mitigation unsuccessful (2.1)
- BGP blackhole next-hop mitigation (2.2) Threshald detected ful and at 55s **Mitigation Scenario 2** 250 **BPS** (Mbit) Threshold (Mbit) 200 BPS (Mbit) 150 100 50 0 40 10 20 30 50 60 Time (s)

- Culprit AS is peered with RS
- BGP route withdrawal mitigation unsuccessful (2.1)
- BGP blackhole next-hop mitigation unsuccessful (2.2)
- Ingress PE L2 ACL mitigation (2.3) Threshold determining a first out at 51s and performing a performing and performing a perfo

- Culprit AS is NOT peered with RS
- Ingress PE L2 ACL mitigation (2.3)

Discussion

- Usage of route server and statistics collector
- BGP convergence time (too long?)
- Layer 3 ACL
 - IXP environment: focus on layer 2 mitigation
- Fine-grained thresholds (time of day)
- Present more details to customer

Conclusion

- Thresholds and Three-way mitigation
- Identification requires layer 3 analysis (prefixes)
- Mitigation achieved on layer 2
 - BGP TE
 - IXP perspective

Future Work

- Different mitigations per type of attack
 - More advanced threshold metrics
- Testing with different sample rates
- Test scalability of the design
- Expand proof of concept
 - Identification phase
- Other methods of identification
 - Unsupervised/supervised learning

Questions

References

[1] ABN AMRO Group. Service temporarily disrupted by DDoS attacks (Jan 2018). Available at <u>https://www.abnamro.com/en/newsroom/newsarticles/2018/service-temporarily-disrupted-by-ddos-atta</u> <u>cks.html</u> (Accessed on 01/06/2018)

[2] Cyberscoop. Arbor: DDoS attacks growing faster in size, complexity (Jan 2018). Available at https://www.cyberscoop.com/ddos-attacks-growing-arbor-networks/ (Accessed on 01/06/2018)

[3] DDoSDB. Collecting and Sharing the most important information of DDoS attacks. <u>https://ddosdb.org/</u> (Accessed on 14/06/2018)