
Master System and Network Engineering

Bypassing Phishing
Filters

Shahrukh Zaidi
shahrukh.zaidi@os3.nl

August 8, 2018

Supervisors: Alex Stavroulakis
Rick van Galen

M
S
c
S
y
st

e
m

a
n
d

N
e
t
w
o
r
k

E
n
g
in
e
e
r
in
g

mailto:shahrukh.zaidi@os3.nl

Abstract

In recent years the threat of phishing attacks over email has seen a dramatic increase. Organisations
and end users rely on spam filters for protection against these kind of attacks. The present study is
designed to analyse the effectiveness of these filters in protecting end users against phishing emails and
determine whether content obfuscation methods exist that may allow bypassing detection. In order to
assess which aspects of a phishing email make these messages detectable, a set of phishing emails is
analysed using two open source spam filters. The analysis reveals that the presence of certain suspicious
words and URLs may block phishing emails from being delivered to the user’s inbox. In order to
bypass detection, two obfuscation methods have proven to be effective. In many cases the obfuscation
of phishing-related words using Unicode transliteration and the replacement of suspicious URLs using
URL shortening services appears to be sufficient in order to fool a spam filter. The analysis of these
obfuscation methods on a number of popular email service providers shows that no defensive measures
against these types of attacks appear to be in place.

2

Contents

1 Introduction 4

2 Theoretical framework 5
2.1 Phishing email characteristics . 5
2.2 Phishing email detection techniques . 6

3 Related work 7

4 Methodology 8

5 Results 9
5.1 Analysis of phishing emails . 9
5.2 Obfuscation of email contents . 10
5.3 Analysis of obfuscation techniques . 12

5.3.1 ProtonMail . 12
5.3.2 Office 365 . 13
5.3.3 G Suite Gmail . 15
5.3.4 Amazon WorkMail . 15
5.3.5 Rackspace Email . 16

6 Discussion 17

7 Conclusion 18
7.1 Future work . 18

A Description of test emails 21

B List of common phishing words 23

C Obfuscation script 24

3

1 Introduction

Over the past decades, email has become one of the major means of communication. Because of the
prominent role email has taken in the present society, email security has become a key aspect of the modern
Internet. ‘Phishing emails’ are a common type of email threat. Phishing emails are a special type of spam
message that use fraudulent social engineering techniques to elicit sensitive information from unsuspected
users[1]. While the main aim of a spam email is to contact a user and inform him about a certain product,
a phishing email is specifically designed to appear unsuspicious and to come from a reputable source[5]. As
phishing attacks exploit human weaknesses, mitigation of this type of attack is difficult[17]. To minimise the
chance that a user becomes victim of a phishing attack, anti-spam tools include phishing detection solutions
to prevent a malicious email from reaching the user’s inbox.

The main aim of this study is to determine how effective these solutions are in protecting the end user
against phishing attacks by analysing how easily certain aspects of a phishing email can be tweaked in order
to fool these filters. The main research question of this study is defined as follows:

Which aspects of a phishing email can be modified in order to bypass common phishing filters?

In this study we will limit ourselves to strictly the content-specific aspects that characterise phishing
emails. To answer the main research question, a number of sub-questions are defined:

• What are common characteristics of phishing emails?

• What detection techniques are commonly utilised by phishing filters?

• What methods can be deployed to bypass these detection techniques?

The remainder of this study is structured as follows: Section 2 presents a brief overview of the theoretical
background concerning phishing emails. A number of common features that characterise phishing emails
are described and phishing email detection techniques are discussed. Section 3 discusses various obfuscation
techniques that may be used to obscure the contents of an email. Section 4 describes the methods and
experiments that are used to answer our research question. A detailed overview of the experiments and
results is given in Section 5 and the findings are discussed in Section 6. Finally, we conclude the research in
Section 7 and suggest some possible directions for future work.

4

2 Theoretical framework

2.1 Phishing email characteristics

As phishing emails are likely to have the same ulterior goal, namely tricking users into disclosing con-
fidential information, most phishing emails have similar characteristics in terms of language, layout, and
structure of the email[8]. For example, phishing emails are likely to contain specific phrases asking users
to visit a certain URL and to enter personal information. The basic characteristics of a phishing email
can be broadly divided into four groups of features[27]: structural features, link features, element features,
and word-list features. Structural features reflect the body part structure of an email. Link features reflect
various properties of links contained in an email. Element features reflect the kind of web technologies that
are used. Finally, the word-list features consist of a list of words that hint at the possibility of a phishing
email.

Fette et al.[10] have defined a number of features that commonly characterise phishing emails. A few of
these features are as follows:

• IP-based URLs: As phishing attacks may be hosted off of compromised PCs, these machines are not
likely to have DNS entries. The simplest way to refer to them is by IP address.

• ‘Fresh’ linked-to domain names: To better hide suspicious links, phishers use name-based attacks,
in which a phisher will register a similar or otherwise legitimate-sounding domain name. As these
malicious domains are reported and blacklisted frequently, these domain names are usually used for
a limited time frame. Therefore, often the domains used in phishing URLs will be relatively newly
registered.

• Nonmatching URLs: Phishers often exploit HTML emails. Using HTML tags attackers are able to
hide malicious links in non-harmful looking elements. An example of such a link could look as follows:
 paypal.com .

• ‘Here’ linking to non-modal domain: To keep the phishing email look authentic, phishers will
often include a large number of legitimate links. These might be links to the privacy policy and user
agreement of the imitated domain. The domain that is most frequently linked to is called the “modal
domain”. In phishing emails, often the most predominantly displayed link (often containing a text like
“Click here to ...”) will link to a domain other than the modal domain.

• Large number of dots in URLs: Phishers make use of subdomains to make a link look legitimate.
These subdomains make the link have an inordinately large number of dots in the URL.

Almomani et al.[2] and Basnet et al.[4] have added a number of characteristics to this list. First of all,
phishing emails are likely to have a disparity between the domain names in the body of the email and the
sender’s domain, i.e. the domain name referred to by the “From” field in the SMTP envelope. Secondly,
phishing emails contain a number of frequently repeated keywords that urge the user to take some action.
These keywords can be split into six different groups:

1. Update, Confirm

2. User, Customer, Client

3. Suspend, Restrict, Hold

5

4. Verify, Account

5. Login, Username, Password

6. Social Security Number (SSN), Social Security

2.2 Phishing email detection techniques

At present most of the methods applied by email filters are designed to combat spam emails in general,
as opposed to phishing emails specifically. However, the identification of phishing emails is different from
spam classification[5]. As explained in Section 1, a spam email is used to advertise a certain product, while
phishing emails are designed to imitate a certain domain. As a phishing email differs significantly in its
properties and characteristics from a spam email, different features and techniques have to be employed in
order to detect phishing emails.

Hajgude and Ragha[15] have subdivided common phishing detection techniques into three main groups:
blacklisting, whitelisting, and heuristics. When making use of blacklists, a spam filter matches a URL against
a list of known phishing websites and DNS addresses of servers that have been reported to send spam in
the past. The effectiveness of blacklists depends on the time it takes for a phishing URL to be included.
Because there is usually some time before a website is reported and added to the blacklist, the effectiveness
of blacklisting is limited.

In contrast to blacklisting techniques, white list approaches compare external links in incoming emails
against a list of ‘good’ URLs[6]. However, as maintaining a list of trustworthy sources can be a time-
consuming and labour-intensive task, this approach may not be the most efficient either.

Heuristic or content-based filtering approaches concentrate on detecting phishing attacks by evaluating
the contents of an email and trying to identify the presence of various tricks for producing a plausible
phishing attack[6]. This evaluation may comprise the detection of typical formulations urging the user to
enter confidential information, the identification of spoofed sender addresses and URLs, the detection of
invisible content inserted to fool filters, and the analysis of images included in the email.

Many modern phishing detection schemes apply machine learning techniques in order to classify spam. A
commonly used filtering framework is the Bayesian classification. Bayesian spam filters attempt to calculate
the probability that a message is spam based on previous feature frequencies in spam and legitimate email[32].
Particular words have certain probabilities of occurring in spam mail versus in legitimate mail[19]. The
Bayesian filter can be trained to adjust the probability that a word appears in of these mails based on input
from the user. By continually training the filter with spam and non-spam emails, the filter can become
robust and highly accurate.

Typically a spam filter will combine evidence from many features and assign a ‘score’ to each feature that
may be an indicator of phishing. If the total score exceeds a predefined threshold, the email is classified as
phishing.

6

3 Related work

Spam fighting has often been described as an arms race characterised by an increase in the sophistication
adopted by both spammers and spam filters[14]. As spam filters become more efficient in identifying a
suspicious email, spammers are forced to find new ways to ensure delivery of their message. As modern-
day spam filters are able to analyse the contents of a message to detect suspicious elements, simply not
being listed on a blacklist does not ensure that a spammer’s email will reach the victim’s inbox. To bypass
content-based spam filters, obfuscation of email contents has become an important tool for spammers.

Wittel and Wu[32] have grouped the evasion techniques that spammers use into a number of categories.
Tokenization is used to work against the feature selection of a message by splitting or modifying key message
features. Obfuscation is applied to obscure the contents of a message from the filter using encoding or
misdirection. Statistical evasion approaches are used to attack statistical spam filters, for example the
previously discussed Bayesian filter (see Section 2.2). Weak statistical evasion techniques attempt to skew
the statistics of the message in such a way that the filter has trouble telling whether a message is spam or
not. The technique is considered weak when purely randomised data insertion is used to evade detection.
A strong statistical attack, however, applies a more focused approach. For example by taking advantage of
feedback methods to determine which spam messages have reached the user’s mailbox.

Lininger and Vines[18] have described a number of approaches to evade content-based filters. The first
method uses HTML tricks to break up words in such a way that the final text appears identical to the user,
but different to the filter. A common way to achieve this is by inserting fake HTML tags in the middle of a
word. If a tag is opened and then closed without any content, nothing will happen to the text. For example,
acc<i></i>ount and account will appear exactly the same to the user, but might not to the filter. A similar
technique uses spaces to split words in order to avoid triggering the detection of a specific keyword. As this
might look suspicious to the user, HTML properties can be utilised to make the space indiscernible (e.g.
acc ount). Another technique that is described aims to hide the message from
a filter entirely by sending the email as an image. The message can be a single image or consist of several
smaller images stitched together.

One method to obfuscate message contents is by applying encoding tricks. An example of this method is
Unicode transliteration[19]. Unicode was designed to represent almost all standard characters in the world.
However, this large number of characters brings a new type of problem. As Unicode contains a large number
of similar characters, it may be hard to visually differentiate between characters that are technically different.
For example, the cyrillic ‘a’ (U+0430) may replace the latin ‘a’ (U+0061) and the cyrillic ‘i’ (U+0456) may
replace the latin ‘i’ (U+0069) to get a technically different, yet visually identical word. Unicode obfuscation
can be a valuable tool for spammers as it allows to create identical clones of blacklisted keywords in order
to bypass a filter. Fu et al.[11] have introduced the UC-Simlist, a list containing similarly looking Unicode
characters along with a similarity value between 0.8 and 1, with 1 being visually identical.

Sørensen and Larsen[28] have described two more obfuscation methods: scrambling and misspelling.
The scrambling technique distorts words in such a way that the first and last character of a word are left
unchanged, but the position of characters in between are modified randomly. The misspelling technique
intentionally misspells certain keywords in order for these words not to be recognised by spam filters.

As described in Section 2.1, many characteristics of phishing emails are URL-related. Therefore, URL
obfuscation can be an important tool for spammers to avoid detection. One method that phishers have
embraced in order to hide malicious URLs, is the use of URL shortening services[23]. URL shorteners are
used to obfuscate long URLs by replacing them with short redirected links. Many phishing filters depend
on URL blacklists. Even though these may be effective to some extent, the use of URL shortening services
may allow the phishers to evade these blacklists and thereby avoid detection[9].

7

4 Methodology

In order to more accurately assess how spam filters classify phishing emails, we need to test which elements
of a phishing email are caught by these filters as being suspicious. As many enterprise email service providers
make use of proprietary software, analysing phishing emails using these services may be challenging. For
this reason we will limit ourselves to open source solutions for this preliminary analysis. In particular, we
will focus on two widely used open source spam filters: SpamAssassin[29] and Rspamd[31].

In order to assess which elements of a phishing email are recognised by a spam filter as being suspicious,
a data set containing more than 300 phishing emails will be used. This data set is obtained from Nazario’s
PhishingCorpus[22]. The data set contains the emails in mbox format. A Python script is written that iterates
over the messages in the mailbox and feeds each email to both SpamAssassin and Rspamd to determine which
rules are triggered when the email contents are analysed by the respective filters. The resulting spam reports
are saved and can then be analysed in order to find the most frequently triggered rules.

Once the frequently triggered rules are determined, we assess which of the techniques described in Section
3 may be used to obfuscate the email contents in such a way that this trigger is prevented. To analyse the
effectiveness of these techniques on popular email providers, we will apply the obfuscation methods to a
subset of the test data and determine whether this application avoids detection by the spam filters of these
mail providers. The mail service providers that we use for this analysis are the following:

• ProtonMail[24]

• Office 365[20]

• G Suite Gmail[13]

• Amazon WorkMail[3]

• RackSpace Email[25]

8

5 Results

5.1 Analysis of phishing emails

As described in Section 4, we have used a test data set containing more than 300 phishing emails as input
to the SpamAssassin and Rspamd spam filters. The spam reports are then inspected in order to determine
which rules are most frequently triggered when a phishing email is analysed. Table 1 and Table 2 below
give an overview of these rules. Note that both filters are used with the default settings with no additional
plugins. Therefore the rules listed in these tables are included in the default installations.

Table 1: SpamAssassin: frequently triggered rules

Rule Description

MIME HTML ONLY Messages that have only HTML part
RDNS NONE Delivered to internal network by host with no

reverse DNS lookup
TVD PH BODY ACCOUNTS PRE The body matches phrases such as ‘accounts’
FREEMAIL FORGED REPLYTO Freemail in Reply-To, but not From
SUBJ ALL CAPS All capital letters in subject
HEADER FROM DIFFERENT DOMAINS From and EnvelopeFrom different
ACCT PHISHING Body matches phrases such as ‘access’, ‘suspended’,

‘verify’, ‘restore’
URI WPADMIN WordPress login/admin URI, possible phishing

Table 2: Rspamd: frequently triggered rules

Rule Description

MIME HTML ONLY Messages that have only HTML part
FROM NEQ ENVFROM From address is different to the envelope
HAS ATTACHMENT Contains attachment
HAS WP URI Contains WordPress URIs
FREEMAIL REPLYTO Freemail in Reply-To, but not From
PHISHING Non matching URLs in HTML text and href

RSPAMD URIBL URL in URIBL.com blacklist
HFILTER FROMHOST NORES A OR MX FROM host no resolve to A or MX

The frequently triggered rules by SpamAssassin and Rspamd can be split into three different groups.
The first group contains those rules which can be relatively easily prevented from being triggered. Examples
of these rules are MIME HTML ONLY, SUBJ ALL CAPS, and RDNS NONE/HFILTER FROMHOST NORES A OR MX. Trig-
gering these rules could be prevented by sending the email in both HTML and plain text, using a subject
line that is less suspicious and using an email domain that can be resolved.

9

The second group consists of those rules that indicate some issue with the headers of the email; for
example, a discrepancy between the address in the message FROM field and the FROM field in the SMTP
envelope or the use of free email service providers. As the FROM field in the SMTP envelope can not be
spoofed, mitigating the trigger of this rule is as good as impossible.

The final group of rules are related to the actual contents of an email. These rules are highlighted in the
tables as these are the rules we focus on in our bypass attempts. Firstly, the filters appear to analyse the
contents of emails on the presence of suspicious phrases, as indicated by the TVD PH BODY ACCOUNTS PRE and
ACCT PHISHING rules. Secondly, URL analysis is performed to match URLs against certain URL blacklists.
Moreover, WordPress URLs are marked as suspicious as well. Finally, the PHISHING rule indicates that
non-matching URLs in the HTML text and href link are flagged as being suspicious. However, this rule can
be easily prevented from being triggered by not putting URLs in plain text, but using phrases instead (e.g.
“Click Here”). Therefore, we will disregard this rule in the evasion attempts.

5.2 Obfuscation of email contents

In order to assess the effectiveness of some of the obfuscation techniques described in Section 3, we use
a sample phishing email that is classified as spam. As is apparent from Table 2, Rspamd does not appear
to scan the contents of an email in order to detect phishing-related phrases. The phishing-related rules
triggered are specific to URLs only. As SpamAssassin appears to detect both suspicious URLs and phrases,
we strictly focus on this spam filter for this preliminary analysis. Listing 1 below shows a truncated output
of the spam report for the phishing email, where capitalone.txt contains the HTML contents of the mail
(see Appendix A for a brief description of this email).

$ spamc -R < tests/capitalone.txt

Content analysis details: (5.4 points , 5.0 required)

pts rule name

---- ----------------------

1.6 SPOOF_COM2COM

0.0 HTML_MESSAGE

1.0 HTML_IMAGE_ONLY_16

1.5 TVD_PH_BODY_ACCOUNTS_PRE

0.0 T_DKIM_INVALID

0.1 MISSING_MID

1.0 ACCT_PHISHING

0.0 T_REMOTE_IMAGE

Listing 1: Spam report of original sample phishing email

It can be seen from this output that SpamAssassin has detected the presence of various suspicious
phrases (as indicated by the TVD PH BODY ACCOUNTS PRE and ACCT PHISHING rules), and a malformed URL
(SPOOF COM2COM, URI containing ‘.com’ in the middle and end). In order to obfuscate certain phrases in the
email contents that can be considered suspicious, we have first attempted to insert fake HTML tags in the
middle of any phishing-related word. This is done by using an opening tag immediately followed by a closing
one, e.g. account becomes acc<i></i>ount. It appears that SpamAssassin is resilient to this kind of attack
as applying this technique triggers the HTML OBFUSCATE 05 10 rule and the phishing-related phrases are still
recognised, as shown in Listing 2 below:

10

$ spamc -R < tests/capitalone_obf_tag.txt

Content analysis details: (5.4 points , 5.0 required)

pts rule name

---- ----------------------

1.6 SPOOF_COM2COM

0.0 HTML_OBFUSCATE_05_10

0.0 HTML_MESSAGE

1.0 HTML_IMAGE_ONLY_16

1.5 TVD_PH_BODY_ACCOUNTS_PRE

0.0 T_DKIM_INVALID

0.1 MISSING_MID

1.0 ACCT_PHISHING

0.0 T_REMOTE_IMAGE

Listing 2: Spam report of sample phishing email with fake HTML tag insertion applied

The second experiment involves the obfuscation of the aforementioned phrases using the Unicode obfus-
cation technique described in Section 3. For each phishing-related word we replace all vowels that have an
identical Unicode character. After applying the obfuscation, it appears that the filter is not able to recognise
the phrases as being phishing-related and the corresponding rules are not triggered:

$ spamc -R < tests/capitalone_obf_unicode.txt

Content analysis details: (2.8 points , 5.0 required)

pts rule name

---- ----------------------

1.6 SPOOF_COM2COM

0.0 HTML_MESSAGE

1.0 HTML_IMAGE_ONLY_16

0.0 T_DKIM_INVALID

0.1 MISSING_MID

0.0 T_REMOTE_IMAGE

Listing 3: Spam report of sample phishing email with Unicode obfuscation applied

To hide the presence of possible malicious URLs as well, we replace each href attribute in the email
with a shortened URL using the Bitly[7] URL shortener. After replacing these URLs we observe that any
URL-related rule is no longer triggered:

$ spamc -R < tests/capitalone_obf_unicode_url.txt

Content analysis details: (1.1 points , 5.0 required)

pts rule name

---- ----------------------

0.0 HTML_MESSAGE

11

1.0 HTML_IMAGE_ONLY_16

0.0 T_DKIM_INVALID

0.1 MISSING_MID

0.0 T_REMOTE_IMAGE

Listing 4: Spam report of sample phishing email with Unicode obfuscation and URL shortening applied

As the Unicode obfuscation and URL shortening techniques appear to be sufficient in order to fool the
phishing filter, we have written a simple script that applies these obfuscation methods to any phishing email.
The script takes a file containing the HTML email as input. A second file containing common phishing
words is loaded as well. Appendix B gives an overview of this list of phishing-related words. The list is
compiled using a combination of sources (see [16][4]) and custom additions. For some of these words a ‘root
form’ is used as different forms of the word may be present in a phishing email (e.g. restrict, restricted, or
restriction). After loading these two files, we iterate over each element in the HTML in order to find all
phishing-related words and href elements. Each phishing-related word that is encountered is replaced with
a Unicode obfuscated version and the link for all href elements is shortened. The new email containing the
obfuscated contents is finally written to a new file. For a detailed overview of the obfuscation script, we refer
to Appendix C.

5.3 Analysis of obfuscation techniques

As mentioned in Section 4, we have analysed the effectiveness of the previously described obfuscation
techniques on a total of five different hosted email providers. As four of these mail providers use closed-source
enterprise software, it is challenging to assess what classification methods are applied by the spam filters
and what rules are triggered. Therefore, for these email applications the only method that can be used for
analysis is by determining whether an email is marked as spam or not. To still be able to make reasonable
assumptions about the effectiveness of each of the obfuscation techniques, we have split the experiments for
the enterprise mail solutions in three parts. Each test set strictly contains emails that are marked as spam by
the email provider that is being analysed. In the first experiment we replace all URLs with a short URL and
determine whether this obfuscated email is still classified as spam. The second experiment applies Unicode
obfuscation as described in Section 5.2, and performs the same check. Finally, we apply the combination of
the two techniques and observe whether the filter is bypassed.

For analysis of the obfuscation techniques, we have selected a subset of emails from the test data set.
The criteria for selecting emails from this data set are as follows: firstly, the email should contain both URLs
and possibly suspicious phrases. Secondly, the email should be classified as spam by the spam filter that is
being analysed. As these criteria may not hold true for all phishing emails in the data set, we have manually
selected a relatively small subset of test emails which meet the aforementioned requirements. Important
to note is that the same email will not in all cases be recognised as spam by all spam filters. Therefore,
the experiments for each analysed email provider may not necessarily contain the same emails. A short
description of each email that is used for analysis may be found in Appendix A.

5.3.1 ProtonMail

As mentioned in Section 5.1, the analysis performed on the test data set of phishing emails was done
using the default configuration of both SpamAssassin and Rspamd with no additional plugins. To assess
whether we observe a difference in the detection of the obfuscation techniques between an out-of-the-box
filter configuration and a more tweaked and hardened SpamAssassin implementation, we perform the initial

12

analysis on the ProtonMail email service. ProtonMail[24] is an open source, privacy-focused email service
provider. To filter unwanted spam emails ProtonMail makes use of the SpamAssassin spam filter. One
advantage of this open source approach is that we can easily analyse which spam rules were triggered and
why a certain email was labeled as spam. Table 3 below shows the outcome of the spam analysis on a set of
sample phishing emails:

Table 3: ProtonMail: effectiveness of obfuscation techniques

Sample phishing Phishing related Phishing related
email rules triggered rules triggered

using original after obfuscation
phishing email techniques applied

bitstamp URI WPADMIN URI WPADMIN

(Spam score: 3.0) (Spam score: 0.2)

capitalone SPOOF COM2COM SPOOF COM2COM

TVD PH BODY ACCOUNTS PRE TVD PH BODY ACCOUNTS PRE

(Spam score: 3.5) (Spam score: 1.5)

dhl URIBL PH SURBL PQS URIBL PH SURBL PQS

RAZOR2 CHECK RAZOR2 CHECK

(Spam score: 9.8) (Spam score: -0.1)

fedex URI WPADMIN URI WPADMIN

TVD PH BODY ACCOUNTS PRE TVD PH BODY ACCOUNTS PRE

(Spam score: 4.6) (Spam score: 1.8)

Important to note is that we have strictly included the rules that are specifically related to phishing.
It is apparent from this table that the application of both the obfuscation techniques is undetected by the
ProtonMail implementation of SpamAssassin. Any URL-related or content-specific rule is avoided from
being triggered as URLs are replaced with a short URL and any phishing-related word is obfuscated using
Unicode transliteration. This avoidance ultimately leads to a lower spam score. Particularly interesting is
the third experiment, where the spam score is reduced by almost 10 points.

5.3.2 Office 365

Office 365 is a collection of services offered by Microsoft as part of their Microsoft Office product line[20].
These services include a hosted email infrastructure. Table 4 below shows the outcome of the spam analysis
on a set of five sample phishing emails for an Office 365 mailbox. The tick and cross mark indicate whether
the applied obfuscation technique was successful or unsuccessful in bypassing the spam filter respectively:

13

Table 4: Office 365: effectiveness of obfuscation techniques

Sample phishing Short URL Unicode obfuscation Short URL
email +

Unicode obfuscation

bitstamp 7 3 3
capitalone 7 7 3
dhl 3 7 3
fedex 7 7 3
dropbox 7 7 7

As can be seen from the table, in four out of the five experiments classification as spam is prevented
by applying obfuscation techniques. The results of the analysis show that in some cases applying either of
the two techniques may be sufficient to bypass detection (see phishing email bitstamp and phishing email
dhl). In other cases the combination of the techniques is needed to successfully circumvent the phishing
filter (see phishing email capitalone and phishing email fedex). A possible explanation for this might be
that a certain predefined threshold score is still exceeded when only one of the methods is applied.

In order to assess whether we observe different results when a more tweaked and modified version of
Office 365 is used, we have performed the same analysis on the Office 365 infrastructure at a large volunteer
company. As not all emails that are used in the previous experiment are marked as spam by the spam filter
of this email environment, the test set is not identical. Table 5 below shows the outcome of this analysis:

Table 5: Office 365 large company: effectiveness of obfuscation techniques

Sample phishing Short URL Unicode obfuscation Short URL
email +

Unicode obfuscation

dhl 7 7 7
fedex 7 7 3
docusign 3 7 3
netflix 7 7 3
security alert 3 7 3

The results resemble the analysis performed on the independent Office 365 mailbox to some extent. In
contrast to this previous analysis, in none of the experiments strictly applying Unicode obfuscation appears
to be sufficient to bypass detection. However, the outcome of the experiment using phishing emails fedex

and netflix shows that Unicode obfuscation is not detected by the spam filter: applying this technique
along with URL shortening makes the email look legitimate to the filter, while strictly applying the latter is
not sufficient.

14

5.3.3 G Suite Gmail

G Suite[13] offers a collection of collaboration and productivity tools with businesses as main target
group. A mail infrastructure is provided that uses the Gmail mail service. Table 6 below shows the outcome
of the spam analysis on a set of five sample phishing emails for a G suite Gmail inbox:

Table 6: G Suite Gmail: effectiveness of obfuscation techniques

Sample phishing Short URL Unicode obfuscation Short URL
email +

Unicode obfuscation

bitstamp 7 7 3
acc terminate 3 7 3
docusign 3 7 3
dropbox 7 7 7
bank of america 3 7 3

It is apparent from the table that Gmail is not resilient against the applied obfuscation techniques either.
Interestingly, in most of the cases strictly replacing URLs with a short version appears to be adequate to
bypass detection. This is a rather remarkable result as G suite Gmail has an option to identify links behind
short URLs[12], which is enabled by default. The outcome of the experiment using phishing email bitstamp
confirms that Gmail does not offer protection against Unicode obfuscation attacks either.

5.3.4 Amazon WorkMail

Amazon Workmail[3] is the managed business email service offered by Amazon. Table 7 below shows the
outcome of the spam analysis on a set of five sample phishing emails using this mail service:

Table 7: Amazon WorkMail: effectiveness of obfuscation techniques

Sample phishing Short URL Unicode obfuscation Short URL
email +

Unicode obfuscation

bitstamp 3 3 3
capitalone 7 3 3
dhl 7 7 3
fedex 7 7 3
dropbox 7 7 7

From the table above we can see that detection of phishing emails can be avoided by applying obfuscation
techniques in four out of the five experiments. Experiments using phishing emails dhl and fedex indicate
that there is some scoring mechanism used: the combined application of the obfuscation techniques allows
to bypass the spam filter, while applying these obfuscation methods separately is unsuccessful.

15

5.3.5 Rackspace Email

Rackspace[26] is a managed cloud computing company that also offers email hosting for small businesses.
Table 8 below shows the outcome of the spam analysis on a set of sample phishing emails for a Rackspace
mailbox:

Table 8: Rackspace Email: effectiveness of obfuscation techniques

Sample phishing Short URL Unicode obfuscation Short URL
email +

Unicode obfuscation

acc term 3 7 3
blacklist 7 7 7
alibaba 3 7 3

What stands out in this table is that only three test phishing emails have been used for analysis. The
reason behind this limitation is the fact that Rackspace’s filtering mechanisms seem to be lacking in compar-
ison with the other tested mail services. As we were not able to find more emails that Rackspace classified
as spam, the analysis of this mail service was problematic. However, based on the results of this preliminary
analysis it appears that Rackspace does not protect against attacks that make use of URL obfuscation using
short URLs. Because of the small size of the test data set no definitive statement can be made about the
effectiveness of the Unicode obfuscation technique.

16

6 Discussion

The present study was designed to analyse the effectiveness of spam filters in protecting end users against
phishing attacks over email and determine whether content obfuscation methods exist that may allow by-
passing detection. In order to answer this question, we have first identified a number of phishing email
characteristics and the methods that spam filters typically employ in order to classify phishing emails. To
get a deeper insight into the specific aspects of a phishing email that makes these messages detectable, a
data set containing a large number of phishing emails is analysed using two open source spam filters in order
to find the frequently triggered spam rules. The outcome of this analysis is used in an attempt to bypass
the trigger of any content-specific rule.

The results of this analysis indicate that spam filters are likely to evaluate the contents of an incoming
email for suspicious phrases and URLs. In order to obscure the occurrence of possibly suspicious words, two
different obfuscation methods have been attempted on the SpamAssassin spam filter. The use of fake HTML
tag insertion in these words appears to be unsuccessful as the words are still detected and an additional rule
indicating the presence of HTML obfuscation is triggered. The second experiment assesses the effect of the
application of Unicode obfuscation on the suspicious words. This evasion technique appears to be able to
successfully prevent detection. To conceal the presence of malicious URLs, a final experiment is performed
that replaces any HTML link with a short URL. The method proves to be sufficient to prevent the trigger
of any URL-related spam rule.

To determine the effectiveness of the two successful evasion techniques on a number of popular email
service providers, we have written a script that applies the two evasion techniques to any HTML email. A
sample set of phishing emails that are classified as spam are obfuscated using this script and the effect of this
obfuscation is analysed. The results of this analysis show that none of the analysed mail service providers
offer protection against the two evasion techniques. In some cases strictly applying one of the two techniques
may be sufficient to bypass detection. In other cases the combination of the techniques is needed in order to
avoid detection. The application of the two techniques does not in all cases guarantee that the spam filter
will classify a phishing email as legitimate. This may be due to the presence of other elements in the email
that yield a high enough score to still mark the message as spam.

The fact that the described evasion techniques go unnoticed by the spam filters of major email service
providers is rather remarkable. Especially when one considers that awareness of these obfuscation techniques
is not recent and mitigation may be fairly simple. A simple list containing Unicode characters that are
visually identical (e.g. the UC-Simlist, see Section 3) may be used to create different clones of suspicious
words in order to match the contents of the email against a list that contains these clones. An even simpler
approach would be to flag any character that is not common in the English language as being suspicious.
The detection of malicious URLs hidden using URL shortening services may be trickier as there may be
legitimate reasons to include short URLs in an email. However, simply identifying links behind a short URL
may be sufficient to detect obscured links. Interestingly, Google claims to do exactly this[12]. However, in
practice we are still able to hide malicious links easily by making use of a URL shortener.

It is important to bear in mind that this study has strictly focused on the obfuscation of email contents
in order to bypass phishing detection. In reality there will be many more aspects that may be considered
in the classification of incoming email. An organisation might, for example, block a certain email regardless
of the contents if this mail is detected to be sent in bulk to the employees. SPF-[30] or DKIM-based[21]
authentication errors may raise flags as well. Finally, spam filters that utilise machine learning approaches
are likely to recognise the described obfuscation methods as being suspicious as more phishing emails are
received that apply these techniques. As these aspects are outside the scope of this study, the findings of
this study should be interpreted with caution.

17

7 Conclusion

In recent years the threat of phishing email attacks has grown significantly. Organisations and end users
rely on spam filters for protection against these kind of attacks. The analysis of a set of phishing emails using
open source spam filters has shown that spam filters typically employ content-analysis methods in order to
find the presence of suspicious phrases and malicious URLs. The results of this research show that these two
aspects of an email can be relatively easily obfuscated. In many cases the obfuscation of certain suspicious
words using Unicode transliteration and the replacement of malicious URLs using short URLs is sufficient
to prevent the email from being classified as phishing. As mitigation methods for these evasion techniques
may be fairly simple, we conclude that spam filters have enough to improve on.

7.1 Future work

As this study strictly focused on content-specific aspects of phishing emails, the generalisability of these
results is subject to certain limitations. As mentioned in Section 6, there are likely to be more aspects that
may be considered in the classification of incoming emails. A further study that takes these aspects into
account is recommended. A possible direction for future work could be the evaluation of the effectiveness
of the obfuscation techniques discussed in this study when an obfuscated email is sent to an organisation in
large numbers.

18

References

[1] Shivam Aggarwal, Vishal Kumar, and SD Sudarsan. Identification and detection of phishing emails
using natural language processing techniques. In Proceedings of the 7th International Conference on
Security of Information and Networks, page 217. ACM, 2014.

[2] Ammar Almomani, Tat-Chee Wan, Altyeb Altaher, Ahmad Manasrah, Eman ALmomani, Mohammed
Anbar, Esraa ALomari, and Sureswaran Ramadass. Evolving fuzzy neural network for phishing emails
detection. Journal of Computer Science, 8(7):1099, 2012.

[3] Amazon Web Services, Inc. Amazon WorkMail - Managed Email for Business - Amazon AWS. https:
//aws.amazon.com/workmail/, 2018. [Online; accessed 26-June-2018].

[4] Ram Basnet, Srinivas Mukkamala, and Andrew H Sung. Detection of phishing attacks: A machine
learning approach. In Soft Computing Applications in Industry, pages 373–383. Springer, 2008.

[5] Andre Bergholz, Jeong Ho Chang, Gerhard Paass, Frank Reichartz, and Siehyun Strobel. Improved
phishing detection using model-based features. In The Fifth Conference on Email and Anti-Spam
(CEAS), 2008.

[6] André Bergholz, Jan De Beer, Sebastian Glahn, Marie-Francine Moens, Gerhard Paaß, and Siehyun
Strobel. New filtering approaches for phishing email. Journal of computer security, 18(1):7–35, 2010.

[7] Bitly Inc. Bitly — URL Shortener, Custom Branded URLs, API Link Management. https://bitly.
com/, 2018. [Online; accessed 25-June-2018].

[8] Madhusudhanan Chandrasekaran, Krishnan Narayanan, and Shambhu Upadhyaya. Phishing email
detection based on structural properties. In NYS Cyber Security Conference, volume 3, 2006.

[9] Sidharth Chhabra, Anupama Aggarwal, Fabricio Benevenuto, and Ponnurangam Kumaraguru.
Phi.sh/$ocial: the phishing landscape through short urls. In Proceedings of the 8th Annual Collab-
oration, Electronic messaging, Anti-Abuse and Spam Conference, pages 92–101. ACM, 2011.

[10] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to detect phishing emails. In Proceedings of
the 16th international conference on World Wide Web, pages 649–656. ACM, 2007.

[11] Anthony Y Fu, Wan Zhang, Xiaotie Deng, and Liu Wenyin. Safeguard against unicode attacks: gener-
ation and applications of uc-simlist. In Proceedings of the 15th international conference on World Wide
Web, pages 917–918. ACM, 2006.

[12] Google LLC. Apply extra phishing and malware protection. https://support.google.com/a/answer/
7577854?hl=en, 2018. [Online; accessed 28-June-2018].

[13] Google LLC. Google G Suite. https://gsuite.google.com, 2018. [Online; accessed 26-June-2018].

[14] Pedro H Calais Guerra, Dorgival Guedes, J Wagner Meira, Cristine Hoepers, MHPC Chaves, and Klaus
Steding-Jessen. Exploring the spam arms race to characterize spam evolution. In Proceedings of the 7th
Collaboration, Electronic messaging, Anti-Abuse and Spam Conference (CEAS), Redmond, WA, 2010.

[15] Jayshree Hajgude and Lata Ragha. Phish mail guard: Phishing mail detection technique by using textual
and url analysis. In Information and Communication Technologies (WICT), 2012 World Congress on,
pages 297–302. IEEE, 2012.

19

https://aws.amazon.com/workmail/
https://aws.amazon.com/workmail/
https://bitly.com/
https://bitly.com/
https://support.google.com/a/answer/7577854?hl=en
https://support.google.com/a/answer/7577854?hl=en
https://gsuite.google.com

[16] Kevin McCaney. The 20 most common words in phishing attacks. https://gcn.com/articles/2012/
09/26/20-most-common-words-phishing-attacks.aspx, 2018. [Online; accessed 29-June-2018].

[17] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. Phishing detection: a literature survey. IEEE
Communications Surveys & Tutorials, 15(4):2091–2121, 2013.

[18] Rachael Lininger and Russell Dean Vines. Phishing: Cutting the identity theft line. John Wiley & Sons,
2005.

[19] Changwei Liu and Sid Stamm. Fighting unicode-obfuscated spam. In Proceedings of the anti-phishing
working groups 2nd annual eCrime researchers summit, pages 45–59. ACM, 2007.

[20] Microsoft. Microsoft Office 365. https://www.office.com/, 2018. [Online; accessed 26-June-2018].

[21] Mutual Internet Practices Association. DomainKeys Identified Mail (DKIM) . Available at http:

//dkim.org/ (Accessed on August 7, 2018).

[22] Jose Nazario. The online PhishingCorpus. https://monkey.org/~jose/phishing/, 2018. [Online;
accessed 13-June-2018].

[23] New York University. Recent Uptick in Phishing Messages Using URL Shorteners. https://wp.nyu.

edu/itsecurity/2018/02/08/recent-uptick-in-phishing-messages-using-url-shorteners/,
2018. [Online; accessed 16-June-2018].

[24] Proton Technologies AG. Secure email: ProtonMail is free encrypted email. https://protonmail.com/,
2018. [Online; accessed 26-June-2018].

[25] Rackspace US, Inc. Rackspace — Affordable Email Hosting for Your Small Business. https://www.

rackspace.com/email-hosting/webmail, 2018. [Online; accessed 26-June-2018].

[26] Rackspace US, Inc. Rackspace: Managed Dedicated Cloud Computing Services. https://www.

rackspace.com/, 2018. [Online; accessed 28-June-2018].

[27] Jasveer Singh. Detection of phishing e-mail. International Journal of Computer Science and Technology
(IJCST), 2(1), 2011.

[28] Lars Tabro Sørensen and Martin Møller Larsen. Wordadjust-a deobfuscation frontend to content-aware
anti-spam tools. 2008.

[29] The Apache Software Foundation. SpamAssassin, 2018. Available at https://github.com/apache/

spamassassin Commit: e4ae3e2f8a9919dad5446877f1c9451294f94ed8 (Accessed on June 4, 2018).

[30] The SPF Project. Sender Policy Framework Project Overview. Available at http://www.openspf.org/
(Accessed on August 7, 2018).

[31] Vsevolod Stakhov. Rspamd, 2018. Available at https://github.com/vstakhov/rspamd Commit:
ae53944eec8b20ce389712de5d1cc10b5e6c35bf (Accessed on June 4, 2018).

[32] Gregory L Wittel and Shyhtsun Felix Wu. On attacking statistical spam filters. In First Conference on
Email and Anti-Spam (CEAS), 2004.

20

https://gcn.com/articles/2012/09/26/20-most-common-words-phishing-attacks.aspx
https://gcn.com/articles/2012/09/26/20-most-common-words-phishing-attacks.aspx
https://www.office.com/
http://dkim.org/
http://dkim.org/
https://monkey.org/~jose/phishing/
https://wp.nyu.edu/itsecurity/2018/02/08/recent-uptick-in-phishing-messages-using-url-shorteners/
https://wp.nyu.edu/itsecurity/2018/02/08/recent-uptick-in-phishing-messages-using-url-shorteners/
https://protonmail.com/
https://www.rackspace.com/email-hosting/webmail
https://www.rackspace.com/email-hosting/webmail
https://www.rackspace.com/
https://www.rackspace.com/
https://github.com/apache/spamassassin
https://github.com/apache/spamassassin
http://www.openspf.org/
https://github.com/vstakhov/rspamd

A Description of test emails

acc terminate A typical phishing email that pretends to come from the mail service provider. The message
indicates that a request to terminate the mail account was received. To avoid termination of the account,
the user is urged to click on the contained link.

alibaba An email that appears to originate from Alibaba.com. The user is requested to reply on an offer
that is received for a certain product by clicking on the “Reply” link.

bank of america A phishing email that pretends to come from the Bank of America. The user is informed
about a payee that has been added to the user’s account. To confirm the user is asked to complete the
verification process by logging in by clicking on the provided link.

bitstamp The current email appears to originate from the Bitstamp cryptocurrency market place. The
email urges the user to update his account information in order to prevent suspension of the account. The
“Update Account” link appears to refer to a Wordpress interface.

blacklist This email informs the user that the email account has been blacklisted because of spam activities.
Failure to confirm and update the account within 24 hours will lead to permanent suspension. To confirm
the email account, the user is asked to click on a link.

capitalone A phishing email that pretends to come from the Capital One Bank security department. The
user is noticed about the temporary suspension of the user’s bank account. To unlock the account, the user
is requested to log in by clicking the provided link.

dhl In this email the user is requested to complete his tracking process for a DHL delivery. The user is
asked to visit a link that appears to contain a reference to a malicious URL, instead of the DHL tracking
page.

docusign An email that appears to be received from DocuSign. The user is requested to click the “Acti-
vate” button in order to verify the email address and complete the account registration process.

dropbox This emails pretends to come from the Dropbox service team. The user is informed about
a “payment confirmation” document that has been uploaded. The file can be viewed by clicking on the
included button.

fedex An email that pretends to be sent by the FedEx customer service. The user is noticed about the
suspension of all unused accounts. To avoid suspension the user is advised to update his account information.
A “Sign in” link is included.

netflix A phishing email that appears to come from the Netflix support team. The user is noticed about
the failed validation of the payment information. To verify the billing and payment details, the user is
requested to click on the included link. Failure of completing this validation process will lead to suspension
of the Netflix membership.

21

security alert This is another mail that pretends to come from the email service provider. The mail
informs the user that the user’s identity can no longer be verified. To avoid loss of the account, the user is
requested to verify his identity by clicking the included button.

22

B List of common phishing words

label invoice post document postal
calculation copy fedex statement financ

dhl usps notif irs ups
deliver ticket updat user password
account secur verif confirm customer
client suspen restrict hold log
safe request expir cancel immediate

urgent click link spam junk
require unlock bank access terminat
money malicious

23

C Obfuscation script

import os

import re

import bitly_api

from bs4 import BeautifulSoup as BSHTML

API_KEY = ’************************* ’

TEST_MAIL = ’test_data/netflix ’

def replace_letters(word):

word = word.replace(’a’, ’а ’)

word = word.replace(’i’, ’ⅰ ’)

word = word.replace(’e’, ’е ’)

word = word.replace(’o’, ’ο ’)

word = word.replace(’U’, ’ᑌ ’)

word = word.replace(’A’, ’А ’)

word = word.replace(’O’, ’Ο ’)

return word

def check_common(word , common):

for elem in common:

if elem in word:

return True

return False

def shorten_url(url):

try:

b = bitly_api.Connection(access_token=API_KEY)

resp = b.shorten(url)

return resp[’url’]

except:

return url

Open HTML email

with open(TEST_MAIL + ’.txt’, ’r’) as f:

data = f.read()

Open file containing common phishing words

with open(’common.txt’, ’r’) as f:

common = []

for line in f:

common.extend(line.split())

Find all text in HTML and add to list

24

html_bs = BSHTML(data , ’html.parser ’)

text_data = html_bs.find_all(text=True)

text_words = []

for elem in text_data:

for word in elem.split():

text_words.append(word)

try:

os.remove(TEST_MAIL + ’_obf.txt’)

except OSError:

print(’File does not exist’)

with open(TEST_MAIL + ’_obf.txt’, ’a’) as f:

for word in data.split():

uni_word = unicode(word , ’utf -8’, errors=’ignore ’)

if uni_word in text_words and check_common(word.lower(),

↪→ common):

Apply unicode obfuscation

word = replace_letters(word)

if ’href=’ in word:

Replace links with short URL

link = re.search(’href ="(.*)"’, word)

short_link = shorten_url(link.group (1))

word = word.replace(link.group (1), short_link , 1)

if ’charset ’ in word:

Modiy encoding

charset = re.search(’charset =(.*)"’, word)

word = word.replace(charset.group (1), ’utf -8’)

f.write(word)

f.write(" ")

25

