
Using Fault Injection to weaken
RSA public key verification

SNE Research Project 2

Ivo van der Elzen

University of Amsterdam

What is Fault Injection?
Simply put:

“Introducing faults in a target to alter its intended behavior”*

*(N. Timmers)

What is Fault Injection?
● Use physical means to induce logical faults into a target

○ Electromagnetic

○ Temperature

○ Optical (laser)

○ Voltage

○ Etc.

● Can cause faults in instructions, execution flow, data.

○ Instruction corruption

○ Instruction skipping

○ Data corruption

What can Fault Injection accomplish?
● Some examples:

○ Bypassing PIN/password verification

○ Escalating privileges

○ Bypassing Secure boot

○ Extracting RSA private key, AES keys

○ Firmware extraction

○ Modifying data in memory

● We’ll be using Voltage Fault Injection to modify data

● Some excellent references I recommend to check out

○ Bellcore attack on RSA-CRT, Boneh et al. (1996)

○ Attacking RSA public modulus by Seifert (2005) and Muir (2005)

○ Low-voltage attacks on RSA and AES on ARM9 by Barenghi et al. (2009, 2010)

○ Building fault models for microcontrollers, SNE RP2, Spruyt (2012)

○ Proving the wild jungle jump, SNE RP2, Gratchoff (2015)

○ Controlling PC on ARM using Fault Injection, Timmers et al. (2017)

Attacking RSA’s public modulus
● An RSA public key consists of two values:

○ Public exponent e

○ Public modulus N

● N is (usually) a product of two large prime integers

● To get the private key, we need the factorization of N, but this is infeasible

● If we can modify N, we can make it easier to factor (call this modification N’)

● With the factorization of N’, we can make a private key (N’, e, d’)

● As long as the target uses the modified N, our private key will work

Voltage glitching to induce faults in data
● When copying data, we introduce a glitch in

the supply voltage

● The processor will execute an instruction

incorrectly and introduce a fault:

Source data: C3B5F25715A8D1

Destination data: C3B5F20055A8D1
Example voltage glitch

We can use this to change values in an RSA public key!

The Attack
● While N is being copied, induce a fault to obtain N’

● We factor N’ and create a private key d’

● Use d’ to sign a message, which verifies against N’

As long as the target has N’ in memory, the signature

will be valid.

Attack example - Secure Boot

Research questions
● Is modifying the RSA public modulus using voltage fault injection a practical

means of weakening RSA signature verification?

○ How can an RSA public modulus be modified in a way that is beneficial to an attacker?

○ Which types of modifications reliably yield factorable moduli?

○ Can we create valid private keys from these factorizations?

○ Is it practical to apply this attack against RSA?

Obtaining a fault model - Target Characterization
● Study the effects of V-FI on a memory copy

● Target device: ARM Cortex-M4F 32 bit

● Program target device to:

○ Copy data between buffers

○ Set trigger when copy starts and unset when finished

○ Return result

● Apply voltage glitch after trigger is set

● Record response and classify

○ Normal response, green color

○ Correct glitched response, red color

○ No response, yellow color

Riscure

Experimental Setup
● Target running our test code

(Riscure Piñata)

● Glitcher and glitch amplifier

(Riscure Spider and GA)

● Computer

○ Control glitcher over USB

○ Control target over UART

○ Record responses from target

Experimental Setup (cont.)
1. PC oscilloscope

2. UART interface

target <-> PC

3. Target (Piñata)

4. Glitch Amplifier

5. Glitcher (Spider)

Prepare target device
● Prepare two buffers:

○ Fill source with 0x55
○ Fill destination with 0x44
○ (Normally memory is initialized with 0x00. We use 0x44 to distinguish between faults)

● Initialize unused registers to known pattern

○ C4 F4 B4 D4 for r4, C5 F5 B5 D5 for r5 etc.

● Copy source to destination

● Three variants, implemented in ARM assembly:

○ Byte-per-byte using LDRB / STRB

○ Word-per-word (4 bytes) using LDR / STR

○ Multi-word (16 bytes) using LDM / STM

● Output destination buffer over UART, bookended with 0xAA, 0xBB

Loop timing measurement
● We determine the time each loop takes

using the oscilloscope

● Select glitch timings to hit the middle third

(focus on area highlighted in red)

Vo
lta

ge
Vo

lta
ge

Vo
lta

ge

Time (μs)

Time (μs)

Time (μs)

Byte-wise copy

Word-wise copyMulti-word copy

Glitch characterization, byte-wise, (229815 tests)

Glitch characterization, word-wise, (230123 tests)

Glitch characterization, multi-word-wise (231069 tests)

Refine parameters -> Fix voltage at 2.5V
● Higher success rate

● Multi-word still difficult, but shows a

clear area to focus on

● Further refinement is possible

Fault Models observed - some examples
● Early Break: AA5555...5555555555555554444444444444444BB
● Skip: AA5555...55555555555544555555555555555555BB
● Zeroed: AA5555...55550000555555555555555555555555BB
● Registers: AA5555...5555DABAFACA55555555C7555555555BB
● Bitflips: AA5555...5555545555555555555555...55BB (01010100)
● Mixed: AA5555...5555D7B7F7C755550000555555554444BB
● Other: AA5555...55554400230120AD2C0008152D000851...BB

Determine Fault Model
Out of 3.191.236 total tests, we observed 205.366 desired (red) glitches. These glitches

are categorized and tallied as follows:
Type of fault Percentage of

total

Early break 63,6%

Single skip 7,8%

Zeroed 2,2%

Other registers 1,5%

Flipped bits 1%

Other/mixed 23.9%

Most suitable for breaking RSA
● By far the most common is an early break scenario

● This is not the most suitable for breaking RSA

○ Every byte set to 0 at the end adds 2

8

 as a factor

○ In this scenario, about half of the messages fail to decrypt properly

○ RSA requires that message and n are coprime

○ You could modify the message to make it work

● More suitable is a single skip

○ It’s the second most common

○ It’s predictable

○ Less likely to add repeating factors

But can we hit every single loop iteration?
● Yes, we can incur single skips in every single byte or word

○ More difficult with multi-word

● We can hit a single iteration with a probability

of 95% within about 2,5 minutes.

● If a secure boot takes 10 seconds this scales up

to once in every 5 hours or so.

● But we only need one hit for this attack to work!

AA4455BB
AA554455BB
AA55554455BB
AA5555554455BB
AA555555554455BB
AA55555555554455BB
AA5555555555554455BB
AA555555555555554455BB
AA55555555555555554455BB
AA5555555555555555554455555555555555555555555555555555555555BB
AA5555555555555555555544555555555555555555555555555555555555BB
AA5555555555555555555555445555555555555555555555555555555555BB
AA5555555555555555555555554455555555555555555555555555555555BB
AA5555555555555555555555555544555555555555555555555555555555BB
AA5555555555555555555555555555445555555555555555555555555555BB
AA5555555555555555555555555555554455555555555555555555555555BB
AA5555555555555555555555555555555544555555555555555555555555BB
AA5555555555555555555555555555555555445555555555555555555555BB
AA5555555555555555555555555555555555554455555555555555555555BB
AA5555555555555555555555555555555555555544555555555555555555BB
AA55445555555555555555BB
AA554455555555555555BB
AA5544555555555555BB
AA55445555555555BB
AA554455555555BB
AA5544555555BB
AA55445555BB
AA554455BB
AA5544BB

Factoring glitched moduli
● For “normal” RSA General Number Field Sieve is currently the most efficient

● We can expect multiple smaller factors, so there is a better solution

● ECM: Lenstra’s Elliptic Curve Method

● Can find factors up to 128 bits efficiently

● We used SAGE’s implementation of ECM

Source: Cloudflare

SAGE: an open-source mathematics framework

Factorization testing method
Based on most suitable fault model of skipping a single loop iteration.

1. Generate a random RSA key, selecting a size between 512 and 4096 bits

2. Apply glitch to each unit of data in the key separately

3. Attempt factoring of all resulting moduli using ECM

○ Divide ECM threads over each core

○ Use a timeout to keep things manageable

4. Repeat many times with a freshly generated key each time

Results
● 1234 unique RSA keys were tried:

○ 339 512-bit keys

○ 319 1024-bit keys

○ 307 2048-bit keys

○ 269 4096-bit keys

● In total 146512 perturbations of these 1234 keys were attempted!

● Of those, 11150 were factored successfully within 60 seconds, or 7,6%

● But, ALL keys had at least one successfully factored perturbation

● Including every single 4096 bit key!

Factorization success rates by fault model
Please note the scale difference. Timeout used: 60 seconds.

Factorization success rate, byte Factorization success rate, word Factorization success rate, multi

Creating private keys from factorizations
● Private key:

● is easy to calculate if we know the factorization

● Usually more than two primes, different from “textbook” RSA

○ Ask me later for details if you’re interested!

● No further alterations to RSA are needed

● Also implemented this using SAGE

Leonhard Euler, Portrait by Jakob

Emanuel Handmann (1753)

Key takeaways
● We’ve shown that it’s possible to reliably modify a public key using V-FI

● Even though RSA public values don’t have to be kept secret, they should be

protected against modification!

● We can factor all keys efficiently and create a private key

● All keys, even of 4096 bit size, have at least one easily factored modification

● With careful timing, this attack can succeed in minutes

Weakening the public modulus using Voltage Fault Injection is a practical means of

attacking RSA signature verification.

Discussion / Future work
● Specialized equipment was used in our experiments

○ But this attack should also work with cheaper, open source hardware, such as a ChipWhisperer

● We had control over the target’s code, allowing easy triggering

○ For targets not under our control, Side Channel Analysis can be used to determine timings

● Signature verification was not tested on target

○ Suggest implementing

● We suggest applying this to a secure boot implementation

● Suggest looking into the effect on various signing schemes

○ PKCS#1 v1.5, RSA-PSS, RSA-OAEP, etc.

○ RSA-CRT signature generation will not work with these keys

Thank You!

Questions?
https://github.com/ivovanderelzen/GlitchRSA/

https://github.com/ivovanderelzen/GlitchRSA/

Extra bits

Odds of hitting a single byte
● If we target a single byte we can hit it about 1,7/1000 or 0,17% of the time

● We need to do 1761 tests to get a 95% chance of hitting this byte at least once

○

● With a glitch rate of 12 per second, this will take 147 seconds, about 2,5 minutes

● With a (conservative) rate of one every 10 seconds

○ 1761 * 10 / 360 = 292 minutes, or about 5 hours

Calculating Euler’s totient
● Generalized formula:

○

● Normally RSA works with two prime factors

○
○

● More than two factors

○

● Prime power factors

○ (Where p is the prime factor and k is its exponent)

● If N is prime

○

Leonhard Euler, Portrait by Jakob

Emanuel Handmann (1753)

Message Coprimality
● RSA states that the message should be coprime with the modulus

○ gcd(m, n) = 1

● Other situations also work

○ Let p, q, r be prime (power) factors of n

○ gcd(m,n) = p (a factor of n divides the message)

○ gcd(m,n) = p * q * r, etc… (product of any of the factors)

● With prime power factors, we can run into an issue

○ Let p

k

 be a prime power factor of n

○ gcd(m,n) = p

k

 decrypts correctly

○ gcd(m,n) = p

x

 where x != k, does not decrypt correctly

