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Abstract

Embedded devices can be susceptible to Voltage Fault
Injection (V-FI) attacks, which can cause data corrup-
tion. Many embedded devices also rely on RSA for their
security. For example, using a signature to verify the
image they boot from. When fault injection is used to
modify the public modulus of an RSA key, the result-
ing modulus can often be more easily factored. This
factorization can be used to compute a private key cor-
responding to the modified modulus. We study the ef-
fect of V-FI on RSA by introducing voltage glitches to
an embedded device, showing which types of faults can
be expected to occur. A fault suitable for attacking
RSA public moduli is then selected. We simulate the
selected fault in randomly-generated RSA public keys
and attempt to factor them. For every key that was
tested, at least one fault yielded a successful factoriza-
tion within only 60 seconds. Repeating the same fault
on the target is possible within minutes, allowing use of
the private key obtained from the factorization to sign
messages which will verify on the target.

1 Introduction

Embedded systems often rely on the RSA cryptosystem for
their security. For example, RSA signatures may be used
to verify the authenticity of code being executed on the
system. A common use case of this is secure boot. [1] [2] [3]
The code, or firmware image, will be hashed with some
cryptographic hash function by the author. The result-
ing hash will be encrypted using an RSA private key and
stored on the device. The device will use the correspond-
ing RSA public key to decrypt the hash, and will compare
the decrypted hash to a digest it computes from the code
it’s about to execute. While the hash comparison function
is often protected against external attacks, the RSA key
may not be as well protected while in transit from the de-
vice’s non-volatile storage to its RAM. [1] In such a case,
the RSA public key is vulnerable to attack while it’s being
copied between these two locations.

One of the ways that the RSA cryptosystem may be
attacked is by externally inducing faults in the public mod-
ulus. Corrupting a modulus changes its value, which often
makes it easier to decompose into its prime factors. With
this knowledge it becomes possible to create a valid pri-
vate key for this new modulus. This private key can then
be used to create valid signatures under the new modu-
lus. [4] [5]

Using Fault Injection (FI) attacks it is possible to in-
duce faults into the data being used by an embedded sys-
tem [6] [7]. This makes the above outlined RSA attack
feasible. However, when using FI it may be difficult to flip
arbitrarily chosen bits. Thus, we explore the limitations of
Voltage Fault Injection (V-FI) with regard to what types
of faults can be expected, and how those faults can best
be exploited when attempting to factor RSA public keys.

This paper describes a practical application of attack-
ing RSA public moduli by using V-FI on an embedded
target. We study the limitations and possibilities of faults
that can be achieved using V-FI and how those faults can
be used for weakening RSA by factoring modified public
moduli.

1.1 Outline

This paper is structured in the following manner: Section
2 outlines related work on the subject of FI and of weak-
ening RSA using FI. In Section 3 we discuss the process
used to obtain a fault model. This includes characteriz-
ing the target’s response curve to voltage glitches, and the
types of faults that can be expected. Section 4 details the
effects of weakening the public modulus of RSA, both on
factoring weakened moduli, and on key construction using
the resulting factorizations. Section 5 discusses selecting a
suitable fault model, and presents the results of factoring
glitched keys. Finally, the research is discussed in Section
6 and concluded in Section 7.

1.2 Approach

Our main research question is as follows:

• Is modifying the RSA public modulus using voltage
fault injection a practical means of weakening RSA
signature verification?

The following sub-questions have been formulated:

• Using voltage fault injection, how can an RSA pub-
lic modulus be modified in a way that is beneficial
to an attacker?

• Which types of modifications reliably yield fac-
torable moduli?

• Can we create valid private keys from these factor-
izations?

• Is it practical to apply this attack against RSA?
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To answer these questions, a target device is charac-
terized for its response to voltage glitches, and a realistic
fault model is derived from the results. This fault model
describes the possibilities and limitations of fault injection
on this target relating to the type of fault that may be ex-
pected to occur within data, such as the public modulus
of an RSA key. To study the effect of faults expressed by
this fault model in RSA public keys, faults are simulated
in randomly generated RSA keys. In this way, perturba-
tions of the RSA public keys are created. The perturbed
keys are then attempted to be factored within a practical
amount of time, in the order of minutes. If the factor-
ization of this perturbed key is completed within the pre-
set timeout, the induced fault yielded a modulus that is
factorable. For each successfully factored modulus, a pri-
vate key will be derived, which may then be used to sign
a counterfeit message. This message should successfully
verify against the perturbed modulus. If the exact same
fault is repeated on the target device, the modulus used
by the target is the same and the device should accept the
counterfeit signature. This constitutes a successful attack.

2 Related Work

This section outlines some of the work done on the sub-
ject of fault injection on embedded systems, and on the
weakening of RSA specifically.

The effects of fault injection on embedded systems per-
taining to its effects on data and control flow have been
extensively studied. Spruyt demonstrated in 2012 how to
build a fault model for an XMEGA microcontroller. [6] In
2013 Roscian et al. used a laser to induce faults in Static
RAM (SRAM) memory cells and their work shows how to
build a fault model using this primitive. [8] In the same
year Moro et al. built a fault model for a 32-bit microcon-
troller using Electromagnetic Fault Injection (EMFI). [9]
The same technique was used in 2015 by Rivière et al. to
modify the instruction cache on a ARMv7-M microproces-
sor. [10]

This section would not be complete without mention-
ing the seminal paper by Rivest, Shamir and Adleman,
which introduces the RSA cryptosystem. [11] This public-
key cryptosystem was the first of its kind to be published,
and yet it remains widely used as a fundamental building
block of systems security to this day. This illustrates the
robustness of the fundamental principles of RSA, its secu-
rity being based on the infeasibility of factoring large inte-
gers. While to date no practical attack has been demon-
strated that breaks the fundamentals of RSA, there are
many attacks that can be effective if improper care is taken
when implementing RSA. [12]

Work has been done on targeting RSA using FI specif-
ically. Already in 1996 Boneh et al. outlined a fault injec-
tion attack on RSA when the Chinese Remainder Theo-
rem (CRT) optimization was being used in the implemen-
tation. [13] This is colloquially known as the ”Bellcore”
attack. This attack allows for the recovery of the private

key. In 2002 Aumüller et al. demonstrated a practical
application of the Bellcore attack. [14]

In 2005 Seifert was the first to show that RSA can also
be weakened by inducing faults in the public modulus. [4]
His research shows how one could transform the public
modulus n of the RSA public key into a prime number n′

by inducing data faults into the public key. This makes
it trivial to compute the private exponent d′ for this n′.
In the same year, Muir improved on Seifert’s work by re-
laxing the restrictions for the candidate n′. [5] In Muir’s
work, the candidate n′ does not have to be a prime num-
ber, rather it can be a composite number that is (much)
easier to factor than the original n. In 2006 Brier et al.
showed it is also possible to recover the private elements
of the original key by inducing faults into the public mod-
ulus. [15] This further cements the need to also protect
the public elements of a key before and during their use.

Bahrengi et al. demonstrated low voltage fault injec-
tion attacks against AES, RSA and other cryptosystems in
2009 and 2010. [16] [17] In their attacks they used under-
volting to attack RSA to perform the Bellcore attack and
the ”e-th root” attack. This shows that voltage-based FI
is a viable means of attacking RSA in general, but the at-
tacks demonstrated focus on obtaining secret values (key
material). In our attack, no secret material is obtained,
rather we subvert signature verification.

Other primitives may also be used. In 2016 Razavi et
al. demonstrated a practical attack on RSA using DRAM
rowhammer to induce bit flips in public keys. Their at-
tack was shown to be successful against both OpenSSH
and GnuPG. [18] While they used rowhammer instead of
more common fault injection techniques, the effect is sim-
ilar and the method of obtaining a corresponding private
exponent d′ is the same.

At USENIX 2017 Tang et al. presented a practical at-
tack against ARM TrustZone’s usage of RSA by leverag-
ing the embedded platform’s power management features.
This attack was also used to induce faults in the public
modulus n. [19]

This is an area of active research. It is known that
there exist various ways of attacking RSA by inducing
faults, either during computation, in private values, or in
the public values. It is also known that perturbing the
public modulus of an RSA key often makes it easier to
factor. However, it remains unclear if perturbing the pub-
lic modulus while it’s being copied in memory is a practi-
cal means of attack under restrictions imposed by voltage
fault injection. This paper attempts to clarify this issue.

3 Obtaining a Fault Model

In this section we describe a method of obtaining a real-
istic fault model for our target. We induce faults into the
target using V-FI in an automated way, and study the ef-
fects on three different memory copy routines running on
a target device. By interpreting the resulting data we de-
termine the types of data corruption that can be expected
to occur in the public modulus of a given RSA key.

2



3.1 Experimental setup

The experimental setup consists of three major compo-
nents:

1. A target device running test code,

2. a device that induces voltage glitches into the device,
and

3. a PC controlling the voltage glitcher and recording
the device’s responses.

A schematic diagram of the setup is shown in Figure 1
below. The target device is a Riscure Piñata S using an
ARM Cortex-M4F processor. [20] The glitching device is
a Riscure Spider, coupled with a Glitch amplifier. [21]

Figure 1: diagram of the experimental setup

Coupled to the experimental setup is a PC oscilloscope,
used to observe signals from the target and the glitcher.
This is used to determine the length of time a section of
code takes, and to observe the effects of the glitches on
the supply voltage of the target. A photograph of the
complete setup is shown in Figure 2

Figure 2: photo of experimental setup

The items depicted in Figure 2 are the following: PC
oscilloscope (1), UART interface to PC (2), Piñata target
device (3), Glitch amplifier (4), Spider glitcher (5).

3.2 Target Code

The code running on the target device is simple, it copies
data between a source and destination buffer in memory.
These buffers represent the locations that the public mod-
ulus of an RSA key might be copied between before ver-
ifying a signature. Studying the effect of performing FI
attacks on these buffers allows us to predict the type of
fault that may be induced into a real RSA key’s public
modulus.

To study the effects of the induced faults in a controlled
way, the target needs to react in a predictable manner each
time. In addition, the data being copied and the unused
registers are prepared so that various types of faults may
be differentiated. The target is prepared in the following
way:

• A 64 byte source memory buffer is initialized with
the value 0x55.

• A destination buffer of the same size is initialized
with the value 0x44.

• Unused registers r4 through r12 are initialized with
the hexadecimal values 0x Cn Fn Bn Dn, where n is
the register number in hexadecimal (4 through C).

Usually a memory buffer is initialized with zero, making
it impossible to distinguish between zeroed data and data
that was already present in the destination buffer. Ini-
tializing the destination buffer with a different value al-
lows us to distinguish between these faults. Initializing
the registers with a known pattern allows us to differenti-
ate between data being copied from the incorrect register
and other faults. The 64 byte buffer is smaller than com-
mon RSA keys, but it is still sufficient for studying the
effects of V-FI on the copying of data. A smaller buffer is
preferable because it keeps the amount of data recorded
per test, and amount of time spent outputting this data
over UART, manageable. This is important when doing a
great many tests.

To eliminate any side-effects from the C-library’s mem-
cpy implementation, or any optimizations the compiler
may apply, the memory copy routines are coded in ARM
assembly. Three variants are implemented: byte-wise (8
bits at a time), word -wise (32 bits at a time) and multiple-
word -wise (128 bits at a time). These are implemented
using ARM’s LDRB and STRB, LDR and STR, and LDM and
STM instructions, respectively. While not exact analogs,
these implementations are a simplified form of the ARM
compiler’s memcpy() implementations. For example, the
ARM memcpy() uses the multi-word copy for buffers up
to 64 bytes. [22] The code for these loops may be found in
appendix A.

Once the copy operation has completed, the target will
send a start byte 0xAA, the contents of the destination
buffer (64 bytes), and then an end byte 0xBB out on the
UART. This data will be captured by the computer for
later analysis. Note that these start and end bytes are
not present in the registers or in the source or destination
buffer.
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Lastly, but perhaps most importantly, a GPIO out-
put pin is driven high just before the copy operation
begins, and then low again after it finishes (but before
the data is sent out over the UART). This is the trigger
signal for the Spider to know when to apply the glitch,
and to know when the copy loop finishes. If the trig-
ger signal does not fall low within a certain time limit,
the Spider will reset the target by pulling its reset line low.

Normal operation of this setup should look like the
following:

1. The device boots up and waits for a command.

2. The PC sends a command initiating the copy using
one of the three implementations.

3. The device prepares the source and destination
buffer and registers.

4. The device pulls the trigger output high.

5. The device copies the data.

6. The device pulls the trigger output low.

7. The device sends the start byte, contents of the des-
tination buffer, and end byte.

8. The PC records the result.

When a glitch is introduced in step 5, any number of dif-
ferent errors may occur. Due to the careful preparation we
are able to distinguish between the following possibilities:

• If the loop exits early, then the end of destination
buffer contains the original data 0x55...0x44.

• If the loop skips an iteration, a single unit of
data in the destination buffer is not overwritten
0x55...0x44...0x55.

• If data is zeroed, the buffer contains 0x00.

• If data is copied from an incorrect register, the buffer
contains one or more bytes like 0xCn, 0xFn, 0xBn,

0xDn.

• If a single bit has been flipped, the destination buffer
contains bytes with a hamming distance of one. For
example 0x55 → 0x15.

• If other data is present, it could mean that data was
fetched from an incorrect memory address, or that
some other error has occurred.

Other faults may occur, such as short responses, no re-
sponse, random corruption, etc. This could be because the
glitch had an effect on instructions that were not intended
to be corrupted, meaning an effect occurred outside of the
copy loop being targeted. Sending the start and end byte
not as a part of the buffer but using separate instructions
allows us to identify when instructions or data outside of
the copy loop have been corrupted.

In this manner, faults can be induced in an automated
way, their results recorded, and further processed and
studied offline.

3.3 Characterization

To arrive at a fault model, a characterization must be
made of how the target responds to voltage glitch pulses.
This characterization describes the way a target responds
to different shapes of glitch pulses, i.e. the length of time
and voltage of such pulses. Using the setup and code de-
scribed in Sections 3.1 and 3.2, the target is subjected to
many automated, repeated voltage glitches. By recording
and classifying the responses, the target is characterized.
The goal is to characterize the effects of voltage glitches
on a specific, pre-defined operation. In an attack scenario,
the glitch should only induce a fault in the copy operation,
and not when the target is processing other instructions,
which would put the target in an undefined state. There-
fore, it is undesirable to apply glitches to the device when
it is not inside the targeted copy loop. To achieve this, the
amount of time spent inside each copy loop was measured
by observing the state of the trigger line using the oscillo-
scope. Recall that the trigger line is driven high when the
copy starts, and low again when the copy is finished. Fig-
ure 3, Figure 4 and Figure 5 show the traces captured by
the oscilloscope, which show the time spent for each loop
variant. (Note that in these figures the comma is used as
a decimal separator.)

Figure 3: Timing trace of byte-wise copy loop

Figure 4: Timing trace of word-wise copy loop
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Figure 5: Timing trace of multi-word-wise copy loop

Only a single measurement is shown in these figures,
but several measurements were taken to ensure the sta-
bility of the loop timings. From the traces we derive the
approximate time spent in the copy loop. This is shown
in Table 1.

Table 1: Copy loop timing measurement

Type Time (ns)

byte 3650
word 1000
multi-word 570

The timing parameters used for glitching are selected
to apply the glitch in approximately the middle third of
each loop, attempting to avoid glitches that overrun the
copy loop, potentially causing side-effects outside of the
loop. If such an effect does occur, it can be identified when
interpreting the data and marked as unsuitable. Therefore
the timing parameters allow for small variations in loop
timing. Table 2 shows the timing intervals used.

Table 2: Interval of initial glitch timing parameters

length (ns) delay (ns)

byte 20-1000 1250-2400
word 10-340 350-680
multi-word 10-190 150-350

In the initial experiment, 691,007 tests were performed
over a period of 24 hours. In each test the glitch voltage,
length, and delay from the trigger event are chosen ran-
domly from predefined intervals. The parameters from Ta-
ble 2 provide the interval for the timing parameters used.
The voltage was varied between 0.1 and 3.6 volts in all
tests. The responses from the target were recorded and
classified based on the following criteria:

• Expected response: Glitch had no effect.

• Success: Successful glitch, the response is of cor-
rect length and includes start- and end markers, but
contains different data.

• Mute: The target did not output any data.

• Other: The target gave response that was of incor-
rect length, missing markers, or had to be reset.

Figure 6, Figure 7 and Figure 8 show the characterization
for the three copy loop variants. In these graphs, expected
responses are shown in green, mute responses are shown
in yellow, and glitched responses in red. Responses clas-
sified as ”other” are not shown. Note that the scale of the
Y-axis for each graph is different, because the timing pa-
rameters for each loop are different. Also, the glitch delay
is not shown on the graphs.

Figure 6: Characterization of byte-wise copy, 229,815 tests

Figure 7: Characterization of word-wise copy, 230,123
tests

Figure 8: Characterization of multi-word-wise copy,
231,069 tests

A further improvement in success rate can be made
by fixing a parameter. In this case the glitch voltage was
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fixed at 2.5V. The delay and length were still varied. In
this experiment 1,003,062 tests were performed over 24
hours. Figure 9, 10 and 11 show the characterization of
glitch delay versus glitch length with the voltage fixed at
2.5V.

Figure 9: Characterization of byte-wise copy, 2.5V fixed,
335,269 tests

Figure 10: Characterization of word-wise copy. 2.5V fixed,
334,029 tests

Figure 11: Characterization of multi-word-wise copy, 2.5V
fixed, 333,765 tests

A clear improvement in success rate is shown. Further
improvement is still possible, but this provides a work-
able starting point for the next experiment. It is worth
mentioning that the success rate for the multi-word copy
is much lower than the other variants. This could be ex-
plained by the fact that much of the ”bookkeeping” of the

copy such as incrementing the index registers is done in
microcode, and that the implementation is much faster.

3.4 Fault Model

The voltage, length, and delay parameters learned from
the characterization in Section 3.3 are further refined to
improve the success rate. Specifically, the glitch length is
now also fixed for all three copy loops to 112 ns for the
byte and multi-word loop, and 148 ns for the word-loop.
For the multi-word loop, the glitch voltage is again var-
ied between 2 and 2.5V. Using these parameters 3,191,236
tests were performed over 66 hours. Of these tests, 205,366
desired (red) faults were observed (or 6.43%).

Using the categorization described in Section 3.2, the
desired faults were classified and tallied in Table 3 below.

Table 3: Types of faults observed

Type Amount % of total

Early break 130,621 63.6%
Single skip 15,985 7.8%
Zeroed 4,532 2.2%
Other registers 2,957 1.5%
Flipped bits 2,103 1%
Other/mixed 49,168 23.9%

Total 205,366 100%

4 RSA with weakened moduli

RSA is an asymmetric cryptosystem which can be used to
encrypt and decrypt messages using a public-private key
pair. [11] The sender encrypts a message using the recipi-
ents public key, which consists of a public exponent e and
a public modulus n. The recipient decrypts the message
using their private key, consisting of a private exponent d
and the same public modulus n. RSA may also be used
for authentication (signing a message). In this case, the
usage of the keys is inverted, the private key will be used
to encrypt a message (usually containing a cryptographic
hash of a larger message) that can be decrypted using the
public key. In both cases the values e and n are public,
while the private exponent d is to be kept a secret by the
party using it.

For large values of n, deriving the private exponent d
in a computationally feasible manner requires the prime
factorization of n. Factoring a large integer composed of
the product of two similarly-sized primes is currently not
possible in a feasible amount of time. The security of RSA
relies on these assumptions. [11] There are different meth-
ods for obtaining the values for n, e and d. In the general
case they begin with choosing two prime integers p and q,
the product of these integers is the public modulus n, the
other values are chosen and/or derived.

However, if n can be perturbed using some means to
induce faults, then the resulting integer n′ is very likely
no longer a product of two large prime integers. Factor-

6



ing this integer n′ can therefore be expected to be much
easier. [18] Once the factors of n′ are known, a private key
d′ may be derived from it, which can then be used to sign
messages that will verify against the key e, n′.

4.1 Factoring weakened moduli

When the public modulus is perturbed one of the follow-
ing situations may occur where the modulus becomes the
product of:

• Two other similarly-sized prime integers.

• Two other prime integers, one of which is small.

• More than two prime integers.

• Prime integers and prime powers.

• Or n′ may become prime.

In all but the first case, factoring n′ is expected to be much
more feasible than n. In the case that n′ is prime, factoring
is trivial, requiring only a (probabilistic) primality test. In
the case that n′ is composed of two or more prime inte-
gers, the success of factoring is dependent on the size of
their prime factors and the factoring method used. In the
general case of RSA the most efficient current method to
factor n into its prime factors is by using General Numeric
Field Sieve (GNFS). However, this algorithm is not de-
pendent on the size of the prime factors of n, making it
inefficient when n is not composed of similarly-sized fac-
tors. [23] Since we can reasonably expect several smaller
factors, more efficient algorithms exist, such as Pollard’s
ρ method for factors up to 60 bits, and Lenstra’s Elliptic-
Curve Method (ECM) for factors up to 128 bits. [24] [25].
Razavi et al. have successfully used ECM in a similar ap-
plication. [18] Based on their success we chose the same
algorithm. Factoring a composite integer n′ with ECM
can be done as follows:

1. Find a possible factor of n′ using ECM.

2. Divide n′ by this factor.

3. Perform a probabilistic primality test (such as
Miller-Rabin [26]) on the result.

4. If the result is a composite number, repeat step 1
with step 2’s output. If it is prime, n′ is factored.

Note that in very rare cases the primality test may in-
correctly identify a composite as a prime, this is called
a pseudoprime. For our application this does not matter,
because such numbers will still work correctly within RSA.

4.2 Key Generation

The key generation algorithm for RSA starts with choos-
ing two prime integers p and q. These integers should be
about equal in size, chosen at random and large enough to
yield a number that is not easily factored. Next, the values
for the public and private exponents e and d should be cho-
sen and/or computed. The method described by Rivest et
al. chooses an integer d such that it is relatively prime to
Euler’s totient φ of n, and e such that e ·d ≡ 1 mod φ(n).
In modern day usage, e is often chosen beforehand and
d is then computed to fulfill the same restriction. When
e is chosen beforehand often a Fermat prime1 is used to
provide an optimization for exponentiation calculations.
Certain choices of e can also weaken RSA and are best
avoided. [12] In our attack, the value of e is not modified,
in which case d′ needs to be derived from n′ and e.

Thus, the algorithm for obtaining the values n, e, d is
as follows:

1. Compute the public modulus as the product of 2
prime integers:

n = p · q (1)

2. Compute Euler’s totient of n:

φ(n) = (p− 1) · (q − 1) (2)

3. Choose the public exponent e such that e is rela-
tively prime with φ(n), meaning that e satisfies the
following equation:2

gcd(e, φ(n)) = 1 (3)

4. Compute the private exponent d to be the multi-
plicative modular inverse of e mod φ(n)

d ≡ e−1 mod φ(n) (4)

4.3 Key generation with perturbed keys

While RSA usually works with two large, similarly sized
prime integers, it will work with any number of prime fac-
tors for n. (Provided the message is relatively prime to
the modulus.) As described in section 4, in most cases
the prime factorization of n′ will result in more than two
prime factors. In this case, the algorithm for computa-
tion of d′ from the prime factors of n′ described in section
4.2 requires a modification in step 2. For this we consider
three cases:

1. If n′ is prime:

φ(n′) = n′ − 1 (5)

2. If n′ is composed of more than two prime factors:

φ(n′) = (p1 − 1) · (p2 − 1) . . . (pr − 1) (6)

For all factors p1 . . . pr in n′.

1Known Fermat primes are of the form 22
n
+ 1 where 0 ≤ n < 5)

2gcd being the greatest common divisor, using Euclid’s algorithm
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3. If n′ includes prime power factors:

φ(n′) = pk1−1
1 · (p1 − 1) . . . pkr−1

r · (pr − 1) (7)

For all such prime power factors p1 . . . pr in n′ where
k > 1.

If the factorization of n′ contains both prime power factors
(k > 1) and prime factors (k = 1), then the relevant for-
mulas 6 and 7 are applied to each factor and their product
is taken. Meaning, we take the totient of each factor and
multiply them together to obtain φ(n′). The rest of the
steps in the algorithm to calculate d′ are the same. One
special case should also be mentioned where n′ is not rel-
atively prime to e. Because in our case e is fixed, another
modulus should then be selected.

4.4 Note on prime power factors

If the factorization of n′ results in prime power factors,
there is an effect on the usability of the resulting key.
RSA is only guaranteed to work for every message m that
is relatively prime to n. [11] If the perturbed modulus n′

is composed of one or more prime power factors (pk), the
success of a correct decryption is dependent on the divisors
of the message. A relationship exists between the divisors
of m and n′:

Let pk be a prime power factor of n′, where k is the
multiplicity of p in n′ and k > 1 :

• If gcd(m,n′) = 1, m will decrypt properly.

• If gcd(m,n′) = pk, m will decrypt properly.

• If gcd(m,n′) = px, where 1 <= x < k, decryption
will fail.

• If gcd(m,n′) = pk1
1 · p

k2
2 . . . · pkr

r , etc, meaning the
product of any of the full factors, m will decrypt
properly.

4.5 Implementation

The approach outlined in section 4.1 was implemented in
a tool. The tool takes as input a public modulus n, a
fault model to simulate, and a list of byte offsets to apply
the fault to. The fault is applied to each chosen offset in
the modulus, creating a unique modulus n′ for each sim-
ulated fault. It is then attempted to factor the resulting
moduli using ECM. As it is not known beforehand what
amount of time a full factorization might take, a time limit
was implemented. When the timeout is reached, any in-
complete factoring attempts will be halted and its results
discarded. If a successful factorization has been obtained,
the tool calculates the corresponding private key as de-
scribed in section 4.2, which may later be used for signing
messages.

The tool was implemented using SAGE, a Python-
based free and open-source mathematics system. [27] The

underlying implementation of ECM uses gmp-ecm.3 At
the time of writing no multi-threaded implementations of
ECM are known to the author, therefore it was decided to
spawn one instance of ECM per available core to support
multiprocessing. The total amount of time a given run
takes is therefore dependent on the number of cores made
available to the tool, and the number of faults to apply.
The formula for calculating the worst-case total run time
is as follows:

D =
G× T
C

(8)

Where total duration D is equal to the number of glitched
moduli G times timeout T over number of available cores
C. For example; attempting to factor all single-byte
glitches for a 4096-bit modulus on a 16-core machine with
a timeout of 60 seconds takes at most 1920 seconds, or 32
minutes.

512× 60

16
= 1920

Given C available cores, changing the timeout allows for
varying the total run time to suit a particular use-case.

The source code of this tool has been made available
on GitHub4.

5 Applying glitches to RSA keys

This section discusses selecting a suitable fault model and
applying it to randomly generated RSA keys.

5.1 Selecting a Fault Model

To select the most suitable fault model for modifying RSA
public moduli, the selected fault should be common, re-
peatable and predictable.

Early Break. As shown in section 3.4 the most common
fault model with 63.6% is the early break scenario, where
a copy loop exits early and leaves the last n bytes of the
buffer untouched. In our experiments 0x44 was used to
distinguish between exiting a loop early and having bytes
set to 0x00. However, when initializing a memory buffer
it is common to fill it with zeroes (using calloc() or mem-
set() for example), so we assume this to be the case in
our experiments. When an integer has its last byte set to
0x00, it will add 28 as a factor. When the last 2 bytes are
set to 0x0000, it will add 216 and so on. As discussed in
section 4.4, these are not ideal because not every message
will decrypt correctly when a factorization includes prime
power factors.

Skip loop iteration. The next most common fault with
7.8% is skipping a loop iteration. This fault has a pre-
dictable effect where a single unit of data in the destina-
tion buffer is not copied over. The fault where a single

3http://ecm.gforge.inria.fr/
4https://github.com/ivovanderelzen/GlitchRSA/
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byte or word is zeroed can be grouped in this category be-
cause it has the same effect on the data if the destination
buffer was zero-initialized.

Other faults. The other fault models are less suitable
because they are less common and/or not as predictable.
Register contents can be useful only if the contents of the
registers is known and predictable. In our experiments the
unused registers were set to known values, but this is not
the case on a real-world target. Memory content faults are
only useful when memory contents are known and stable.
Single bit flips might be suitable but they are almost 8
times less common than iteration skips with 1% of the to-
tal. Mixed faults where multiple fault types occur at the
same time are also not predictable.

Repeatability of single byte skip. In a separate ex-
periment, it was attempted to target a single loop iter-
ation of the byte-wise copy loop. In this experiment,
1,160,778 tests were performed. Of these, in 1946 tests
the chosen loop iteration was skipped, or approximately
1.7 in a 1000. We calculate the number of test needed
to have a 95% chance of hitting the targeted byte thusly:
ln(1−0.95)

ln(1−0.0017) = 1760.7. Rounding this up it means that

1761 tests need to be taken to reach a 95% probability
of hitting the desired loop iteration. With the observed
glitch rate of 12 per second, this will take 147 seconds,
or approximately 2.5 minutes. Using a more conservative
glitch rate of one per 10 seconds, the time needed is ap-
proximately 292 minutes, or under 5 hours. This means
that such a targeted single loop iteration skip is feasible.

Selected fault The fault model ”skip loop iteration” is
the most-common fault model which is not guaranteed to
result in prime power factors, and it can be precisely tar-
geted. Therefore it has been selected as a fault model to
use for factorization testing.

5.2 Factorization testing.

Based on the fault model selected in section 5.1, randomly
generated RSA keys had a simulated fault applied and a
factorization was attempted using the tool described in
section 4.5. Each time a test was run, a keysize was ran-
domly chosen from 512, 1024, 2048 and 4096 bits and a
key of that size was generated using OpenSSL. For each
generated key, a fault model was randomly chosen from
zeroing out a single byte, a single word (4 bytes) and a
multi-word (4 words). This fault was then applied to each
unit of data inside the modulus, yielding multiple moduli
per key. Each of those resulting moduli were then at-
tempted to be factored within a time limit of 60 seconds.
The time limit was based on the success of similar work
using the same timeout by Razavi et al. [18] The num-
ber of perturbed moduli per key that are attempted to
factor is dependent on the key size and fault model. For
example, a 512 bit key with single-byte fault model will
produce 512/8 = 64 different moduli. A 4096-bit key with

the same test will produce 4096/8 = 512 moduli. Using
multi-word, the same key size will produce 4096/128 = 32
moduli. In this way, from 1234 unique randomly gen-
erated RSA keys, 146,512 unique perturbations of those
keys were tested. When a modulus is factored within 60
seconds, it is considered a successful factorization. The
number of successful and unsuccessful factoring attempts
were recorded. The breakdown of key sizes by fault models
tested are shown in Table 4.

Table 4: Number of keys tested per fault model

Fault
Size

512 1024 2048 4096 Total

Byte 127 134 132 115 508
Word 124 111 109 95 439
Multi-Word 88 74 66 59 287

Total 339 319 307 269 1,234

Figure 12, Figure 13 and Figure 14 show a box plot of
the average number of successes per key by key size, mean-
ing how many perturbed moduli were factored within 60
seconds for any given key.

Figure 12: Factoring success rate for single-byte fault
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Figure 13: Factoring success rate for single-word fault

Figure 14: Factoring success rate for multi-word-fault

It is worth noting that while only 11,150 of 146,512 dif-
ferent moduli, or 7.6% were successfully factored within 60
seconds, all of the attempted keys had at least one suc-
cessful factorization. This means that even with a timeout
of only 60 seconds, there is a high probability for finding
at least one successful factorization. Depending on the
fault model used, it is very likely that several modulus
perturbations will result in successful factorizations.

6 Discussion

This research shows that with a limited investment
in time and resources, RSA keys can be perturbed

on an embedded device using V-FI and the re-
sulting moduli factored. However, several limita-
tions apply, which will be discussed in this section.

To perform the glitching experiments we used propri-
etary hardware and software, described in Section 3.1.
However, this attack should also be possible with cheaper,
open source hardware, such as a ChipWhisperer5. Using
such hardware will lower the initial financial investment
needed for doing V-FI research. Also, the target device
used in this research is a commercially available training
target prepared to facilitate FI attacks. (Power supply fil-
tering removed, easy access to signals, etc.) Other target
devices could also be used, although they will have to be
prepared in a similar way to the target device used in this
research.

In Section 3.3 it is demonstrated that data can be mod-
ified while it is being copied from one location in memory
to another by inducing a fault by means of V-FI. This re-
search is based on the assumption that the public modulus
of an RSA key is at some point copied between memory
locations before use. If the modulus is not copied before
use, this attack will not be successful. However, at some
point the public key data will have to be loaded from non-
volatile memory. In such a case this operation could be
attacked. Other cases may exist such as a PEM-encoded
public key first being base 64 decoded and then ASN.1
decoded before the values are used. In such a case this
process could be attacked.

The ARM assembly code used for copying data be-
tween the memory buffers are simplified versions of as-
sembly code that might be emitted by a C compiler when
compiling a memcpy() function. Due to time constraints,
it was not possible to verify the results against an im-
plementation of RSA signature verification on the target
device. The actual implementation of RSA and the han-
dling of public key material may differ between crypto-
graphic libraries. In some cases a custom implementation
of memcpy() might be used, or there might not be a single
function copying the data. Given a target’s sensitivity to
V-FI, it should still be possible to induce faults into the
data being copied, but a fault model should be obtained
for each implementation.

In Section 3.4 we show what types of data faults can
be achieved, and describe them in a fault model. When
obtaining this fault model, the target was entirely under
our control. This allows for easily setting triggers around
targeted code. It also gives insight into all of the code
running on the target and how it may affect the desired
glitch. With real-world targets, one doesn’t always have
this luxury. Other methods of determining timing parame-
ters exist, either by observing the target’s outputs directly,
or by techniques such as Side-Channel Analysis (SCA).

In the fault model it is assumed that the destination
buffer is initialized to zero before use. This is a common
practice but it may not be true in all cases. When a buffer
is not initialized with zero, the contents may be different.

5http://newae.com/tools/chipwhisperer/
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In such a case the same attack can be performed, but the
contents of the destination buffer before copying need to
be known.

Evaluating the usefulness of the fault models in Sec-
tion 5.1, we find that the most beneficial modification an
attacker can make to an RSA public modulus is caused
by skipping a single iteration of a copy loop. This fault
model provided flexibility in type and location of the fault.
Given a more restricted fault model, can similar success be
achieved? As shown in Figure 14, in the most restricted
fault model case tested, using multi-word zeroing using
4096 bit keys the mean success rate was one successful
factorization out of 32 attempts per key. However, given
a mean factoring success rate of 14 out of 512 for the single
byte fault (as shown in Figure 12) the success rate is ap-
proximately 1 in 36.5, which is similar. More factorization
testing and statistical evaluation of the results are needed
to conclusively answer this question.

Section 4.1 describes that when a modified modulus
is factored, it is not likely to be a product of two large
prime integers. In some cases, the factorization will con-
tain prime power factors. When this is the case, the result-
ing key will not work for all messages, this is detailed in
Section 4.4. In such a case a different factorization should
be selected, or if that is not possible, the message may be
modified to fit the key, for example by appending data.

6.1 Mitigations

Even though it is generally assumed that an RSA pub-
lic key does not have to be kept secret, it should still
be protected against FI attacks. Generic countermea-
sures against FI apply, which includes hardware counter-
measures and software countermeasures. Hardware coun-
termeasures can include physical tamper-proofing, addi-
tional power supply filtering, local chip capacitance, volt-
age drop-out detection, storing sensitive data in special ar-
eas of memory, and others. Hardware countermeasures are
discussed by Bar-El et al. [28] Software countermeasures
against FI also exist, perhaps most importantly double-
and triple-checking sensitive data before use. An overview
of software countermeasures against FI is provided by Wit-
teman. [29]

7 Conclusion

We have examined the effects of Voltage Fault Injection on
the security of RSA public key verification, and evaluated
the practicality of this attack.

When data is being copied between memory locations
on a target embedded device, faults can be induced into
this operation using Voltage Fault Injection. This is
demonstrated in Section 3. In Section 4 we show that
if the data being copied holds the public modulus of an
RSA key, the modulus will be modified and thereby its
security weakened.

For a fault to be of benefit to the attacker, it should be
both predictable and repeatable. One such fault is caus-

ing a copy loop to skip a single iteration, resulting in a
single unit of data having the original buffer contents. In
Section 5.1 we show that this fault can be reproduced in
a targeted way, within minutes.

Using a fault model of zeroing a single unit of data,
some modified RSA public moduli can be easily factored.
In Section 5.2 we show that we successfully obtain factor-
izations of all keys attempted, using a timeout of only 60
seconds.

Slightly adapting the RSA key generation algorithm,
private keys can be constructed that correspond to the
modified public modulus. If a target holds the same mod-
ulus in memory as a result of V-FI, messages signed using
this key will verify correctly.

Given that using Voltage Fault Injection a desirable
fault can be introduced into an RSA public modulus at a
precise location and within a reasonable amount of time,
and given that at least one perturbed modulus of each key
can be factored within 60 seconds, we find that modify-
ing the RSA public modulus using voltage fault injection
is indeed a practical means of weakening RSA signature
verification.

8 Future Work

Use open-source hardware. To lower the financial in-
vestment required to perform this attack, it is suggested to
attempt reproducing the V-FI part of this research using
open-source glitching hardware and software.

Study effect of multi-prime RSA on signature
schemes. Various RSA signature schemes exist. We
suggest looking into the effect on various signing schemes
PKCS#1 v1.5, RSA-PSS, RSA-OAEP, etc. In any case,
standard RSA-CRT signature calculation will not work,
because it uses coefficients based on two prime factors.

Implement signature verification on target. A
next step in this research is to implement RSA signature
verification on the target, and to attempt to verify a coun-
terfeit signature using the attack described in this paper.

Attack a real-world secure boot implementation.
Applying this attack against one or more secure boot im-
plementations will provide valuable insight on the impact
of this attack.

Factoring testing. More varied fault models and longer
timeouts could be tested to evaluate the feasibility of fac-
toring under different conditions.
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Appendices

A Copy Loop Assembly Listings

In all variants r2 points to the source buffer, and r3 points
to the destination buffer.

A.1 Byte-Wise LDRB Version

mov r0, #0

loop8:

ldrb r1, [r2]

strb r1, [r3]

add r2, r2, #1

add r3, r3, #1

add r0, r0, #1

cmp r0, #64

bne loop8

A.2 Word-Wise LDR Version

mov r0, #0

loop32:

ldr r1, [r2]

str r1, [r3]

add r2, r2, #4

add r3, r3, #4

add r0, r0, #4

cmp r0, #64

bne loop32

A.3 Multiple-Word LDM Version

mov r0, #0

loopm:

ldm r2!, {r9, r10, r11, r12}

stm r3!, {r9, r10, r11, r12}

add r0, r0, #16

cmp r0, #64

bne loopm

Note that the index registers in the LDM/STM variant are
not explicitly increased, because the assembly instructions
already provide this functionality.
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