
WhatsApp End-to-End Encryption:

Are Our Messages Private?

Research project by students of the SnE masters programme

Tom Carpay and Pavlos Lontorfos
Supervisors: Ruben De Vries and Soufiane el Aissaoui

February 5, 2019

As privacy becomes more important, so does private and secure communication.
In this research we look at the End-to-End encryption of WhatsApp. Since the
End-to-End encryption of WhatsApp is based on the Signal protocol, we ana-
lyze the implementation WhatsApp has chosen for its application. Fortified by
a formal proof of its End-to-End encryption and security, we assume the Signal
protocol to be secure and to be implemented correctly in the Signal applica-
tion. We give a detailed description of the End-to-End algorithms used by the
Signal protocol and design a set of experiments to compare traffic from both
applications, attempt to decrypt this traffic, and formally analyze distinguishing
features of WhatsApp.
The results from these experiments prove that the WhatsApp implementation of
the Signal protocol diverges from the Signal application implementation. We be-
lieve this divergence is significant enough to invoke further research into What-
sApp.

1



1 Introduction
Facebook, the company that owns WhatsApp, has recently come under fire for
a series of privacy exposure accusations [1] [2] [3]. In the acquisition of What-
sApp, Facebook promised that WhatsApp and Facebook would not share data.
This promise is further bolstered by the switch to End-to-End encrypted com-
munication by WhatsApp in 2016 [4]. Facebook still claims that it holds to this
promise, but at this time there exists no scientific research verifying this claim.

In February 2016, WhatsApp has reported a billion active users, and peaked at
1.5 billion monthly active users in 2018 [5]. There have been multiple reports
of WhatsApp being used by businesses, for example secure communications in
medical teams [6] [7]. Given such a large and active community, a breach in
either privacy or security of the WhatsApp message exchange protocol is likely
to cause a major impact on day to day communication for both consumers and
businesses.

Since 2016, WhatsApp has implemented the Signal protocol in order to guaran-
tee End-to-End encryption for message exchange and forward secrecy. Signal is
a communication protocol developed by Open Whisper Systems. The protocol
was developed for the Signal application, which is their own chat application.
WhatsApp reports that they use the Signal protocol as basis for the End-to-End
encrypted communication in the app and discusses this in a published white pa-
per [8]. This integration was also reported by Signal/Open Whisper Systems
[9].
While the basis of End-to-End encrypted communication is the same for both
WhatsApp and the Signal application, there exist deviations in the implementa-
tions between the two applications. These deviations will be discussed in depth
in section 3. Since modifying a secure algorithm could decrease the strength
of the security or even make the algorithm insecure, we aim to find the depth
of the implementation deviations. We reason that communication can not be
End-to-End encrypted if it is not secure.
Since WhatsApp switched protocol implementation, there have been several
reports of attacks on the WhatsApp communication implementation [10] [11].
These reports give basis to further security research of WhatsApp.

The main question for this research will be: Is user-to-user message exchange
via WhatsApp End-to-End encrypted?
To answer our main question, we firstly need to answer the following sub-
questions:

1. What are the algorithms used to create the Signal protocol?

2. To what extent are WhatsApp messages adhering to the Signal protocol
specifications?

3. What are the differences between Signal and WhatsApp network traffic?

We approach this research with both a theoretical approach and a set of exper-
iments, from which we can deduce the change in protocol, and ultimately, the
End-to-End encryption.

2



The outline of this research is as follows: In section 2 we discus relevant re-
search and in section3 we will provide a theoretical background of the algorithms
that the Signal protocol is based on. Section 4 describes our assumptions, the
blocking/non-blocking behavior, and the tools used. The different experiments
done are described in section 5 and the results are discussed in section 6. Section
7 and section 9 provide insight into the research and the results and possible
improvements, respectively. Finally, concluding remarks are given in 8.

2 Literature review
In 2016, Marlinspike and Perrin described the End-to-End encryption algo-
rithms for the Signal protocol in two papers [12] [13], which both are discussed
in section 3. The Extended Triple Diffie-Hellman describes a method for two
parties to create common secret with the help of a third party key storage server.
The Double Ratchet algorithm describes a method of End-to-End encrypted
communication with the property of forward secrecy. Both these papers are the
formal basis of our understanding of both the Signal protocol and application,
and the WhatsApp application.
Cohn-Gordon et al. did extensive research into the implementation of Signal
protocol [14] in 2017. In this research a formal proof is given for the security
in communication of the Signal protocol, if implemented correctly. We use the
results of this paper as the premise of the comparison of WhatsApp and Signal,
and to make conclusions about our performed experiments.

In the published white paper WhatsApp reports to have used the Signal proto-
col as a basis for the End-to-End encryption for the application [8]. The white
paper discusses the implementation for WhatsApp only, not the changes that
were made from the Signal protocol base. This white paper is the main source
of information used regarding the protocol used by WhatsApp for this research.

From the research done by Dai et al. [15], we learn that, while decompiling
WhatsApp source is possible, the decompiled code is heavily obfuscated. While
it could contribute, during this research we will not look at source code, decom-
piled or not, of both WhatsApp or the Signal application. The reasoning here
is that due to the nature of this research project, we have a limited time frame,
which we feel could be used more beneficially by looking at both a theoretical
background and practical experiments.

3 Background
The theoretical foundation is heavily reliant on the work done by Cohn-Gordon
et al.[14] and specifications given by Open Whisper Systems [12][13]. As dis-
cussed by Cohn-Gordon et al., the main improvement over other messaging
protocols is the use of Extended Triple Diffie-Hellman, or X3DH, and the Dou-
ble Ratchet system. Both are explained below.

3.1 Signal protocol

Extended Triple Diffie-Hellman
Open Whisper Systems specifies a key agreement protocol, where the system on

3



the other side can be offline [12], called Extended Triple Diffie-Hellman (X3DH).
The basis of this protocol is to create a shared secret between two parties,
where either party may not be available to send keys for a classic Diffie-Hellman
exchange. This availability problem is solved by storing pre-created keys with
a trusted third party, which in this case is a an authenticated key-exchange
(AKE) server.
Every potential receiver, here called B, is required to publish three different keys
to the AKE server. These keys consist of:

• an identity key

• a signed prekey

• a batch of ephemeral one-time prekeys

The identity key is generated at application install, device specific, and is never
changed. The signed prekey is generated at install and changed periodically.
The server should always have a sufficient amount of ephemeral one-time prekeys
from B and replenish if necessary, and these should be destroyed every time a
new sender, here called A, requests one.
The beginning of a session, a long term message exchange between two par-
ticipants, and further messages exchange starts as follows. A requests the set
of keys belonging to B and uses these keys to calculate a master secret. The
master secret is derived from three different Diffie-Hellman calculations, using
a combination of the keys belonging to B, and the identity key and an one-time
ephemeral key of A. The combination of the three Diffie-Hellman calculation
outcomes is defined as the master secret. As soon as A calculates and sends the
keys, A deletes the both the one-time ephemeral key from both itself and B one
to ensure forward secrecy.
To complete the session setup with B, A sends a message containing his own
identity key, the ephemeral key he used, identifiers which of B’s prekeys the
sender used, and an initial message encrypted with the master secret. Upon re-
ceiving, B then uses A’s keys to do the X3DH calculations and find the master
secret key.

Double Ratchet
Once the session setup is complete, A and B have a common master secret, from
which they both derive three keys, which are explained below:

• a root key

• a receiving chain key

• a sending chain key

Open Whisper Systems introduced a novel method of encrypted communication
based on a shared secret: The Double Ratchet algorithm [13]. They state the
algorithm offers resilience against adversaries, forward security, and break-in
recovery. One of the bases of the algorithm lies in the Key derivation function
(KDF) chains. Open Whisper Systems defines this as a function used in cryp-
tography as that takes a KDF key and input data, and returns output data,
which is used to generate another KDF key and an output key. From the first
message on, every message that is sent, from either A to B, or B to A, contains

4



Figure 1: An illustration of a double ratchet system [16]. Here the root
key is the shared same for both A and B, the creator of a private-public
key pair is alternated, and the receiving and sending chain are mirrored
for A and B.

a public key. This public key from the opposite side is used in combination with
the previous self-generated private key, for a Diffie-Hellman derivation to find a
common secret. This common secret is then used in combination with the root
key in the KDF function to calculate a sending chain key.
Simultaneously, the same public key from the opposite side is used with the pri-
vate key, from a new self-generated private-public key pair, for a Diffie-Hellman
derivation to find a common secret. This common secret is then used together
with the root key in the KDF function to calculate a receiving chain key. The
sending chain key is calculated before the receiving chain key. The use of a new
key and a previous key is referred to as a ”single ratchet”.
In the double ratchet algorithm, every new chain key is used together with the
previous chain key in the KDF function to find the encryption or decryption
key, respectively. This is done at both sides where the sending and receiving
chain keys are mirrored, so A can encrypt a message with the sending chain
key and B can decrypt it with the receiving chain key. A representation of the
double ratchet algorithm can be found in figure 1.

The Signal protocol combines the X3DH and double ratchet algorithm to ensure
end to end encrypted communication between A and B.

3.2 WhatsApp protocol/implementation

From the WhatsApp white paper [8], we learn about the End-to-End security
implementation of WhatsApp. As discussed in section 2, the white paper mainly

5



discusses the implementation and the specific encryption algorithms used, which
is not discussed in either of the Signal algorithms. The Signal terminology is
changed, as the receiving chain and sending change are not name explicitly for
example. Although the terminology changes from Signals’, we conclude that
according to the specifications of the white paper the session setup and message
exchange is the same as in the Signal protocol.

In both WhatsApp and Signal, a new identity key is created during the installa-
tion of the application. This identity key is bound to the phone number, which
is verified by the application. Since the phone number is verified, WhatsApp
can be only activated on one phone at a given time.

3.3 Blocking/Non-blocking behavior

Signal and WhatsApp follow a different approach in the way they handle the
changes of a users device.
Signal implements a blocking mechanism, which means that when a receivers’
identity key changes, received messages cannot be decrypted anymore: the com-
munication is blocked. As a result from the blocking, all messages that have
been sent but have not arrived (pending) are lost and not sent again without
user interaction. When the sender broadcasts a new identity key, a new session
is established with the new keys and the communication is continued.
WhatsApp implements a non-blocking mechanism. When receivers’ identity
key changes, the server stores the messages pending instead of deleting them.
When the receiver broadcasts his new identity key, the server sends the pending
messages back to the sender for re-encryption with receivers’ new identity key.
Then, the messages are sent again, without user interaction, to the receiver who
is able to decrypt and read them.
The Non-blocking mechanism creates a window for possible man-in-the-middle
attacks. Suppose that Alice sends a message to Bob while he is offline. Then,
Eve registers Bob’s phone number with the WhatsApp server (by exploiting
vulnerabilities of the mobile network [17], a voicemail attack [11], or by having
authorized access to the servers like WhatsApp itself). Alice’s WhatsApp client
will now automatically, without user interaction, re-encrypt the messages with
the attackers key and send it to Eve, who receives it. Only after the act, Alice
will get a notification that the encryption keys have changed, if Alice has en-
abled the notification option, which is disabled by default. WhatsApp justifies
this behaviour with two main arguments. Firstly, considering the size of the
user space, they chose a simpler user experience than secure implementation.
Additionally, they claim that implementation of a blocking mechanism, like in
Signal, could expose more information to the server about who has enabled
safety number change notifications and who hasn’t, effectively telling the server
who it could attack transparently with a MITM attack and who it could not
[18]. If safety number notification was enabled by default, this leak of informa-
tion could be avoided. Our Non-blocking experiments which are described in
section 5, focus on this behaviour.

6



4 Methods
For the purpose of this research we assume that the Signal protocol is secure
and end-to-end encrypted. This assumption is fortified by the formal approach
by Cohn-Gordon et al. [14]. We also assume that the Signal app uses the Sig-
nal protocol and the implementation follows the specifications of the protocol.
While the latter assumption could be seen as obvious, though at this time there
exists no formal proof of this statement.

The WhatsApp environment is a black box in the sense that the implemented
code, on both client and server side, is proprietary. Even if the client side code is
decompiled, it is obfuscated. In addition, the server side of the communication
is inaccessible from us. We will therefore look at experiments from which we
can deduce the communication implementation of WhatsApp.
Although the theoretical background shows no difference in implementation
between Signal and WhatsApp, as mentioned in section 3, there are known de-
viations in the implementation of the Signal protocol in WhatsApp, such as
non-blocking behavior which is further described below. With the performed
experiments we examine the extent of the deviation from the Signal protocol.

Metadata
One more difference we found between the two protocols is in the way they
handle the metadata. WhatsApp keeps track and stores most of the metadata
acquired by their users. Specifically, they store profile photos, group informa-
tion, IP addresses, call date and duration, and address book [19]. This informa-
tion, if leaked, is enough to build a complete profile about someone. If someone
placed a phone call from the top of the Golden Gate bridge, while stationary, to
a suicide hot-line, the one who intercepts the metadata would not need to hear
the conversation to draw conclusions about its contents [20].
Signal claims that, by design, it does not store any of the personal data that
could be derived from the metadata, like conversation lists, group memberships,
group titles, and time and duration of calls etc. In addition, since October 2018
Open Whisper Systems announced that they developed methods in order to
further hide information from the metadata, by encrypting them with the main
message, like the sender of the message. They call this technology ”Sealed
sender” and is already implemented in the application [21].

Hardware and Software Used
For all our experiments we used the latest version available for both messaging
applications. At the time of writing, WhatsApps’ latest version is 2.18.380 and
for Signal the latest version is 4.32.8, and both applications require any Android
4.0 version or above.
We also used four different android devices for our experiments:

• Oneplus 3 smartphone

• LG smartphone

• Nexus 5X smartphone

• Nexus tablet

For capturing the traffic we used a Dell Laptop with Linux Mint OS and we

7



captured the traffic using Wireshark.

5 Experiments
In this section, there is a detailed description of all the experiments that will be
executed during the research. These experiments will help us enrich our knowl-
edge about the implementation of WhatsApp messaging application. Two of
those experiments are focused on the protocol analysis of Signal and WhatsApp
and the rest of the experiments focus on the way the WhatsApp server handles
the undelivered messages.

Traffic Comparison experiment
The Traffic Comparison experiment will reveal the extent of similarity between
the two message exchange implementations. If the results from this experiment
show the traffic to be similar, we can deduce the implementations must be sim-
ilar as well. However, if the results prove to be dissimilar we can deduce that
the protocol is implemented differently for both applications, and could there-
fore be insecure or not End-to-End encrypted. In this experiment we compare
the network traffic of both applications. We divert all WhatsApp and Signal
traffic through a computer, which acts as a Wi-Fi hotspot, and then, capture
all traffic using Wireshark. We analyze how each application connects to the
server, how it exchanges a message, and how the traffic differentiates between
the two implementations. For each iteration of this experiment, we follow the
same procedure. We start the application, we send a message through the ap-
plication, WhatsApp or Signal, and then exit the application. During this time
we capture all the packets exchanged between the phone and the server via a
WiFi hotspot, where we drop the irrelevant ones such as random android traffic
produced at this time for example, and we analyze the ones produced by our
application. We define such a collection of traffic as a conversation.
The criteria which we evaluate are mainly the pattern of the conversations and
the pattern of protocols used by the applications on a message to message basis.
The pattern of conversations entails the amount of times one side of the commu-
nication sends a message before it receives one, and the size of these messages.
The pattern of protocols used entails an arrangement in which of the messages
in the conversation are encrypted and which messages are not.
To make the criteria intuitively visible, we create an image of the ”conversation”
of each packet stream. These images contain information about the sender of
every message and the size of each message.

Packet Decryption Experiment
With the Packet Decryption experiment we capture all the traffic packets ex-
changed by the two applications, decrypt them and analyze the data and meta-
data that a server has access to. To achieve this, we simulate a man in the
middle attack to both protocols using Burp Suite. Specifically, we set up a
proxy sever to a laptop and all the traffic of WhatsApp and Signal applications
is diverted to this server. In addition the android device has to be rooted in
order to install a certificate signed by Burp as a trusted certificate. Next, we
use the Xpossed android application with the sslUnpinning2 module in order
to disable the certificate pinning of the applications and make them trust our

8



server as it was the original communication server.

Basic Blocking experiment
The Basic Blocking experiment verifies the WhatsApp non-blocking behavior
and serves as a baseline for the following variations of this experiment. The
setup for this experiment, as shown in 2, entails three phones with WhatsApp
installed: A, B, and C. Phones A and B establish a session between them by
exchanging at least one message with each other. Then, we deactivate phone B
and send a message to B from Phone A. As described in section 3 this establishes
a session between the two phones. We migrate the SIM card from phone B to
phone C with a fresh installation of WhatsApp, which means a new identity
key is generated, and we verify the number. The phone C will then receive the
pending message that was originally encrypted with B’s public key. Phone A
will not get any notification that the receivers’ identity key has changed.

Figure 2: The setup describing the order of events for the Basic block
experiment.

Sender Offline Blocking experiment
In the Sender Offline Blocking experiment our goal is to find out if the re-
encryption actually happens at senders’ phone A or if it happens at the What-
sApp server. A similar set-up as the Basic Blocking experiment will be used,
though now, before the SIM card gets migrated we will deactivate the phone
A which is the senders’ phone. Then, phone C will get back online and the
phone number will be verified. The whole setup is shown in 3. If this message
is successfully delivered, we can derive that the phone A is not needed for re-
encryption of our message and that the re-encryption happens on server-side.
As a result, we prove that the private key of phone A is stored on the server and
that the protocol is not End-to-End encrypted. In the opposite case, where the
message is not delivered while phone A is offline, we can conclude that the dis-
played behavior is an example of the End-to-End encryption being implemented
correctly.

9



Figure 3: The message exchange order of the Sender offline blocking
experiment, showing also details about the setup used. Three different
phones are used: A,B, and C

Sender Migration Blocking experiment
With the Sender Migration Blocking experiment we prove that when we migrate
the sender to a different phone, the old encryption keys are lost, and as a result,
the previous messages that were not delivered, cannot be decrypted anymore.
Supplementary to the Sender Offline Blocking experiment we will try one more
scenario. We perform the same procedure as before, but now, when phone A
is deactivated, we also migrate it to a new phone and re-install the WhatsApp
application, as shown in 4. Next, we put both new devices back online. Same
as before, this experiment examines if phone A is actually needed in order to
decrypt the message. With this experiment we prove that when we migrate the
sender to a different phone, the old encryption keys are lost, and as a result,
the previous messages that were not delivered, cannot be decrypted anymore.

10



Figure 4: The message exchange order for Sender Migration Blocking
experiment. For this one we use one more phone, D, in which we migrate
the SIM card of the sender.

6 Results
Traffic Comparison experiment

For the extent of this experiment we will denote the phone running either appli-
cation as ”client” and the application server of either application as the ”server”.
As discussed in section 5, we create representations of the conversations.

11



Figure 5: This is an illustration
of the captured WhatsApp traf-
fic conversation between the client
and the server. Note that all mes-
sages are encrypted and no TCP
ACK messages are included to de-
crease clutter.

Figure 6: This is an illustration of the
captured Signal traffic conversation be-
tween the client and the server. Note
that all messages are TLS encrypted
and no TCP ACK messages are in-
cluded to decrease clutter and the ses-
sion setup at the beginning of the con-
versation.

Figure 5 shows a representation of WhatsApp exchanging one single message
and figure 6 shows a similar representation for the Signal conversation. Figure 6
shows that every time the Signal application is started the client and the server
exchange messages to create a session. This session setup is not present in the
WhatsApp conversation.

12



Figure 7: This a screen capture of the Signal conversation from Wire-
shark. The capture shows the double session setup at the beginning of
the conversation. This setup information is only visible for the Signal
conversation. Note that the TCP connections are visible in this image.

From the comparison of the figures we can make three observations. Every en-
crypted message in the WhatsApp conversation receives a TCP ACK message
as a reply. While most encrypted messages in the Signal conversation also re-
ceive TCP ACK messages as a reply, some do not. An example can be seen in
figure 7 at packet number 29 and 30. We can notice that during the setup of
the session in Signal, two distinct sessions are opened.

The second observation we can make is that every message in the WhatsApp
conversation from the client to the server is proceeded by a message with a size
of 69 bytes.
The third observation we can make is that the overall size of the WhatsApp
conversation was smaller than the overall size of the Signal conversation. We
notice this is due to the dual session setup, where large files are exchanged.
From the sizes of the messages in the WhatsApp conversation we can deduce
that no encryption keys are being sent.

Overall, we can conclude that the protocol implementations of both applications
are not the same.

Man-In-The-Middle attack using Burp experiment
We split the results of this experiment in two parts: the Signal and WhatsApp
results: With Signal, we are able to set up the attack and read the metadata
exchanged and the exact way the protocol is set up. It is worth mentioning
that some of the data that we are able to capture is the phone number of the
sender and the receiver, part of the initialization key, and the timestamp of the
message as you can see in Figures 8 and 9.

13



Figure 8: One of the messages we captured with Burp Suite, showing
the receivers phone number and the timestamp of the message.

Figure 9: One of the messages we captured with Burp Suite, show-
ing the senders phone and the password used in order to initialize the
communication keys.

With WhatsApp we couldn’t intercept any of the traffic with Burp Suite. The
problem for us is that WhatsApp implements an extra layer of obfuscation
by hiding the Signal protocol under Noise protocol [22]. The method is men-
tioned as Noise Pipes in WhatsApps’ whitepaper, during their communication
to WhatsApp server. This adds an extra layer of security to the application but
the security of Signal protocol is not based on this characteristic. As a matter
of fact, we are not able to make an objective comparison between the two pro-
tocols with this experiment and we propose it as a future work. We do note
that this layer is not specified by the Signal protocol, which further enhances
the conclusion from the Traffic comparison experiment.

Basic Blocking experiment
The results from the basic blocking experiment confirmed the non-blocking
mechanism of WhatsApp. When we reactivated the WhatsApp account at the
new phone C, we immediately received the message that phone A sent, as ex-
pected, which can be seen in figure 10. It is worth mentioning that phone A
doesn’t get any indication that the keys have changed by default unless the user
change this setting manually. This behaviour introduces a possible risk. If the
receivers’ WhatsApp gets compromised, then the sender will never find out that
the communication has been diverted to a different phone. Although, the victim
will get a notification to his phone that the WhatsApp has been activated to a
new device, which can reveal possible suspicious behaviour.
On the other side, Signals’ protocol is blocking. When the same experiment is
performed the message is never delivered. In addition, every time the SIM card
is swapped between devices devices, we get a security related message that the
keys have changed as shown in figure 11. This message is shown before any user
message exchange has occurred and it is the default behaviour of the application.

14



Figure 10: This is a message that
phone C gets after it verifies the
phone number with the WhatsApp
server.

Figure 11: This is a message
that phone C gets after it verifies
the phone number with the Signal
server.

Sender Offline Blocking experiment
The results of the sender offline blocking experiment give insight of secure proto-
col implementation. When we switch on phone B while phone A is still inactive,
phone B immediately receives the message seen in figure 12. When the phone
A comes back online, the message is delivered immediately, after it is sent to
phone A. Despite the fact that this is the expected behaviour of the non-blocking
protocol, it gives extra information to a possible attacker. If the phone C gets
compromised, the attacker knows that: a) a message is pending to be delivered
and b) the phone A is currently offline. This information allows the attacker to
try the voicemail exploit [11] in phone A.

Figure 12: The message that phone C gets after he verifies the phone
number.

15



Sender Migration Blocking experiment
The results of the sender migration blocking experiment give us additional in-
formation about the implementation. Like the previous experiment, when we
turn on phone B while A is inactive, we get a notification that a message is
pending. When we turn on phone A in a new device, and as a result with a
different master key, we can continue the communication with phone A but the
message we sent before will stay undelivered as shown in figure 13. Specifically,
the message will never be able to be re-encrypted and according to WhatsApp,
it will stay in their servers, waiting for delivery for 30 days before it is deleted
[19]. Unfortunately, due time constraints, we were not able to verify that the
message will actually be deleted after 30 days.

Figure 13: The message that phone C gets after he verifies the phone
number.

As stated in section 5, we can conclude that this is an example of End-to-End
encryption of WhatsApp traffic.

7 Discussion
In our Traffic Comparison experiment we compared the traffic from both Sig-
nal and WhatsApp applications. We expected that the traffic exchanged would
look more similar. Contradictory, we found out that there was deviation be-
tween the two applications in the average packet size as well as the connection
establishment procedure.
In addition, in this experiment we got some extra information which we chose to
disregard, such as timing. We believe that the added value of this information
would only add noise to the comparison and should be omitted. We decided to
focus on the size of the packets and the order of the messages that are exchanged.
In addition, it would be beneficial for our research if we were able to decrypt
WhatsApps’ packets. This experiment would have given us better understand-
ing on the way the protocol is implemented, and we would be able to make a
more extensive comparison between the two applications.
Lastly, our research and experiments gave us insights about the End-to-End
encryption of WhatsApp. While we can not prove the End-to-End encryption
of WhatsApp, given our experiments and the risks involved for the company
and parent company, we believe the claim that WhatsApp is End-to-End en-
crypted. Our results prove that WhatsApp deviates from the Signal application,
on which the WhatsApp implementation is based, and therefore we believe that
WhatsApp should be further examined.

16



8 Conclusion
In this research, we have reviewed the End-to-End encryption implementation
of the WhatsApp application. We have examined previous research regarding
the Signal protocol security, attacks on the WhatsApp protocol implementation,
and the WhatsApp encryption overview. To substantiate our understanding, we
have examined the Signal protocol components, and the WhatsApp implemen-
tation of the Signal protocol in section 3. There we answer the first sub-question:
What are the algorithms used to create the Signal protocol?
Since WhatsApp is proprietary software, we chose to create experiments that
allowed us to deduce the communication implementation of WhatsApp. With
the assumptions made in section 4, we created several experiments that gave us
insights in the WhatsApp protocol implementation.
We have done a traffic comparison of standard message behavior of both ap-
plications, and found them to be different. We have verified the non-blocking
behavior of WhatsApp, we created an experiment to test a possible End-to-End
encryption flaw, which proved to be secure. We created an experiment that
gives an example of the correct implementation of the Signal protocol by What-
sApp. With these experiments we answer the third sub-question: What are the
differences between Signal and WhatsApp network traffic?
We have attempted to decrypt the traffic of both applications. While we de-
crypted the SSL layer of the Signal traffic, the proprietary noise pipe implemen-
tation used by WhatsApp withheld us from further attempts of decryption. We
therefore have no decisive answer for the second sub-question: To what extent
are WhatsApp messages adhering to the Signal protocol specifications?
While our research provides deductive results, the experiments and background
give us an insight into the WhatsApp protocol implementation which leads us
to believe that the risk for the companies involved is too great to falsify the
claim of End-to-End encryption. In conclusion, we believe that, at this time,
WhatsApp is End-to-End encrypted.

9 Future work
During the decryption experiment, we were able to extract the key from the
application which was obfuscated as a series of bytes. In order to use it for
decryption of messages, and further verification of the protocol usage, reverse
engineering of the WhatsApp is required.

Mark Zuckerberg, Facebook’s chief executive, plans to merge all messaging
applications owned by the company,WhatsApp,Messenger and Instagram, to-
gether. These services will continue to work as standalone applications, but
their underlying technical infrastructure will be unified [23]. The integration of
the applications, according to Zuckerberg, will be completed by the end of 2019
or early in 2020. We believe that a change in the infrastructure of the three
major messaging application could be an interesting topic of research.

WhatsApp allows verification of a new number by phone call. During our re-
search we found that this could be abused by compromising the voicemail of
the users phone [11], and as a results it adds vulnerabilities to the application.
It should be examined if this feature gives value to the application and how it
could be implemented in a secure way.

17



References

[1] Wired, “FACEBOOK EXPOSED 87 MILLION USERS TO CAMBRIDGE
ANALYTICA,” 2018, last accessed 6 February 2019. [Online]. Avail-
able: https://www.wired.com/story/facebook-exposed-87-million-users-
to-cambridge-analytica/

[2] ——, “HOW FACEBOOK HACKERS COMPROMISED 30 MILLION
ACCOUNTS,” 2018, last accessed 6 February 2019. [Online]. Avail-
able: https://www.wired.com/story/how-facebook-hackers-compromised-
30-million-accounts/

[3] ——, “FACEBOOK EXPOSED 6.8 BILLION USERS’ PHOTOS TO
CAP OFF TERRIBLE 2018,” 2018, last accessed 6 February 2019.
[Online]. Available: https://www.wired.com/story/facebook-photo-api-
bug-millions-users-exposed/

[4] Whatsapp, “end-to-end encryption,” 2016, last accessed 6 February
2019. [Online]. Available: https://blog.whatsapp.com/10000618/end-to-
end-encryption

[5] Statista, “Most popular mobile messaging apps worldwide as of October
2018, based on number of monthly active users (in millions),” 2019, last
accessed 10 January 2019. [Online]. Available: https://www.statista.com/
statistics/258749/most-popular-global-mobile-messenger-apps/

[6] M. J. Johnston, D. King, S. Arora, N. Behar, T. Athanasiou, N. Sevdalis,
and A. Darzi, “Smartphones let surgeons know whatsapp: an analysis of
communication in emergency surgical teams,” The American Journal of
Surgery, vol. 209, no. 1, pp. 45–51, 2015.

[7] M. Mars and R. E. Scott, “Whatsapp in clinical practice: A literature,”
The Promise of New Technologies in an Age of New Health Challenges,
p. 82, 2016.

[8] WhatsApp, “Whatsapp encryption overview,” April 5, 2016, p. 12.

[9] M. Marlinspike, “Whatsapp’s signal protocol integration is now
complete,” 2016, last accessed 9 January 2019. [Online]. Available:
https://signal.org/blog/whatsapp-complete/

[10] P. Rösler, C. Mainka, and J. Schwenk, “More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema,” 2018.

[11] M. Vigo, “Compromising online accounts by cracking voicemail
systems),” 2018, last accessed 21 January 2019. [Online]. Available:
https://www.martinvigo.com/voicemailcracker/

[12] M. Marlinspike and T. Perrin, “The x3dh key agreement protocol,” Open
Whisper Systems, 2016.

[13] T. Perrin and M. Marlinspike, “The double ratchet algorithm,” GitHub
wiki, 2016.

18

https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://www.wired.com/story/facebook-exposed-87-million-users-to-cambridge-analytica/
https://www.wired.com/story/how-facebook-hackers-compromised-30-million-accounts/
https://www.wired.com/story/how-facebook-hackers-compromised-30-million-accounts/
https://www.wired.com/story/facebook-photo-api-bug-millions-users-exposed/
https://www.wired.com/story/facebook-photo-api-bug-millions-users-exposed/
https://blog.whatsapp.com/10000618/end-to-end-encryption
https://blog.whatsapp.com/10000618/end-to-end-encryption
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://signal.org/blog/whatsapp-complete/
https://www.martinvigo.com/voicemailcracker/


[14] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila, “A
formal security analysis of the signal messaging protocol,” in Security and
Privacy (EuroS&P), 2017 IEEE European Symposium on. IEEE, 2017,
pp. 451–466.

[15] Z. Dai, T.-W. Chua, D. K. Balakrishnan, V. L. Thing et al., “Chat-app
decryption key extraction through information flow analysis,” 2017.

[16] Open Whisper Systems, “Double ratchet algorithm,” 2019, [Online;
accessed 6 February, 2019]. [Online]. Available: https://signal.org/docs/
specifications/doubleratchet/

[17] P. Technologies, “WhatsApp Encryption Rendered Ineffective by SS7
Vulnerabilities,” 2016, last accessed 26 January 2019. [Online]. Available:
https://www.ptsecurity.com/ww-en/about/news/117350/

[18] M. Marlinspike, “ There is no WhatsApp ’backdoor’),” 2017, last accessed
22 January 2019. [Online]. Available: https://signal.org/blog/there-is-no-
whatsapp-backdoor/

[19] WhatsApp, “Information for Law Enforcement Authorities),” 2016, last
accessed 26 January 2019. [Online]. Available: https://faq.whatsapp.com/
en/android/26000050/?category=5245250

[20] R. Falkvinge, “WhatsApp Encryption Shows Value Of Meta-
data),” 2014, last accessed 26 January 2019. [Online]. Avail-
able: https://www.privateinternetaccess.com/blog/2014/11/whatsapp-
encryption-shows-value-of-metadata/

[21] jlund, “Technology preview: Sealed sender for Signal),” 2018, last accessed
26 January 2019. [Online]. Available: https://signal.org/blog/sealed-
sender/

[22] T. Perrin, “The Noise Protocol Framework,” 2018, last accessed 30
January 2019. [Online]. Available: https://noiseprotocol.org/noise.html

[23] N. Y. Times, “Zuckerberg Plans to Integrate WhatsApp, Instagram and
Facebook Messenger,” 2019, last accessed 1 February 2019. [Online].
Available: https://www.nytimes.com/2019/01/25/technology/facebook-
instagram-whatsapp-messenger.html

19

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://www.ptsecurity.com/ww-en/about/news/117350/
https://signal.org/blog/there-is-no-whatsapp-backdoor/
https://signal.org/blog/there-is-no-whatsapp-backdoor/
https://faq.whatsapp.com/en/android/26000050/?category=5245250
https://faq.whatsapp.com/en/android/26000050/?category=5245250
https://www.privateinternetaccess.com/blog/2014/11/whatsapp-encryption-shows-value-of-metadata/
https://www.privateinternetaccess.com/blog/2014/11/whatsapp-encryption-shows-value-of-metadata/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://noiseprotocol.org/noise.html
https://www.nytimes.com/2019/01/25/technology/facebook-instagram-whatsapp-messenger.html
https://www.nytimes.com/2019/01/25/technology/facebook-instagram-whatsapp-messenger.html

	Introduction
	Literature review
	Background
	Signal protocol
	WhatsApp protocol/implementation
	Blocking/Non-blocking behavior

	Methods
	Experiments
	Results
	Discussion
	Conclusion
	Future work

