
Developing a contained and user emulated
malware assessment platform

F. Potter∗, S. Hodzelmans∗

Supervisors: V. Van Mieghem †, H. Hambartsumyan†

∗Security and Network Engineering,
University of Amsterdam,

Email: {fpotter,shodzelmans}@os3.nl

†Deloitte,
Email: {vvanmieghem,hhambartsumyan}@deloitte.nl

F

Abstract—Penetration testers and red teams develop malware to sim-
ulate real digital threats to organizations. In order to test which virus
scanners detect their malware before using it, they would like to test
their malware, without risking sample submission to the AV vendors.
Furthermore, they want to test their malware as if it was executed by
a user in a realistic way and within a controlled environment. In this
research, we investigate the kind of traffic that AV software generates,
how sample submission can be blocked and how the user behavior can
be emulated.

The traffic analysis showed various kinds of traffic, however sample
submission wasn’t one of them. Since we didn’t observe any sample
submission, we can only speculate on the best approach to block this
traffic. Based on what we did observe, we recommend a whitelisting ap-
proach. When applying user emulation and direct scanning we observed
that the static analysis resulted in a higher detection rate. However,
the false positive rate was also higher. The dynamic analysis with user
emulation on the other hand has a lower detection rate, but doesn’t have
any false positives. Another interesting observation was that in some
cases a difference in on- or offline scanning can occur.

We conclude that triggering sample submission isn’t trivial, but sus-
pect that whitelisting would be the best approach to prevent it. We also
showed that dynamic analysis can be automated using user emulation
and adds value besides static analysis.

Index Terms—Antivirus, traffic inspection, user emulation, malware
testing, red teaming

1 INTRODUCTION

Nowadays malware is the main source of IT security threats
[1]. Michalopoulus et al. [1] state that antivirus (AV) soft-
ware provides protection against malware, and therefore is
an important defense factor. In order to allow users and
organizations to check suspicious content, several online
malware analysis platforms (e.g. VirusTotal, Metascan, Ca-
mal, Malwr and AVCaesar) have been developed [2]. These
malware analysis platforms provide the option to upload
a file and scan it by multiple AV vendors. This gives the
advantage of being able to have a majority vote, whether the
file is malicious or not. However, these malware platforms

are not on-premise and therefore the uploader of the file
isn’t in control over where the uploaded file goes or who
sees the data [2]. This can be a problem if the uploaded file
contains private data.

According to Debrie et al. [2] the Incident Response
and Malware Analysis (IRMA) platform provides an on-
premise, open-source and automated malware analysis ser-
vice. IRMA allows the uploaded file to be contained within
the network of the organization, and therefore to stay in
control. However, one cannot be certain that the AV software
doesn’t do sample submission. For example, Kaspersky
accidentally ended up with confidential NSA files [3]. These
confidential files were part of a zipped folder, that also
had malicious binaries, and therefore was submitted to
Kaspersky.

Debrie et al. [2] state that IRMA can detect if a file is
malware but doesn’t detect what the malware would do
if the user executes it. Furthermore, IRMA allows the user
to be in control over the file, but doesn’t prevent the AV
software to learn the signature of the malicious content [2].
Testing which AV software detects the malware is useful for
red teams and penetration testers, because their malware
doesn’t harm the organization, but shows how vulnerabil-
ities can be exploited by malicious parties in order to do
harm to the organization. It is also usually the first step
in a simulated attack by a red team, and thus critical for
the rest of the attack path. For these reasons, red teams
and penetration testers want to test whether their malware
will be detected, without the AV software uploading a
sample to the vendor. When sample submission occurs, AV
vendors will learn about the malware and add it to their
database, ensuring that the malware gets detected. When
the malware created by the red team gets detected by the AV
software, it becomes useless for them and severely disrupts
the simulated attack.

February 6, 2019 Page 1 of 20



2 PREVIOUS WORK

2.1 Red teaming and penetration testing

Randhawa et al. [4] state that ”everyday people and orga-
nizations are more dependent on cyber systems”. They also
state that ”the loss, degradation, corruption or unauthorized
access and exploitation of critical business applications can
have significant impact on the cyber dependent business
and therefore represent a threat to business objectives”.
In order to address these threats red teaming and pene-
tration testing can be used to detect security weaknesses
and the impact that those weaknesses have. Red teaming
and penetration testing also helps organizations to exercise
incident response mechanisms. According to Randhawa et
al. [4] penetration testing provides security insight into the
network and system vulnerabilities as a whole, while red
teaming is an attack simulation in order to test the orga-
nization’s detection and response capabilities when under
attack.

2.2 Incident Response and Malware Analysis

IRMA provides an on-premise, open-source and automated
malware analysis platform, that our research will be ad-
vancing on. Figure 1 shows how the IRMA platform is split
in a three tier model, consisting of a frontend, brain and
probes [2]. The frontend handles the user interaction and
uploading of the file. When a file is uploaded and a scan
is launched, the frontend first checks if the file has been
uploaded before and therefore already has scan results for
this file in the database (i.e. caching). If the file doesn’t
exactly match with the results from the database or a rescan
is required, it stores the file on the file server of the brain.
Next, the brain schedules the analysis of the file in a queue
(i.e. asynchronous), so if one of the probes is ready to
analyze the file, it pulls it from the queue. Once the probe
has processed the scanning of the file, it returns the result
back to the brain. The brain then forwards the result back to
the frontend, giving the user the information (s)he requested
[2].

Fig. 1. IRMA three tier model

2.3 User emulation
IRMA provides static analysis by checking signatures of files
and compares them with known signatures of malware [2].
According to Sanok [5], static analysis provides on-the-fly
scanning and offers high speed and performance. However,
with static analysis, malware can still remain undetected.
Carvey [6] states that ’static analysis of executable files has
a number of limitations’. One of those limitations is that
one will not know what the executable exactly does without
launching it. Therefore, using dynamic analysis, which uses
heuristics, is a more sophisticated solution. Sanok [5] states
that heuristics is a method to determine the probability that
a file or program is malware by analyzing its characteristics.
These characteristics are based on the user’s actions, file
origin, execution method, parent process, etc. In order to
see the heuristics that trigger AV software to block malware,
user emulation will be needed.

User emulation is the use of automated small GUI-based
workflows, such as opening an email or downloading a
file with a web browser and executing it. There are several
options to achieve this task, such as Sikuli or Selenium for
web applications. Other options based on the Python lan-
guage are pywinauto or pyautogui. User emulation could
be interesting for red teams and penetration testers in order
to see which characteristics trigger the AV software and how
this could be avoided.

2.4 Antivirus software analysis
There has been little investigation into how AV software
operates, and as far as we could find, no one has investi-
gated the traffic generated by AV software (at least, no one
has published about it). Radvilavicius et al. [7] have made
an overview of how different AV products do their real-
time scanning. Al-Saleh and Crandall [8] gave a detailed
explanation of how Clam-AV, an open source virus scanner,
does the scanning. They also showed that it can be attacked
to determine the age of the signature database of an AV en-
gine. Eronen et al. [9] and Xue [10] showed that a multitude
of attacks are possible on AV programs.

3 RESEARCH QUESTION

With IRMA providing an on-premise solution for malware
analysis, we want to examine the traffic generated by AV
software to prevent malware sample submission and create
a test environment for red teams and penetration testers.
Furthermore, we want to emulate browsing user behavior
to allow on-access scanning of malware. Therefore, we
conducted the following research question:

’How can malware be tested for detection of antivirus software by
emulating user actions, without the AV vendor learning about
the malware?’

To provide an answer to this research question, the follow-
ing three sub-questions have to be answered:

• What traffic is generated by AV software?
• How to prevent AV software from notifying and

submitting the red team’s malware to the AV vendor?
• Are there any differences between direct scanning

and user emulated detection rates?

February 6, 2019 Page 2 of 20



4 METHODOLOGY

In order to answer our first sub question ’What traffic is gen-
erated by AV software?’, we will select the top three most
used AV vendors and test what traffic they will generate
under the same circumstances (i.e. updates, quick scan, full
scan, detecting malware). Computer Profile [11] has done
a market share survey in Belgium and found that those
are McAfee (27%), Symantec (25%) and Trend Micro (17%).
Therefore, we will focus our research on the AV vendors
Symantec (version 22.16.3.21), McAfee (version 16.0 R14)
and Trend Micro (version 15.0.1212). During the research
we decided to also add Kaspersky (version 19.0.0.1088 (d))
in the investigation of the observed network traffic part of
the study. This was because we couldn’t find any sample
submission with the other AV vendors, but it is confirmed
that Kaspersky does submit samples [3].

In order to see the traffic the AV software generates, we
will do the following tests for each AV vendor:

• Performing an update of the AV software (twice)
• Performing a quick scan (twice)
• Running a full system scan (once)
• Scanning five malware samples
• Scanning several samples provided by Deloitte

The updates and quick scan will be done twice, to see
if similar traffic is generated when the AV is already up to
date or when a file has already been scanned before. The full
scan is only done once, since it will be quite time consuming.
The five malware samples that will be scanned to see if
sample submission is occurring, are from Das Malwerk [12].
The samples of Deloitte consist of a default Cobalt Strike
beacon, an obfuscated beacon, and a binary generated by
MSFvenom (which is part of the Metasploit framework). A
list of the files used can be found in appendix A.

4.1 Test environment AV traffic

The test environment of the AV traffic generation is shown
in figure 2. The test environment will consist of a Virtual
Machine (VM) running the latest 64 bit Windows 10 as
the client and will contain the AV software. Another VM
running Ubuntu 18.04 (latest Long Term Support) with
mitmproxy [13] will be used to intercept the traffic. For each
AV vendor a separate Windows VM will be created, and
only one VM is run at a time to ensure traffic belongs to a
certain AV product. Furthermore, the Windows VM has one
internal network adapter that is connected to the Ubuntu
VM. The Ubuntu VM also has a second external network
adapter to provide network access through Network Ad-
dress Translation (NAT).

Fig. 2. Man-In-The-Middle Proxy test environment

Oppliger et al. [14] state that ’most e-commerce appli-
cations are using Secure Socket Layer (SSL) or Transport
Layer Security (TLS) to protect the communication channel

between the client and server’. However, a Man-In-The-
Middle (MITM) attack can be used under specific conditions
to circumvent the protection that SSL/TLS adds to provide
end-to-end security. This can be done by placing a third
host between the client and server and act as a relay on
behalf of the client, in our case mitmproxy. Secondly the root
certificate of mitmproxy has to be imported in the trusted
certificate store of the Windows VM, so that the client trusts
it as a relay [13].

Figure 3 shows how mitmproxy intercepts web traffic
and redirects it, given that the root certificate of mitmproxy
is added to the trusted certificate store. Since the client
receives the proxy certificate (certificate P) instead of the
server certificate (certificate S), the proxy can sniff all the
web traffic.

Fig. 3. mitmproxy

According to the National Cyber Security Centre (NCSC)
[15] a tool such as mitmproxy could prevent applications,
e.g. AV software, from connection with the server. This
happens when a client only trusts a specific certificate from
a server (i.e. certificate pinning). However, when a client is
under full control, it is possible to bypass certificate pinning
[13].

According to Evans et al. [16] certificate pinning has
been developed to avoid MITM attacks. Certificate pinning
is done by storing a copy of the certificate or the fingerprint
of the certificate in the client application. Whenever the
client initiates the SSL handshake with certificate pinning,
it performs two steps. The first step is checking whether the
server certificate is issued by a trusted Certificate Authority
(CA). The second step is added by certificate pinning, and
verifies if the certificate of the server or a certificate higher in
the chain (i.e. one of the issuer’s certificates) matches with
the certificate or the fingerprint of the certificate stored in
the client application. If both steps were successful, the SSL
session is established. However, if the checking of the server
certificate or the pinning process fails, the session will not
be established.

Certificate pinning brings the risk of service unavailabil-
ity (i.e. when the pinning process fails). The Fraunhofer
Institute for Communication, Information Processing and

February 6, 2019 Page 3 of 20



Ergonomics (FKIE) [17] states that ’organizations make use
of middleboxes or MITM proxies to intercept traffic’. Be-
cause of this, we assume that certificate pinning will not
be used by the AV vendors. However, if the AV software
uses certificate pinning, mitmproxy can’t negotiate its own
certificate during the SSL handshake. Meaning we can’t
intercept the AV traffic with the common mitmproxy test
environment and need to find other solutions to intercept
the traffic. However, if we are able to intercept traffic, we
will analyze it with Wireshark. The intercepted traffic will
also be aggregated using scripts. The aggregation will be
done for each vendor, and then these sets will be aggre-
gated in one list. We will count in how many sets a given
endpoint has occurred, in order to differentiate the traffic
generated by the AV software and the traffic generated by
e.g. Windows or Microsoft Edge.

4.2 Preventing notification and submission of red
team’s malware

In order to answer the second sub question ’How to prevent
AV software from notifying and submitting the red team’s
malware to the AV vendor?’, we will look into three possible
methods. These three methods, for preventing specific traffic
generated by AV software, are:

• Blacklisting the undesired traffic
• Whitelisting the desired traffic
• After the AV software is up-to-date, taking the Win-

dows VM offline

According to Townsend [18] blacklisting is blocking
known bad or unacceptable behavior. If one specifies which
AV traffic is unwanted, one can block this traffic from
traversing the network. Townsend states that ’a primary
advantage of blacklisting is that it is conceptually simple to
recognize a few bad things, stop them, and allow everything
else’. Furthermore, blacklisting eases administration, since
maintaining blacklists can be delegated. Therefore, black-
listing the undesired traffic is the least drastic method.

Whitelisting means allowing the traffic that should occur
is known good (or at least acceptable) [19]. According to
Townsend [18] whitelisting is better security wise, since
it avoids security vulnerabilities that a blacklist doesn’t
block. Whitelisting prevents that traffic in the first place,
because it wasn’t necessary traffic. However, in order to
ensure all desired traffic is allowed, the traffic needs to be
analyzed regularly, to assure that no changes occurred that
could make a service unavailable. If changes occur that are
necessary for the AV software to run properly due to e.g. an
update, one doesn’t want the service to become unavailable.
Therefore, whitelisting is administrative more intensive than
blacklisting.

Taking the Windows VM offline is the most drastic op-
tion, since it will prevent any traffic to and from the internet.
However, this poses a problem for long-term usage. When
the VM or AV software have to be updated, they have to be
brought back online. If the AV software holds the malware
in a queue of sorts, there is the risk that it gets uploaded the
moment the VM regains internet access. However, this can
be resolved by snapshotting a VM and restoring it back to a
moment before samples were scanned. According to Cohen

and Nissim [20] snapshotting is a virtualization technique
that allows the administrator to store the current state (take
a snapshot) of a (running) VM. Furthermore, they state it
can be used to restore a certain state before a process takes
place, in our case scanning malware samples. ’In addition,
the snapshotting process is fully trusted, because a malware
cannot manipulate it since the machine is suspended’ [20].
To test whether the approach of taking the VM offline
during the tests is viable, we will perform the five malware
scanning tests of Das Malwerk [12] and the samples of
Deloitte both while being offline as well as online.

4.3 Static versus dynamic analysis
The third and last sub question ’Are there any differences
between direct scanning and user emulated detection rates?’
will be answered by comparing the detection rates of static
versus dynamic malware analysis. Since we want to test
multiple malware samples to make a comparison of the
detection rates in an automated way, we will emulate user
behavior to execute malicious files. However, when one
emulates user behavior, it needs to have the same results
as when it is executed by a real world user. According
to Morales et al. [21] a Malware infection Tree (MiT) can
help dynamic malware analysis by creating a structure of
the processes and files that are related to the malware.
Therefore, we will use the MiT in order to verify if user
emulation is identical to real world user execution when it
comes to dynamic malware analysis. For the user emula-
tion we will use pywinauto and pyautogui, which are two
Python libraries to emulate the Windows Graphical User
Interface (GUI). Pywinauto can emulate user behavior by
using the Windows Accessibility Application Programming
Interfaces (APIs) to communicate with the GUI. Pyautogui
uses a pure Python script to emulate GUI actions and can
use screenshots to recognize when and where to perform
a certain action (e.g. to click ’yes’ when a pop up screen
appears).

In order to collect the detection rates, we will test 19
true positive and 19 false positive malware samples (see
appendix B). These will be tested in a contained Windows
VM, to avoid a production environment from getting in-
fected. To be as realistic as possible, we will use the same
setup as described before with the mitmproxy (figure 2),
which allows us to see the traffic conducted during the static
and dynamic malware analysis. Furthermore, during the dy-
namic analysis, malware has to be executed in order to see
the MiT tree. Pandey et al. [22] describe the Process Explorer
as an advanced task manager that gives insight into the
processes running on the system, including its Dynamic-
Link Libraries (DLLs), handles, events and threads. They
specify the Process Monitor as a dynamic analysis tool to
view real-time process and registry activity. Therefore, we
will use the Process Explorer and Process Monitor tools in
order to verify the MiT tree of user emulation to real world
user behavior.

February 6, 2019 Page 4 of 20



5 RESULTS

5.1 AV traffic generated

While performing the update, quick scan, full scan and
download of five malware samples on the system, all the
AVs generated a lot of traffic. However, we were unable
to find any sample submission done by the AV vendors.
The traffic that was generated was in most cases (partially)
hashed or encoded. Besides the hashes we also saw a lot of
calls to analytic endpoints, which were collecting informa-
tion about the Operating System (OS) and the hardware of
the VM. The complete list of the endpoints observed can be
found in appendix C. Even though we couldn’t find proof
of sample submission, the following was observed for each
AV vendor.

McAfee sends hashes of the files it scans, along with
some metadata of the files such as the signature. It also
sends various analytic data periodically, and uses Google
Analytics besides its own analytics endpoint. It detected all
the Deloitte provided samples except the obfuscated beacon.
From Das Malwerk it only recognized the first two (starting
with 1e84 and 1f7b) samples.

Symantec sends a reputation request when it scans a
file, containing the name of the file, the source and some
additional info of which we are not sure what it exactly
is. Furthermore, we also see other requests which POST
more comprehensive data, when we download the malware
samples directly from the internet and real time scanning
is enabled. Among this data we observed the MD5 and
SHA256 hash of the Microsoft Edge binary (which we used
to download our malware samples). We also saw the base64
encoded Uniform Resource Locator (URL) of the download
and a ”data buffer” field containing about 800 bytes. Ac-
cording to Symantec [23] and based on the endpoint this is a
”ping submission”, which is used to combat false positives.
What we observed was that the download wasn’t even
allowed to complete in these cases. Furthermore, it detected
all the samples except the obfuscated beacon.

Trend Micro sends for each sample a GET request over
an unsecured HTTP connection with a very long URL. The
first part of the URLs is the same for all these requests, while
later parts of the URL differ. The URLs also vary in length.
Also of note is the fact that during the update process Trend
Micro uses HTTPS, but doesn’t provide a Server Name
Indication (SNI). This could be a potential weak point in
the communication, if the client doesn’t do strict checking
on the certificate.

Trend Micro was the only tested software which showed
a difference in whether we tested online or offline. The dif-
ference is in the first Das Malwerk sample (1e84): it wasn’t
detected when the scan was run offline, but it was detected
when it was run online. The rest of the samples showed no
difference. Whether on- or offline, Trend Micro detected all
the other Das Malwerk samples and the MSFvenom sample
of the Deloitte samples. The other samples that Deloitte
provided were not recognized.

Lastly, while examining Kaspersky we didn’t see any
traffic that we could relate back to the samples we tested.
We did however see a lot of 400 (Bad Request) and 502
(Bad Gateway) HTTP errors during the scanning. The error
messages seem to indicate that the client tries to speak

plain HTTP over port 443 and therefore the connection gets
closed. Also of note is that Kaspersky does use certificate
pinning, but only does so during the registration. The cer-
tificate that is pinned isn’t signed by a trusted CA. However,
Kaspersky intercepts the SSL traffic, and for that purpose
inserts a generated root certificate in the Windows trust
store. Kaspersky is the only tested AV to do does so. It
detects all the samples, except the obfuscated beacon. It did
detect the first (1e84) as possibly malicious, but left it up to
the user to determine what action should be taken.

All of the above traffic took place over port 80 and port
443 using the HTTP or HTTPS protocols. We didn’t observe
any other traffic over other ports connecting to the internet,
except for DNS requests.

5.2 Preventing malware submission

Since we haven’t been able to observe or generate any
sample submission, we have no concrete results on how to
prevent it. Therefore, we couldn’t test whether a solution
to prevent sample submission is preferred over another.
However, based on the observed behavior we do think that a
whitelisting approach would fit best. First of all whitelisting
would allow the VM and AV software to be kept up to
date. Secondly, most AV software expects to be online. As
stated before, Trend Micro performs less when offline in
comparison to when it is online. Furthermore, Symantec
gives a warning when running a scan while offline. These
two facts make the option of taking the VM offline entirely
less desirable. Blacklisting is also less desirable. First of
all, one needs to know what to block in advance, and as
our research showed, this is not trivial. Secondly, if the
endpoints were to change, e.g. because of an update of the
AV software, the blacklist needs to be updated as well. A
possible consequence could be that sample submission is
not blacklisted anymore, and the sample will be submitted.
The reverse is true for whitelisting: if allowed endpoints
changed, the whitelist needs to be updated. In this case,
the sample will not be submitted, but there is a risk that
the malware analysis or update process will not function
correctly. However, whitelisting generally requires more
work than blacklisting, especially when first creating the
whitelist. The above leads us to believe that whitelisting is
more desirable for red teams, since sample submission can
severely disrupt a red team operation.

The approach to whitelisting should be based on host-
names, traffic size and direction, and possibly content.
Filtering on IP addresses will be hard, because nowadays
these are often shared, especially in the cloud. Filtering
on hostnames will be a benefit, since we observed that
all vendors split different components/services/aspects of
AV software (such as registration, updates and signature
checks) over different hostnames. Filtering based on the
size and direction of traffic could be effective if the sample
is not submitted in several small chunks. This has to be
combined with the direction of traffic, because updates
are significantly larger then the malware samples. Finally,
filtering on content would depend heavily on how a sam-
ple is submitted. If it is submitted in whole, unencoded,
over a plain connection it would be a guaranteed way to
prevent submission. However, from what we observed this

February 6, 2019 Page 5 of 20



is probably not the case. Vendors mostly use encrypted
connections and often also encode the data they send in
some way. Looking in the encrypted connections can be
solved by using SSL interception as we did in our research,
but decoding the data on the fly and checking that against
the sample would probably require a custom solution, and
would also require to understand and know exactly how
the AV software encoded the sample. Furthermore, if the
upload is done in parts or only a part of the entire mal-
ware file is uploaded, matching and detecting this becomes
significantly harder. Therefore we think that whitelisting on
content should only be considered if the other methods are
deemed insufficient to separate the desired traffic (such as
software updates) from the undesired traffic (such as sample
submissions).

5.3 Static versus dynamic analysis
In our setup we compared the AV vendors Symantec, Trend
Micro and McAfee based on static and dynamic analysis of
19 true positive and 19 false positive samples. True positives
are malware samples that are harmful and false positives are
samples that aren’t malware and therefore harmless. The
table of the samples and the detailed results can be found in
appendix B. The static analysis was done by direct scanning
and resulted in the graph shown in figure 4. The static
malware analysis shows that Symantec detected all true
positives malware samples, while Trend Micro detected 89%
and McAfee detected 52.6% of the true positive samples.
Furthermore it shows that Symantec has the highest false
positive rate (47.4%), followed by Trend Micro (37%) and
McAfee (26.3%).

Fig. 4. Static malware analysis

The dynamic analysis was done by emulating the down-
loading of malware samples through the Microsoft Edge
web browser. Before the download was started, real-time
scanning had to be turned off, to disable signature scan-
ning (i.e. static analysis) and allow on-access scanning of
samples. When the malware samples were downloaded,
the execution of the malware was emulated. Then real-time
scanning was turned back on and we gave the AV software
5 minutes, to see if the malware sample was detected by the
AV software.

The user emulation of malware samples was done with
both pywinauto and pyautogui. We created two Python
scripts, one based on pywinauto and the other on pyau-
togui. These can be found in appendix D. Pywinauto uses
a Windows accessibility API that can interact with the
GUI. Our pywinauto scripts starts the Microsoft Edge web
browser from the desktop. After the web browser has
opened, it loads the web page of the web server, that
contains the malware samples. Then it selects the malware
sample to download (based on the file name given). When
the malware sample has been downloaded, the script ex-
ecutes the sample. For some reason pywinauto was very
error prone, which resulted in having the user emulation
script to be run multiple times with the samples it missed.
An example of an error is the web page with the malware
samples not being loaded.

Pyautogui on the other hand has to import a Python
library to open the web browser and load the web page.
Then it goes to a sample to download by using x and y
coordinates, rather than a file name as done by pywinauto,
and downloads it. Furthermore, pyautogui uses a lot of
screenshots to coordinate through the downloading and
execution of the malware samples. This makes it more
static to emulate user behavior. However, when compared
to pywinauto, it is less error prone.

Before the results of the dynamic malware could be used,
we had to verify if the user emulation was done correctly.
Therefore we checked a subset of four malware samples,
two which were true positives and two that were false
positives. The four samples tested were:

• 21f5d45c-414b-11e8-bfe9-80e65024849a.file
• Win32.WannaPeace.exe
• netsky4.exe
• newstar.exe

February 6, 2019 Page 6 of 20



Figure 5 shows the process name, Process ID (PID),
description and company name of the four samples run
manual, while figure 6 shows the same fields but then when
run by user emulation. Apart from the PID, no difference is
seen in the process tree of the malware samples when using
the tool Process Explorer.

Fig. 5. Process Explorer manual

Fig. 6. Process Explorer user emulation

Figure 7 and figure 8 show the time, process name,
PID, operation, path and result of the start of the sample
Win32.WannaPeace.exe for manual and user emulated ex-
ecution. These results were captured with the tool Process
Monitor and show that besides the PID the results are the
same.

The tools Process Explorer and Process Monitor didn’t
show any difference between the MiT tree of manual be-
havior and emulated user behavior for both pywinauto as
pyautogui. Therefore, the results from the dynamic malware
analysis seem to be valid.

Fig. 7. Process Monitor manual

Fig. 8. Process Monitor user emulation

The dynamic malware analysis based on 19 true posi-
tives and 19 false positives, shown in figure 9, shows that
the false positive rate of the three tested AV vendors are
zero, and therefore don’t detect harmless samples. However,
Symantec and Trend Micro detected most (78.9%) of the true
positive malware samples. McAfee on the other hand only
had a true positive detection rate of 15.8%.

Fig. 9. Dynamic malware analysis

When comparing the static versus dynamic analysis we
see the true positive detection rates of static analysis for each
AV vendor being higher (better) than the dynamic analysis.
However, the false positive detection rates are much better
with dynamic analysis (lower is better) in comparison to
static analysis.

6 DISCUSSION

During our research we were unable to observe sample sub-
mission. A possible explanation can be found on the website
of Symantec [23]. They state on their website: ’If a client gets
a detection, the client queries Symantec to see if a sample is
needed (that is, no formal definition created for this item
yet). If a sample is not needed because a formal definition
is already created, the client will not submit the sample’.
Unfortunately, as the examined AV programs are all closed
source, it is hard to know what exactly triggers a sample
upload. Testing unknown malware is not a guarantee, as
our research showed.

Another possible explanation for not observing sample
submission, could be due to the test environment being
virtualized. The malware or AV software may work differ-
ently when in a virtualized environment in comparison to a
physical environment with dedicated hardware. However,
the samples provided by Deloitte will run regardless of
which environment they are on.

Also, our packet captures were quite contaminated by
many calls which were made by Windows and when we

February 6, 2019 Page 7 of 20



opened the Microsoft Edge browser, which loads bing.com
and msn.com addresses by default. We could have taken
better care to prepare the VMs to minimize this contami-
nation. Furthermore, we could have run the VM without
doing our tests and without an AV scanner installed, to get
a baseline of the traffic that is generated by Windows.

A few other minor issues with our method has to do
with the use of mitmproxy. First of all, we saw that some
connections were blocked because mitmproxy didn’t trust
the certificate the server provided. In the case of Trend
Micro we turned the verification done by mitmproxy off,
but in hindsight we should have done this for all captures,
so no requests would have been blocked. Secondly, it would
have been interesting to test whether the errors which we
observed while testing Kaspersky wouldn’t occur if we
disabled mitmproxy.

The answer we provided to the second research question
leaves much to be desired. However, as we couldn’t find any
way to trigger or even prove sample submission, we could
either have dropped that part of the research entirely or do
some speculation based on our observations and statements
from the AV software. We decided for the latter, since we feel
that what we did observe could be used as a basis for further
investigation and a possible starting point for a solution.

For the dynamic malware analysis, it is not clear why
McAfee has a much lower true positive detection rate than
Symantec or Trend Micro. We could have tested more mal-
ware samples to get a better indication of this occurrence.
However, we tested the malware analysis on two differ-
ent physical machines and even tested the same samples
multiple times to see if it was a coincidence, which didn’t
give different results. Also without the user emulation, the
results of McAfee were the same. What is curious however
is that some malware samples from Das Malwerk were not
detected by our local McAfee installation, but have been
detected by McAfee according to VirusTotal. A link stating
these files are detected by McAfee can be found with the
files from Das Malwerk [12].

7 CONCLUSION

Our research showed that AV scanners make network calls
for a variety of reasons: installation, registration, updat-
ing and checking files for signatures. The fact that we
weren’t able to trigger a sample submission makes it hard
to take countermeasures to prevent sample submission,
and shows that this isn’t a trivial task. However, if one
would want to prevent sample submission as a proactive
measure, whitelisting seems to be the most fitting solu-
tion. Whitelisting prevents all undesired traffic, even if it
is unknown, while allowing the AV software to update
regularly. However, an update of the AV software may
result in different traffic that needs to be whitelisted. If
the whitelist is not updated accordingly, the AV software’s
performance could be degraded. Whitelisting will require
more effort, but is more reliable then blacklisting when it
comes to sample submission. Preventing sample submission
is important for a red team, since it could severely disrupt
a simulated attack. Furthermore, our research showed that
dynamic analysis can detect if a sample is a false positive

more accurately than static analysis and that user emulation
could be used to automate dynamic analysis.

To answer the main question ’How can malware be tested
for detection of antivirus software by emulating user actions, with-
out the AV vendor learning about the malware?’ we conclude
that user actions can be emulated in multiple ways and
have added value over static scanning, with a whitelisting
approach to prevent sample submission.

8 FUTURE WORK

According to our literature research, the AV generated traffic
hasn’t been widely investigated. It is our opinion that a
deep, exploratory investigation in what kinds of traffic AV
software exactly generates would be of value. From what we
have observed already, and the amount of data we haven’t
been able to decode or determine what exactly is sent, this
would probably yield very interesting results. Also other
approaches to investigate what AV products actually do, e.g.
reverse engineering, could yield interesting results.

Other future work that can be done in order to advance
on our research, is that one could integrate whitelisting
to proactively prevent sample submission in an existing
on-premise, open-source and automated malware analysis
platform such as IRMA.

Finally, the creation of a mechanism to monitor when AV
software detects malware could be an area for future work.
This would allow user behavior emulation to be used in
automated solutions such as IRMA.

9 ACKNOWLEDGEMENTS

We would like to thank Vincent Van Mieghem and Henri
Hambartsumyan of Deloitte for the supervision and support
of this project and providing us with samples of malware as
used by red teams.

REFERENCES

[1] P. Michalopoulos, V. Ieronymakis, M.T. Khan, and
D. Serpanos. “An Open Source, Extensible Malware
Analysis Platform”. In: MATEC Web of Conferences.
2018.

[2] G. Debrie, F. Lone-Sang, and A. Quint. “IRMA – An
Open Source Platform for Incident Response and Mal-
ware Analysis”. In: Hack in the Box Security Conference.
2014.

[3] D. Goodin. Kaspersky: Yes, we obtained NSA secrets. No,
we didn’t help steal them — Ars Technica. 2017. URL:
https ://arstechnica .com/information- technology/
2017/11/kaspersky-yes-we-obtained-nsa-secrets-no-
we-didnt-help-steal-them/ (visited on 01/10/2019).

[4] S. Randhawa, Dr B. Turnbull, J. Yuen, and J. Dean.
“Mission-Centric Automated Cyber Red Teaming”. In:
13th International Conference on Availability, Reliability
and Security. 2018.

[5] D. J. Sanok Jr. “An analysis of how antivirus method-
ologies are utilized in protecting computers from ma-
licious code”. In: Proceedings of the 2nd annual con-
ference on Information security curriculum development,
InfoSecCD ’05 (2005), pp. 142–144. DOI: 10 . 1145 /
1107622.1107655. URL: http://dl .acm.org/citation.
cfm?id=1107655.

February 6, 2019 Page 8 of 20



[6] Harlan Carvey. “Malware analysis for windows
administrators”. In: Digital Investigation 2.1 (2005),
pp. 19–22. ISSN: 17422876. DOI: 10.1016/j.diin.2005.01.
006.

[7] L. Radvilavicius, L. Marozas, and A. Cenys.
“Overview of Real - Time Antivirus Scanning En-
gines”. In: Journal of Engineering Science and Tech-
nology Review 5.1 (Mar. 2012), pp. 63–71. ISSN:
17919320. DOI: 10 . 25103 / jestr . 051 . 12. URL:
https : / / www . researchgate . net / profile /
Antanas Cenys / publication / 298598058 Overview
of Real - Time Antivirus Scanning Engines / links /
56f2915208aee034d8c63a6a/Overview-of-Real-Time-
Antivirus-Scanning-Engines.pdf.

[8] M. I. Al-Saleh and J. R. Crandall. “Application-level
reconnaissance: timing channel attacks against an-
tivirus software”. In: Proceedings of the 4th USENIX
conference on Large-scale exploits and emergent threats
(2011), pp. 9–9. URL: http://static.usenix.org/legacy/
events/leet11/tech/full papers/Al-Saleh.pdf.

[9] J. Eronen, K. Karjalainen, R. Puuperä, E. Kuusela,
K. Halunen, M. Laakso, and J. Röning. “Software
vulnerability vs. critical infrastructure-a case study
of antivirus software”. In: International Journal on Ad-
vances in Security 2.1 (2009), pp. 72–89.

[10] F. Xue. “Attacking Antivirus”. In: Black Hat (2008).
ISSN: 07400551. DOI: 10.1109/DMAMH.2007.33. URL:
http://blackhat.com/presentations/bh-europe-08/
Feng-Xue/Presentation/bh-eu-08-xue.pdf.

[11] Computer Profile. McAfee remains the market leader
in business antivirus solutions in Belgium, but is losing
market share. URL: https : / / www. computerprofile .
com/analytics-papers/mcafee-remains- the-market-
leader- in- business- antivirus- solutions- in- belgium-
but-is-losing-market-share/ (visited on 01/17/2019).

[12] Das Malwerk. Your one stop shop for fresh malware
samples. URL: http : / / dasmalwerk . eu/ (visited on
01/28/2019).

[13] A. Cortesi, M. Hils, and T. Kriechbaumer. mitm-
proxy. URL: https : / / mitmproxy . org/ (visited on
01/09/2019).

[14] R. Oppliger, R. Hauser, and D. Basin. “SSL/TLS
session-aware user authentication - Or how to effec-
tively thwart the man-in-the-middle”. In: Computer
Communications 29.12 (2006), pp. 2238–2246. ISSN:
01403664. DOI: 10.1016/j.comcom.2006.03.004.

[15] National Cyber Security Centre (NCSC). “TLS inter-
ception”. In: 5 (2017). URL: https ://www.ncsc .nl/
english / current - topics / factsheets / factsheet - tls -
interception.html.

[16] C. Evans and C.Palmer. Certificate Pinning Extension
for HSTS draft-evans-palmer-hsts-pinning-00. URL: https:
/ / tools . ietf . org / html / draft - evans - palmer - hsts -
pinning-00 (visited on 01/15/2019).

[17] Information Processing Fraunhofer Institute for Com-
munication and Ergonomics (FKIE). “White paper
encrypted traffic management”. In: (2016), p. 33. URL:
https : / / www . symantec . com / content / dam /
symantec / docs / white - papers / fraunhofer - report -
encrypted-traffic-management.pdf.

[18] K. Townsend. “Does it Matter if It’s Black or White?”
In: Infosecurity 8.3 (2011), pp. 36–39. ISSN: 1754-4548.
DOI: https://doi.org/10.1016/S1754-4548(11)70039-0.
URL: http://www.sciencedirect.com/science/article/
pii/S1754454811700390.

[19] S. Mansfield-Devine. “The promise of whitelisting”.
In: Network Security 2009.7 (2009), pp. 4–6. ISSN: 1353-
4858. DOI: https://doi.org/10.1016/S1353-4858(09)
70085 - 6. URL: http : / / www . sciencedirect . com /
science/article/pii/S1353485809700856.

[20] Aviad Cohen and Nir Nissim. “Trusted detection of
ransomware in a private cloud using machine learn-
ing methods leveraging meta-features from volatile
memory”. In: Expert Systems with Applications 102
(2018), pp. 158–178. ISSN: 0957-4174. DOI: https : / /
doi . org / 10 . 1016 / j . eswa . 2018 . 02 . 039. URL: http :
/ / www. sciencedirect . com / science / article / pii /
S0957417418301283.

[21] Jose Andre Morales, Michael Main, Weiliang Luo,
Shouhuai Xu, and Ravi Sandhu. “Building malware
infection trees”. In: Proceedings of the 2011 6th Interna-
tional Conference on Malicious and Unwanted Software,
Malware 2011 9 (2011), pp. 50–57. DOI: 10 . 1109 /
MALWARE.2011.6112326.

[22] Sudhir Kumar Pandey and B. M. Mehtre. “Perfor-
mance of malware detection tools: A comparison”.
In: Proceedings of 2014 IEEE International Conference
on Advanced Communication, Control and Computing
Technologies, ICACCCT 2014 978 (2015), pp. 1811–1817.
DOI: 10.1109/ICACCCT.2014.7019422.

[23] Symantec. Required exclusions for proxy servers to allow
Endpoint Protection to connect to reputation and licensing
servers. URL: https://support.symantec.com/en US/
article.TECH162286.html (visited on 01/19/2019).

[24] Y. Nativ, L. Ludar, and 5fingers. A repository of LIVE
malwares for your own joy and pleasure. 2015. URL: https:
//github.com/ytisf/theZoo (visited on 01/28/2019).

[25] faculty of Computer Science The University of Ari-
zona. lynx: Analysis of Hard-to-analyze Code. URL: http:
/ / www2 . cs . arizona . edu / projects / lynx - project/
(visited on 01/28/2019).

[26] EICAR. The Anti-Malware Testfile. URL: https://www.
eicar.org/?page id=3950 (visited on 01/28/2019).

February 6, 2019 Page 9 of 20



APPENDIX A
AV TRAFFIC GENERATION MALWARE SAMPLES

TABLE 1
Das Malwerk malware samples

Number Malware samples
1 1e84ff45-414b-11e8-b837-80e65024849a.file
2 1f7b55c7-414b-11e8-b18b-80e65024849a.file
3 230a6f87-414b-11e8-a52a-80e65024849a.file
4 266a11f5-414b-11e8-9ac8-80e65024849a.file
5 25786c51-414b-11e8-a472-80e65024849a.file

TABLE 2
Deloitte malware samples

Number Malware samples
1 beacon-x64-test.exe
2 beacon-x86-test.dll
3 WindowsHost.dll
4 default-beacon.exe
5 default-beacon.dll
6 msf-vnm.exe

February 6, 2019 Page 10 of 20



APPENDIX B
MALWARE SAMPLES STATIC AND DYNAMIC ANALYSIS

The first ten samples are obtained from Das Malwerk [12] and are True Positives (TPs). The samples 11 through 19 are
obtained from the Zoo [24] and also are TPs. The samples 20 through 34 are from the University of Arizona [25] and the
last four samples are of EICAR [26]. The samples of the University of Arizona and EICAR are False Positives (FPs). In table
3, S stand for Static and D stands for Dynamic.

TABLE 3
Static and Dynamic analysis of the AV vendors

Number Malware samples harmful Symantec S Symantec D Trend Micro S Trend Micro D McAfee S McAfee D
1 1c9877e3-414b-11e8-9653 TP v x v x x x
2 1e84ff45-414b-11e8-b837 TP v v v v v x
3 1f7b55c7-414b-11e8-b18b TP v v v v v v
4 20db5785-414b-11e8-b3a7 TP v v v v x x
5 21f5d45c-414b-11e8-bfe9 TP v v v v x x
6 230a6f87-414b-11e8-a52a TP v v v x x x
7 266a11f5-414b-11e8-9ac8 TP v v v v x x
8 2473c2ca-414b-11e8-8f4a TP v v v v x x
9 2830f25c-414b-11e8-8ff2 TP v v v v x x
10 25786c51-414b-11e8-a472 TP v v v v x x
11 Artemis TP v v v v v x
12 Win32.AgentTesla TP v v v v v v
13 Win32.Unknown SpectreMeltdown TP v x v x v x
14 Win32.Unnamed SpecMelt TP v x x x v x
15 Win32.Vobfus TP v v v v v x
16 Win32.WannaPeace TP v v v v v x
17 Win32.Zurgop TP v v x v v x
18 Win32Dircrypt.Trojan.Ransom.ABZ TP v v v v v v
19 Win64.Trojan.GreenBug TP v x v v x x
20 binary search.exe FP x x x x x x
21 blaster.exe FP v x v x v x
22 bubble sort.exe FP x x x x x x
23 cairuh.exe FP v x x x x x
24 epo.exe FP x x x x x x
25 huffman.exe FP x x x x x x
26 hunatcha.exe FP x x x x x x
27 matrix multiple.exe FP x x x x x x
28 netsky1.exe FP v x v x x x
29 netsky2.exe FP v x v x x x
30 netsky3.exe FP x x x x x x
31 netsky4.exe FP x x x x x x
32 newstar.exe FP x x x x x x
33 newstar-infect.exe FP v x x x x x
34 tinyRISC-binary search.exe FP x x x x x x
35 eicar.com FP v x v x v x
36 eicar.com.txt FP v x v x v x
37 eicar com.zip FP v x v x v x
38 eicar com2.zip FP v x v x v x

February 6, 2019 Page 11 of 20



APPENDIX C
OBSERVED ENDPOINTS

C.1 McAfee

Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

a-ring-fallback.msedge.net 2 GET 0 43 0.03
ajax.googleapis.com 1 GET 0 93868 0.01
analytics.ccs.mcafee.com 7 POST 47232 0 0.1
analyticsdcs.ccs.mcafee.com 13 POST 38083 0 0.18
api-s2s.taboola.com 2 GET 0 0 0.03
app.mcafee.com 101 GET, POST 63 21340 1.37
arc.msn.com 4 GET, POST 1078 3172 0.05
b-ring.msedge.net 4 GET 0 43 0.05
bgpdefault-amb.msedge.net 2 GET 0 43 0.03
bing.com 1 GET 0 214 0.01
blob.weather.microsoft.com 1 GET 0 4265 0.01
c.bing.com 1 GET 0 0 0.01
c.msn.com 3 GET 0 28 0.04
cdn.adsoptimal.com 10 GET 0 89 0.14
cdn.onenote.net 2 GET 0 15 0.03
chart.googleapis.com 1 GET 0 2688 0.01
checkappexec.microsoft.com 1 POST 1348 143 0.01
cohort.ccs.mcafee.com 22 POST 712 0 0.3
consumerapps.mcafee.com 6 POST 867 2552 0.08
context-enroll.ccs.mcafee.com 1 POST 7206 0 0.01
ctldl.windowsupdate.com 10 GET 0 7091 0.14
cu1pehnswad01.servicebus.windows.net 5 POST 6409 0 0.07
cu1pehnswss01.servicebus.windows.net 364 POST 2220 0 4.94
dasmalwerk.eu 8 GET 0 73427 0.11
data.hackerwatch.org 6 GET 0 55 0.08
download.mcafee.com 276 GET, HEAD 0 125018 3.75
europe.smartscreen-prod.microsoft.com 2 GET, POST 674 4314 0.03
fls-na.amazon-adsystem.com 5 GET 0 43 0.07
fp.msedge.net 4 GET 0 0 0.05
fs.microsoft.com 2 GET, HEAD 0 28 0.03
g.live.com 4 GET, HEAD 0 0 0.05
google-analytics.com 373 POST 2080 35 5.07
home.mcafee.com 14 GET, POST 2638 3001 0.19
iecvlist.microsoft.com 2 GET 0 72323 0.03
images.outbrainimg.com 5 GET 0 16520 0.07
images.taboola.com 5 GET 0 39199 0.07
img-prod-cms-rt-microsoft-com.akamaized.net 2 GET 0 360215 0.03
img-s-msn-com.akamaized.net 161 GET 0 7047 2.19
ir-na.amazon-adsystem.com 5 GET 0 42 0.07
lam.rest.gti.mcafee.com 6 POST 516 76 0.08
login.live.com 8 POST 4964 10494 0.11
mcdp-chidc2.outbrain.com 4 GET 0 4 0.05
mcloud.mcafee.com 22 POST 6530 562 0.3
md5.hackerwatch.org 2 GET 0 476 0.03
messages.mcafee.com 11 GET, PATCH 210 46676 0.15
messaging.ccs.mcafee.com 24 GET 0 55 0.33
ocsp.digicert.com 5 GET 0 471 0.07
oneclient.sfx.ms 4 GET, HEAD 0 200 0.05
otf.msn.com 25 GET,

OPTIONS,
POST

774 8 0.34

peer2-amb.msedge.net 2 GET 0 43 0.03

February 6, 2019 Page 12 of 20



Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

platform.mcafee.com 11 GET, POST 261 244 0.15
policy.ccs.mcafee.com 17 POST 214 619 0.23
policyorchestration.ccs.mcafee.com 8 POST 965 2659 0.11
provision.ccs.mcafee.com 4 GET 0 1457 0.05
remote.vroptimal-3dx-assets.com 10 GET 0 0 0.14
resources.infolinks.com 2 GET 0 398194 0.03
ris.api.iris.microsoft.com 5 GET 0 0 0.07
router.infolinks.com 10 GET 0 0 0.14
s-ring.msedge.net 2 GET 0 43 0.03
sadownload.mcafee.com 136 GET 0 61567 1.85
sam.msn.com 4 OPTIONS,

POST
427 0 0.05

servicediscovery.ccs.mcafee.com 17 POST 352 739 0.23
sm.mcafee.com 1 GET 0 3955 0.01
ssl.google-analytics.com 6 GET 0 7742 0.08
static-spartan-neu-s-msn-com.akamaized.net 17 GET 0 69565 0.23
store-images.s-microsoft.com 1 GET 0 1841 0.01
storeedgefd.dsx.mp.microsoft.com 1 GET 0 126 0.01
tags.tiqcdn.com 3 GET 0 102771 0.04
tile-service.weather.microsoft.com 3 GET 0 4231 0.04
us.mcafee.com 10 POST 3621 1509 0.14
virustotalcloud.appspot.com 47 GET 0 9256 0.64
webadvisorc.rest.gti.mcafee.com 5 POST 228 66 0.07
ws-na.amazon-adsystem.com 5 GET 0 15208 0.07
ws.mcafee.com 2 POST 800 385 0.03
wss.rest.gti.mcafee.com 5382 POST 511 105 73.11
www.bing.com 59 GET, POST 3144 9705 0.8
www.mcafee.com 4 GET 0 58937 0.05
www.msn.com 19 GET, POST 504 61614 0.26
www.virustotal.com 20 GET 0 21433 0.27

C.2 Symmantec

Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

a-ring-fallback.msedge.net 2 GET 0 43 0.28
a-ring.msedge.net 4 GET 0 43 0.56
access.backup.norton.com 8 GET 0 223 1.11
ajax.googleapis.com 1 GET 0 97163 0.14
api-s2s.taboola.com 1 GET 0 0 0.14
b-ring.msedge.net 2 GET 0 43 0.28
c.s-microsoft.com 1 GET 0 3560 0.14
cdn.adsoptimal.com 2 GET 0 89 0.28
cdn.tt.omtrdc.net 1 GET 0 43582 0.14
checkappexec.microsoft.com 1 POST 974 271 0.14
cm.everesttech.net 1 GET 0 0 0.14
ctldl.windowsupdate.com 4 GET 0 3592 0.56
dasmalwerk.eu 18 GET 0 99954 2.51
dls.symantec.com 1 GET 0 0 0.14
dpm.demdex.net 3 GET 0 136 0.42
europe.smartscreen-prod.microsoft.com 1 GET 0 8358 0.14
faults.norton.com 11 POST 1391 0 1.53
fls-na.amazon-adsystem.com 1 GET 0 43 0.14
fonts.googleapis.com 2 GET 0 0 0.28
fonts.gstatic.com 4 GET 0 21873 0.56

February 6, 2019 Page 13 of 20



Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

fp.msedge.net 4 GET 0 0 0.56
hb.lifecycle.norton.com 3 GET, POST 728 39 0.42
identitysafe.norton.com 12 GET 0 104555 1.67
iecvlist.microsoft.com 2 GET 0 72323 0.28
images-na.ssl-images-amazon.com 1 GET 0 2679 0.14
images.taboola.com 7 GET 0 52796 0.97
img-prod-cms-rt-microsoft-com.akamaized.net 5 GET 0 10804 0.7
img-s-msn-com.akamaized.net 144 GET 0 7919 20.06
ir-na.amazon-adsystem.com 1 GET 0 42 0.14
l-ring.msedge.net 2 GET 0 43 0.28
liveupdate.symantec.com 1 GET 0 1 0.14
liveupdate.symantecliveupdate.com 79 GET 0 12934 11.0
login.live.com 1 GET 0 0 0.14
login.microsoftonline.com 1 GET 0 961 0.14
markets.books.microsoft.com 1 GET 0 331 0.14
nexus.ensighten.com 4 GET 0 47549 0.56
ocsp.digicert.com 5 GET 0 471 0.7
ocsp.thawte.com 1 GET 0 1336 0.14
ocsp.verisign.com 1 GET 0 1754 0.14
oms.symantec.com 2 GET 0 46 0.28
otf.msn.com 49 GET,

OPTIONS,
POST

831 5 6.82

ow1.res.office365.com 2 GET 0 43 0.28
ratings-wrs.symantec.com 1 GET 0 210 0.14
remote.vroptimal-3dx-assets.com 2 GET 0 0 0.28
resources.infolinks.com 2 GET 0 399990 0.28
router.infolinks.com 2 GET 0 0 0.28
sam.msn.com 6 OPTIONS,

POST
368 0 0.84

sf.symcd.com 1 GET 0 1660 0.14
shasta-rrs.symantec.com 23 POST 6065 2127 3.2
sitedirector.symantec.com 1 GET 0 715 0.14
spoc.norton.com 10 POST 118 5 1.39
ssl.google-analytics.com 4 GET 0 11595 0.56
static-spartan-neu-s-msn-com.akamaized.net 20 GET 0 58136 2.79
static.nortoncdn.com 2 GET 0 32354 0.28
stats.norton.com 82 GET, POST 0 13 11.42
storage.backup.norton.com 2 POST 2982 367 0.28
symantec.demdex.net 1 GET 0 6939 0.14
symantec.tt.omtrdc.net 1 GET 0 0 0.14
ts-ocsp.ws.symantec.com 1 GET 0 1469 0.14
updatecenter.norton.com 2 GET, POST 56 2758 0.28
wms-na.amazon-adsystem.com 3 GET 0 1708 0.42
ws-na.amazon-adsystem.com 1 GET 0 15208 0.14
www.bing.com 123 GET, POST 4782 26237 17.13
www.msn.com 30 GET, POST 622 49111 4.18
www2.bing.com 1 GET 0 64 0.14

C.3 Trendmicro

Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

364bf5fa.akstat.io 2 GET, POST 4077 0 0.28
ajax.googleapis.com 1 GET 0 97163 0.14

February 6, 2019 Page 14 of 20



Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

arc.msn.com 8 GET, POST 181 652 1.11
blob.weather.microsoft.com 1 GET 0 8245 0.14
c.go-mpulse.net 1 GET 0 1771 0.14
carcharodon.trendmicro.com 2 POST 7746 62 0.28
cdn.adsoptimal.com 4 GET 0 89 0.56
cdn.onenote.net 1 GET 0 15 0.14
chk.trendmicro.com 1 GET 0 369 0.14
dasmalwerk.eu 20 GET 0 114411 2.79
displaycatalog.mp.microsoft.com 11 GET 0 30301 1.53
fls-na.amazon-adsystem.com 2 GET 0 43 0.28
fonts.googleapis.com 2 GET 0 0 0.28
fonts.gstatic.com 4 GET 0 21873 0.56
iecvlist.microsoft.com 3 GET 0 73205 0.42
images-na.ssl-images-amazon.com 1 GET 0 2679 0.14
images.outbrainimg.com 4 GET 0 13896 0.56
images.taboola.com 5 GET 0 37272 0.7
img-s-msn-com.akamaized.net 87 GET 0 9410 12.12
ipv6-mirror-iaus.activeupdate.trendmicro.com:443 47 GET 0 201123 6.55
ir-na.amazon-adsystem.com 2 GET 0 42 0.28
licensing.mp.microsoft.com 13 POST 758 526 1.81
login.live.com 12 POST 4975 10417 1.67
otf.msn.com 22 GET,

OPTIONS,
POST

809 11 3.06

pt31-feature-cfg-prod.s3.amazonaws.com 1 GET 0 134 0.14
purchase.mp.microsoft.com 6 POST, PUT 294 3137 0.84
remote.vroptimal-3dx-assets.com 4 GET 0 0 0.56
res.appletuner.trendmicro.com 1 GET 0 373 0.14
resources.infolinks.com 2 GET 0 399990 0.28
ris.api.iris.microsoft.com 8 GET 0 0 1.11
router.infolinks.com 4 GET 0 0 0.56
sam.msn.com 6 OPTIONS,

POST
360 0 0.84

static-spartan-neu-s-msn-com.akamaized.net 16 GET 0 53202 2.23
storesdk.dsx.mp.microsoft.com 5 GET 0 284 0.7
tile-service.weather.microsoft.com 1 GET 0 4233 0.14
titanium15-0-en.url.trendmicro.com:80 6 GET 0 204 0.84
titanium15-en.gfrbridge.trendmicro.com:80 33 GET 0 99 4.6
titanium1500-en-census.trendmicro.com:80 35 GET 0 579 4.87
tms15.icrc.trendmicro.com 267 GET 0 3700 37.19
wms-na.amazon-adsystem.com 3 GET 0 1708 0.42
ws-na.amazon-adsystem.com 2 GET 0 15208 0.28
www.bing.com 51 GET, POST 1082 13060 7.1
www.msn.com 11 GET, POST 285 82922 1.53

C.4 Kaspersky

Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

arc.msn.com 7 GET, POST 414 143 3.03
cdn.onenote.net 3 GET 0 15 1.3
checkappexec.microsoft.com 1 POST 1348 143 0.43
click.kaspersky.com 1 GET 0 0 0.43
displaycatalog.mp.microsoft.com 2 GET 0 28164 0.87
dnl-10.geo.kaspersky.com 1 GET 0 25 0.43

February 6, 2019 Page 15 of 20



Domain name Number
of
requests

Observed
methods

Average
request
length
(bytes)

Average
response
length
(bytes)

Percentage of
total number
of requests

dnl-12.geo.kaspersky.com 36 GET 0 4277 15.58
dnl-13.geo.kaspersky.com 3 GET 0 730 1.3
europe.smartscreen-prod.microsoft.com 1 POST 1348 143 0.43
images.taboola.com 2 GET 0 266107 0.87
img-s-msn-com.akamaized.net 38 GET 0 9106 16.45
img.s-msn.com 1 GET 0 410 0.43
licensing.mp.microsoft.com 10 POST 761 293 4.33
login.live.com 1 POST 4915 10749 0.43
otf.msn.com 11 GET,

OPTIONS,
POST

795 8 4.76

ris.api.iris.microsoft.com 9 GET 0 0 3.9
sam.msn.com 8 OPTIONS,

POST
355 0 3.46

sls.update.microsoft.com 30 GET 0 7793 12.99
static-spartan-neu-s-msn-com.akamaized.net 8 GET 0 47433 3.46
support.kaspersky.co.uk 39 GET 0 15039 16.88
tile-service.weather.microsoft.com 3 GET 0 4244 1.3
www.bing.com 8 GET, POST 590 4729 3.46
www.msn.com 8 GET, POST 604 87628 3.46

C.5 Common

Domain name Different datasets observed in Total number of requests
364bf5fa.akstat.io 1 2
a-ring-fallback.msedge.net 2 4
a-ring.msedge.net 1 4
access.backup.norton.com 1 8
ajax.googleapis.com 3 3
analytics.ccs.mcafee.com 1 7
analyticsdcs.ccs.mcafee.com 1 13
api-s2s.taboola.com 2 3
app.mcafee.com 1 101
arc.msn.com 3 19
b-ring.msedge.net 2 6
bgpdefault-amb.msedge.net 1 2
bing.com 1 1
blob.weather.microsoft.com 2 2
c.bing.com 1 1
c.go-mpulse.net 1 1
c.msn.com 1 3
c.s-microsoft.com 1 1
carcharodon.trendmicro.com 1 2
cdn.adsoptimal.com 3 16
cdn.onenote.net 3 6
cdn.tt.omtrdc.net 1 1
chart.googleapis.com 1 1
checkappexec.microsoft.com 3 3
chk.trendmicro.com 1 1
click.kaspersky.com 1 1
cm.everesttech.net 1 1
cohort.ccs.mcafee.com 1 22
consumerapps.mcafee.com 1 6
context-enroll.ccs.mcafee.com 1 1
ctldl.windowsupdate.com 2 14
cu1pehnswad01.servicebus.windows.net 1 5
cu1pehnswss01.servicebus.windows.net 1 364

February 6, 2019 Page 16 of 20



Domain name Different datasets observed in Total number of requests
dasmalwerk.eu 3 46
data.hackerwatch.org 1 6
displaycatalog.mp.microsoft.com 2 13
dls.symantec.com 1 1
dnl-10.geo.kaspersky.com 1 1
dnl-12.geo.kaspersky.com 1 36
dnl-13.geo.kaspersky.com 1 3
download.mcafee.com 1 276
dpm.demdex.net 1 3
europe.smartscreen-prod.microsoft.com 3 4
faults.norton.com 1 11
fls-na.amazon-adsystem.com 3 8
fonts.googleapis.com 2 4
fonts.gstatic.com 2 8
fp.msedge.net 2 8
fs.microsoft.com 1 2
g.live.com 1 4
google-analytics.com 1 373
hb.lifecycle.norton.com 1 3
home.mcafee.com 1 14
identitysafe.norton.com 1 12
iecvlist.microsoft.com 3 7
images-na.ssl-images-amazon.com 2 2
images.outbrainimg.com 2 9
images.taboola.com 4 19
img-prod-cms-rt-microsoft-com.akamaized.net 2 7
img-s-msn-com.akamaized.net 4 430
img.s-msn.com 1 1
ipv6-mirror-iaus.activeupdate.trendmicro.com:443 1 47
ir-na.amazon-adsystem.com 3 8
l-ring.msedge.net 1 2
lam.rest.gti.mcafee.com 1 6
licensing.mp.microsoft.com 2 23
liveupdate.symantec.com 1 1
liveupdate.symantecliveupdate.com 1 79
login.live.com 4 22
login.microsoftonline.com 1 1
markets.books.microsoft.com 1 1
mcdp-chidc2.outbrain.com 1 4
mcloud.mcafee.com 1 22
md5.hackerwatch.org 1 2
messages.mcafee.com 1 11
messaging.ccs.mcafee.com 1 24
nexus.ensighten.com 1 4
ocsp.digicert.com 2 10
ocsp.thawte.com 1 1
ocsp.verisign.com 1 1
oms.symantec.com 1 2
oneclient.sfx.ms 1 4
otf.msn.com 4 107
ow1.res.office365.com 1 2
peer2-amb.msedge.net 1 2
platform.mcafee.com 1 11
policy.ccs.mcafee.com 1 17
policyorchestration.ccs.mcafee.com 1 8
provision.ccs.mcafee.com 1 4
pt31-feature-cfg-prod.s3.amazonaws.com 1 1
purchase.mp.microsoft.com 1 6
ratings-wrs.symantec.com 1 1
remote.vroptimal-3dx-assets.com 3 16

February 6, 2019 Page 17 of 20



Domain name Different datasets observed in Total number of requests
res.appletuner.trendmicro.com 1 1
resources.infolinks.com 3 6
ris.api.iris.microsoft.com 3 22
router.infolinks.com 3 16
s-ring.msedge.net 1 2
sadownload.mcafee.com 1 136
sam.msn.com 4 24
servicediscovery.ccs.mcafee.com 1 17
sf.symcd.com 1 1
shasta-rrs.symantec.com 1 23
sitedirector.symantec.com 1 1
sls.update.microsoft.com 1 30
sm.mcafee.com 1 1
spoc.norton.com 1 10
ssl.google-analytics.com 2 10
static-spartan-neu-s-msn-com.akamaized.net 4 61
static.nortoncdn.com 1 2
stats.norton.com 1 82
storage.backup.norton.com 1 2
store-images.s-microsoft.com 1 1
storeedgefd.dsx.mp.microsoft.com 1 1
storesdk.dsx.mp.microsoft.com 1 5
support.kaspersky.co.uk 1 39
symantec.demdex.net 1 1
symantec.tt.omtrdc.net 1 1
tags.tiqcdn.com 1 3
tile-service.weather.microsoft.com 3 7
titanium15-0-en.url.trendmicro.com:80 1 6
titanium15-en.gfrbridge.trendmicro.com:80 1 33
titanium1500-en-census.trendmicro.com:80 1 35
tms15.icrc.trendmicro.com 1 267
ts-ocsp.ws.symantec.com 1 1
updatecenter.norton.com 1 2
us.mcafee.com 1 10
virustotalcloud.appspot.com 1 47
webadvisorc.rest.gti.mcafee.com 1 5
wms-na.amazon-adsystem.com 2 6
ws-na.amazon-adsystem.com 3 8
ws.mcafee.com 1 2
wss.rest.gti.mcafee.com 1 5382
www.bing.com 4 241
www.mcafee.com 1 4
www.msn.com 4 68
www.virustotal.com 1 20
www2.bing.com 1 1

February 6, 2019 Page 18 of 20



APPENDIX D
USER EMULATION SCRIPTS

D.1 pywinauto script
import pywinauto, time

app = pywinauto.Application(backend=’uia’).connect(path=’explorer’)
app.Program manager.desktop.Microsoft edge.click input(double=True)

time.sleep(1)
edge app = pywinauto.Application(backend=’uia’).connect(title re=’.* Microsoft Edge’)

edge app.Microsoft edge.child window(auto id=’addressEditBox’).set edit text(’http://192.168.3.1:8000’).type keys(’ENTER’)
time.sleep(3)
edge app.top window().descendants(title=’beacon-x64-test.exe’, control type=’Hyperlink’)[0].click input()
edge app.top window().descendants(title=’Save’, control type=’Button’)[0].click input()
time.sleep(2)
edge app.kill()

app.Taskbar.Running applications.File explorer.click input()
time.sleep(1)

file explorer = pywinauto.Application(backend=’uia’).connect(title=’File Explorer’)
file explorer.File explorer.File explorer.Tree view.Desktop.This Pc.Downloads.click input()
file explorer.Downloads.descendants(title=’beacon-x64-test.exe’, control type=’ListItem’)[0].click input(double=True)
time.sleep(1)
if file explorer.Downloads.Open File Security Warning.exists():
file explorer.Downloads.Open File Security Warning.Run.set focus()
time.sleep(1)
file explorer.Downloads.Open File Security Warning.Run.set focus().click input()

D.2 pyautogui script
import webbrowser, time, pyautogui as p

p.FAILSAFE = True
p.PAUSE = 1

class iexplorer(object):
def open iexplorer(self):
webbrowser.open(’http://192.168.3.1:8000’)
time.sleep(1)

def Select sample(self, x, y):
p.moveTo(x,y, duration=1)
p.click(clicks=1, button=’left’)

def download malware(self):
save = p.locateOnScreen(r’C:/Users/RP1/Pictures/Save.png’)
if save:
coordinates=[]
for x in save:
coordinates.append(x)
p.moveTo(coordinates[0], coordinates[1], duration=0.5)
p.click(clicks=1, button=’left’)

February 6, 2019 Page 19 of 20



def mcafee popup(self):
time.sleep(2)
mcafee = p.locateOnScreen(r’C:/Users/RP1/Pictures/accept the risk.png’)
if mcafee:
coordinates=[]
for x in mcafee:
coordinates.append(x)
p.moveTo(coordinates[0], coordinates[1], duration=0.5)
p.click(clicks=1, button=’left’)

def open folder(self):
time.sleep(15)
folder = p.locateOnScreen(r’C:/Users/RP1/Pictures/Open folder.png’)
if folder:
coordinates=[]
for x in folder:
coordinates.append(x)
p.moveTo(coordinates[0], coordinates[1], duration=0.5)
p.click(clicks=1, button=’left’)

def run file(self):
time.sleep(2)
exe = p.locateOnScreen(r’C:/Users/RP1/Pictures/exe.png’)
if exe:
coordinates=[]
for x in exe:
coordinates.append(x)
p.moveTo(coordinates[0], coordinates[1], duration=0.5)
p.click(clicks=2, button=’left’)
time.sleep(1)

smartscreen = p.locateOnScreen(r’C:/Users/RP1/Pictures/smartscreen.png’)
if smartscreen:
coordinates=[]
for x in smartscreen:
coordinates.append(x)
p.moveTo(coordinates[0], coordinates[1], duration=0.5)
p.click(clicks=1, button=’left’)

browser = iexplorer()
browser.open iexplorer()
browser.select sample sample(150,225)
browser.download malware()
browser.open folder()
browser.run file()

February 6, 2019 Page 20 of 20


