
Security evaluation of glucose monitoring

applications for Android smartphones

Research Project 1
Master Security and Network Engineering

University of Amsterdam
Project report
Version: 1.0

Roy Vermeulen roy.vermeulen @os3.nl

Edgar Bohte edgar.bohte@os3.nl

Supervisors:
Alex Stavroulakis (KPMG)
Vincent de Jager (KPMG)

February 10, 2019

1

Abstract

Smartphone applications support diabetic patients with glucose moni-
toring, which improves quality of life. These applications process sensitive
medical data, while smartphone applications have previously been proven
to likely be insecure.

We selected three popular smartphone applications for glucose monitor-
ing. We tested these applications with well known tools to discover security
flaws. The security flaws that were found were categorised by the Open Web
Application Security Project mobile top 10 framework.

Data storage was found to be the largest security risk in most applica-
tions, as sensitive data was found to be stored in Android system logs and
local data was unencrypted. Insecure authentication was another large se-
curity risk, as password policies did not enforce the use of strong passwords
and authentication tokens were not generated randomly and not invalidated
regularly.

There was at least one method found to obtain sensitive data in each of
the analysed applications. A way to alter medical data was found in two out
of three analysed applications. While the reviewed applications were found
to be secure on many aspects, all of them had some security flaws.

Keywords: Diabetes, Security, Android, Glucose monitoring, Ap-
plication

2

Contents

1 Introduction 4
1.1 Research questions . 5

2 Related Work 5

3 Methods 6
3.1 App selection . 6
3.2 Test setup . 7
3.3 Results categorization . 7
3.4 Restrictions . 8
3.5 Tools . 8

4 Results 9
4.1 Improper platform usage . 9

4.1.1 Permissions . 9
4.1.2 Exported activities . 10

4.2 Insecure Data Storage . 10
4.2.1 Android system logs 10
4.2.2 Local storage . 11
4.2.3 Advertisement and analytics add-ons 11

4.3 Insecure Communication . 11
4.3.1 Usage of HTTP and HTTPS 12
4.3.2 SSL analysis . 12

4.4 Insufficient cryptography . 12
4.5 Insecure Authentication . 12

4.5.1 Authentication tokens 12
4.5.2 Password policy . 13

4.6 Reverse Engineering . 13
4.7 Overall rating of results . 13

5 Discussion 14
5.1 Discussion of results per app 14

5.1.1 Glucose Buddy . 14
5.1.2 Diabetes:M . 15
5.1.3 Diabetes Connect . 15

5.2 Overlapping issues . 16
5.2.1 Local storage . 16
5.2.2 Password Policy . 16
5.2.3 Connection security 17
5.2.4 Add-ons . 17

5.3 Future work . 17

6 Conclusion 18

3

1 Introduction

According to the latest data, which is from 2014, 422 million adults
worldwide have diabetes and this number is likely to grow [1]. Diabetes can
have negative consequences for a patient’s health, but with proper disease
management, nearly all of these consequences can be avoided. Therefore,
it is important for patients to keep their glucose levels under control, a
practice called diabetes management. To keep glucose levels under control
a patient should log their measured glucose levels. This is most commonly
done by catching a drop of blood with a strip and putting it in a device,
which measures the glucose level.

In the past, keeping track of these measured values was done with pen
and paper. Nowadays, there are smartphone applications (apps) where the
patient can fill in the measured glucose levels or even connect the measure-
ment device to the smartphone. In a report from 2016, it was reported that
4.1 million people were using diabetes monitoring apps at the time [2].

Inherent to their function, diabetes monitoring apps process medical
data. Medical data is considered sensitive data under the European General
Data Protection Regulation (GDPR) and is subject to particularly strict
rules [3]. These rules appear to be justified, as medical data can be used for
high financial gain on black markets and retains its value over time [4, 5].
The value of this medical data lies in the multitude of ways in which it can
be exploited, such as medication fraud or insurance fraud [6]. Some of these
ways can be very harmful to the patient, such as identity theft or medical
blackmail [5, 7].

Even though diabetes monitoring apps do not contain full medical records,
confidentiality of the data they contain and processes is still a concern.
Knorr et al. [8] outlined a few theoretical threat actors and their motives to
exploit this data to their benefit, which can be detrimental to the users of
the apps. An example of this is a health insurance company, who might want
diabetes monitoring data. Such a company could use this data to increase
the health insurance premium of patients, who have difficulty with diabetes
management. These concerns are not only theoretical since 168 out of 1419
major healthcare data breaches reported to the United States Department
of Health and Human Services involved mobile devices [9].

The integrity of the data processed by diabetes monitoring apps is also
a concern, in this case with regards to the safety of the user. For example,
most apps can be used to calculate the amount of insulin that needs to
be injected. If a malicious third party can compromise the integrity of the
measurement data, a patient could inject the wrong amount of insulin. This
could have dangerous consequences for the patient’s health [10].

4

1.1 Research questions

Considering the security issues stated above, we pose the following re-
search question:

What is the current state of security in popular diabetes blood glucose
monitoring apps?

To answer this question, we investigated the following sub-questions:

1. Which data can be derived from these apps by an unauthorized third
party?

2. How can an unauthorized third party derive data from the glucose
monitoring apps?

3. How can an unauthorized third party alter the data in these apps?

Section 2 will describe the academic work we found related to this topic.
Section 3 will cover the methods that we used to execute this research. In
Section 4, we will present the results of our research and in Section 5, we
will discuss the impacts of these results. In Section 6, we will answer our
research questions and draw a conclusion.

2 Related Work

In Section 1 we explained the context for our research. In this section,
we will discuss some of the work done on this subject by other researchers.
We will discuss papers on the topic of general Android security, on the topic
of mobile health application security and lastly, we will discuss a research
paper on the topic of threat mitigation in mobile health application security.

Khan et al. [11] used a theoretical approach to demonstrate that the
possibilities for Android applications to have security flaws. Khan outlined
a few theoretical attacks. One of these attacks, for example, made it possible
for apps to transmit sensitive data without the user’s consent. Khan also
argued that that application developers do not follow best security practice,
which can lead to misuse of the apps. Examples of this misuse are battery
draining and assisting in a Distributed Denial Of Service attack. Finally,
Khan argued that the security controls of Android are limited, which for
example do not give users enough control over the behavior of the apps. The
limited security controls cannot prevent malicious apps to pose as legitimate
apps in the official Google Play store.

Furthermore, Felt et al. [12] created a tool to check whether Android
applications had more permissions than they needed. This tool generated
the maximum set of permissions needed for the application and compared

5

them to the set of permissions requested. Felt et al. found that of 940
analyzed Android apps, about one-third of these apps requested more per-
missions than they needed. Applications were generally overprivileged by a
few permissions. This indicates that developers often misuse this security
control.

Knorr et al. [8, 13] looked at the privacy, security, and safety of 154
mobile health (mHealth) Android apps, which are used for managing blood
pressure or diabetes. To perform this analysis they made a framework [8]. In
this framework, there are four parts, namely, static analysis, dynamic analy-
sis, web server security, and privacy policy inspection. From these analyses,
they determined that most apps lack encryption of data transmission and
storage [13]. Furthermore, in-app adds are also a problem, because they
send the package name in clear text in the HTTP header, which can be used
by thieves and eavesdroppers for easy access. Also, many apps lacked or
have an incomplete privacy policy.

Papageorgiou et al. [14] also did an analysis of security in Android
mHealth applications. They did static analyses, dynamic analyses, web
server security analyses, and privacy policy inspections. Furthermore, they
analyzed unnecessary permissions requested by the apps, assessed the com-
pliance with the GDPR and tracked the developers’ response to their find-
ings. Papageorgiou et al. found multiple major security and privacy issues
in most of the 20 apps that they analyzed, for example transmitting health
data insecurely to the vendor. Minor issues were also found in many apps,
for example the transmission of anonymous behavioural data to third par-
ties.

In an attempt to provide a solution to these security risks, Hussain et
al. [15] created a framework which could be implemented on Android smart-
phones to prevent apps on the smartphone to access data when they should
not. However, this framework is difficult to implement on a large scale and
for now, does not provide a widely implementable solution.

3 Methods

Now that we have explained the context and the state of research on this
topic, we will use this section to explain the way we executed our research.
We will start by discussing the selection of the Android apps we analyzed.
We will then explain our test setup, continued by the categorization of our
results. Furthermore, we will discuss the restrictions of this research and we
will close off by discussing the tools we used for this research.

3.1 App selection

In this research, we looked at three of the most popular apps measured
by rating and number of reviews on the Google Play store. We searched

6

the Google Play store manually. Due to time constraints, we limited our
scope to Android apps only, as Android is the most widely used operating
system [16]. We limited the scope further by excluding paid-for apps and
paid-for features in free apps. We only selected glucose monitoring apps
that allow a user to manually enter blood glucose data. Therefore, apps
that obtain their measurements solely by connecting to a device are outside
the scope of this research.

3.2 Test setup

For the analysis of these apps, we used an emulated device which ran
Android 8.0 Oreo. We used the Genymotion emulator [17] for this emulation.
We obtained the Android application package (APK) files from the Google
Play store and loaded them onto the emulated device with Android Debug
Bridge (adb) [18]. For each app, we manually generated simulated patient
data.

3.3 Results categorization

We tested the apps for vulnerabilities described in the ten categories
of the Open Web Application Security Project (OWASP) mobile top 10.
OWASP is a not-for-profit charitable organization that provides resources
for building and maintaining apps [19]. One of these resources is a top 10
mobile risks list. These are updated periodically and the latest version, as
of writing this document, is from 2016. This list is updated by the use of a
survey and a call for data submission globally. The list was then finalized
by giving their community a 90 day feedback period. The categories in the
OWASP mobile top 10 are as follows:

1. Improper Platform Usage

2. Insecure Data Store

3. Insecure Communication

4. Insecure Authentication

5. Insufficient Cryptography

6. Insecure Authorisation

7. Client Code Quality

8. Code Tampering

9. Reverse Engineering

10. Extraneous Functionality

7

3.4 Restrictions

We did not perform tests that would disrupt or slow down the service
that these apps provide in any way. Furthermore, we limited our scope to
users, who downloaded the apps from the Google Play store. We analyzed
the apps as they are found in the Google Play store and we did not explore
the option that users can download modified versions of the apps through
third parties. Therefore, OWASP category 8: ”code tampering” was omitted
because it is outside of our scope. Due to time constraints, we cannot analyze
code manually and therefore OWASP categories 7: ”client code quality” and
category 10: ”extraneous functionality” were also omitted.

3.5 Tools

We used a number of tools to test for vulnerabilities. Most results were
obtained through the use of these tools. Nevertheless, the password policy
analysis was done manually. Different passwords were used to evaluate the
password requirements, such as the minimum password length, maximum
password length, use of password trimming, and the use of numbers and
special characters. The tools we used are listed below.

• The Mobile Security Framework (MobSF) [20] is an automated mobile
penetration testing framework. We used this framework to perform
static analyses to check which permissions the apps use and to obtain
the java code.

• adb [18] is a command line tool used to communicate with an Android
device. We used it to inspect the logs and the local storage.

• SSLlabs [21] is an online toolkit for testing Secure Sockets Layer,
Transport Layer Security, and Public Key Infrastructure. We used
SSLlabs to examine the security of the connections to the servers that
the apps use.

• BurpSuite [22] is a toolkit for testing web application security. We
used BurpSuite to monitor and manipulate the traffic the apps send
and receive.

• Drozer [23] is a security audit and attack framework. It was used by
us to see which activities are exported. If the activity is exported and
the permissions are not set, every app can invoke them.

• AddonsDetector [24] is a smartphone application that is used to de-
tect what add-ons apps use and which apps send push notification
advertisements. We used AddonsDetector to check if there were any
advertisement add-ons that might collect sensitive data.

8

4 Results

In Section 3 we discussed the approach to our research. In this section,
we will present our findings from following that approach. We start by
discussing the apps that were selected for analysis. Next, we list our results,
categorized by the OWASP top 10 category they belong to. We close off by
rating our results found in each category, which gives us a broader overview
of the results.

The apps selected for analysis are shown in Table 1. As we searched
the Google Play store manually, it is possible that we overlooked some glu-
cose monitoring apps. Nonetheless, the selected apps appear to be some
of the most widely used ones. The results of our analysis are listed below,
categorized by the OWASP top 10 vulnerabilities.

4.1 Improper platform usage

This category covers the misuse of platform features and failure to use
platform security controls. In the context of our research, the analysis of
requested Android permissions falls in this category. Here we mention all
permissions that the apps have, but does not need for its functionality. We
also analyze all exported activities the applications have that could reveal
sensitive data and the permissions needed to invoke them.

4.1.1 Permissions

Applications running on Android do not have access to all data and
hardware on the smartphone by default. To access certain sensitive data or
system features, applications need to ask the user for permission. Sometimes
these permissions are asked on the installation of the app, sometimes they
are asked when activating a certain feature of the app which requires a spe-
cific permission. The nature of these permissions can range from accessing
the users’ contacts to using the phones’ internet connection.

Most of the permissions that Glucose Buddy requires are needed for
the functionalities that it provides. However, it does have permission to
turn on the camera flash for an extended period of time, but we could not
find a reason why the app required this permission. However, having this

App name Version number Average rating Number of reviews
Glucose Buddy 5.36.3775 4.4 14,386
Diabetes:M 7.0.8 4.6 17,110
Diabetes Connect 2.4.1 4.5 4,186

Table 1: Diabetes monitoring apps selected for analysis with their corre-
sponding version number, average rating, and number of reviews.

9

permission does not create a security risk.
Most of the permissions that Diabetes:M requires are also necessary for

the functionalities that it provides. It does have permission to access the
location of the phone, in both coarse granularity and fine granularity, while
we could not find a reason that it required this permission. All of the
permissions Diabetes Connect required are used for its functionalities.

4.1.2 Exported activities

An exported activity is an activity that other apps can call. Each ex-
ported activity has a permission. However, this permission can also be null.
This means that every app can call this activity. Glucose Buddy has five
exported activities, all of which have a permission of null, but none of them
could be abused. Diabetes:M has nine exported activities, all of which also
have a permission of null. One of them could potentially be used for the
extraction of personal data including medical data. When this certain ex-
ported activity is called the user gets asked if another app could see their
configuration settings, last logged glucose value, and push logged glucose
values to their log. Diabetes Connect has two exported activities and both
of them have a permission of null. One of them could potentially be used to
extract medical data from the app. We could not prove that this is possible
in practice, as the app crashed whenever this exported activity was called.

4.2 Insecure Data Storage

The insecure data storage covers all data that is stored locally on the
device in an insecure manner and all data that is leaked. In the context of
our research, this category is for the analysis of Android system logs and
the security of local files and databases. Furthermore, the leakage of data
to third parties through advertisement and analytics service also belongs in
this category.

4.2.1 Android system logs

Glucose buddy stores the following items in the Android system logs:
settings, queries for food items, profile pictures, and the authentication to-
ken. The settings contain among other things the e-mail address, name and
time zone, so they are considered personal data. Diabetes:M does not log
any personal information in the public accessible logs. Diabetes Connect
logs the keystrokes of its own standard keyboard in the public accessible
logs when the user enters a measurement. In nearly all cases, this results
in all measurements being logged in the Android System logs. These mea-
surements include blood sugar level, carbohydrate intake, heart rate, weight
and medication intake.

10

4.2.2 Local storage

In the local storage of Glucose Buddy, we found a folder named shared prefs
in this folder there are multiple Extensible Markup Language (XML) files.
In one of these files the id, email, name, birthday, height, weight, profile pic-
ture, gender, and timezone can be found. Another file in this folder contains
the user id and the session token. In the local storage, there also is a folder
named databases, which contains multiple Structured Query Language Lite
3 (SQLite3) databases. One of these databases contains all data that can
be logged in the app.

In the local storage of Diabetes:M, we also find a folder named shared prefs,
which contains multiple XML files. One of these files contains the access
token, user id, security cookie, username, and what the targeted glucose
level should be. In the local storage, there also is a folder named databases,
which contains multiple SQLite3 databases. One of these databases contains
all data that can be logged in the app. Another database contains also the
medication the user has added to the app. Lastly, there is a database file
which contains all personal data such as username, name, email, birthday,
gender, etc.

In the local storage of Diabetes Connect we also find a folder named
shared prefs, which contains multiple XML files. One of these XML files
contains the gender, device id, password in plaintext, country, name, user-
name, and what the targeted glucose level should be. There also is a folder
with multiple SQLite3 databases. One of them contains all data that can
be logged in the app.

4.2.3 Advertisement and analytics add-ons

Glucose Buddy has one advertisement add-on and three analytics add-
ons. These are the Google Mobile Ads add-on and the Answers add-on,
Branch add-on and the Flurry add-on respectively. Diabetes:M has one
advertisement add-on and three analytics add-ons. These are Google Mo-
bile Ads add-on and the Answers add-on, Firebase Analytics add-on and
the Google Analytics add-on respectively. Diabetes Connect has no adver-
tisement add-ons and one analytics add-on. This analytics add-on is the
Firebase Analytics add-on.

4.3 Insecure Communication

The insecure communication category covers all vulnerabilities regarding
poor handshaking, incorrect Secure Sockets Layer (SSL) versions and plain-
text communication of sensitive data. Regarding our analysis, this category
contains the usage and quality of the HyperText Transfer Protocol Secure
(HTTPS) and Transport Layer Security (TLS) protocols.

11

4.3.1 Usage of HTTP and HTTPS

Glucose buddy uses HTTP for the export of measurement data and for
changing a password. This data can be intercepted and viewed in plaintext.
Diabetes:M and Diabetes Connect use HTTPS for all their communication.

4.3.2 SSL analysis

Analyzing the domains of Glucose buddy, Diabetes:M and Diabetes con-
nect with the SSLlabs tool resulted in many similar results. All three do-
mains did not support TLS 1.3, which is the latest version of the TLS
protocol. All domains did support TLS 1.0 through 1.2. Certificate Trans-
parency (CT) is a technique to detect wrongly issued TLS certificates. The
domain certificates of Glucose buddy and Diabetes Connect are registered
in certificate transparency logs, while the TLS certificate of Diabetes:M is
not registered in the certificate transparency logs. Another way to mitigate
the use of wrongly issued certificates is through Domain Name Server Cer-
tificate Authority Authorisation (DNS CAA). None of the domains of the
apps we evaluated supported DNS CAA. Furthermore, none of the apps we
evaluated used SSL pinning.

4.4 Insufficient cryptography

The insufficient cryptography category contains all risks that involve
cases where cryptography was applied but not implemented correctly. In
this research, we found no cases in which cryptography was applied. When
there is a lack of encryption, the OWASP guidelines state that it falls under
the category of insecure storage, which is treated in subsection 4.2. Therefore
there are no results to report in this section.

4.5 Insecure Authentication

The insecure authentication category encompasses failure to identify the
user or maintain the users’ identity when required. It also involves weak-
nesses in session management. For our analysis, this category is for the
weaknesses found in the use of authentication tokens and the password pol-
icy.

4.5.1 Authentication tokens

Glucose buddy generates authentication tokens which stay valid for an
extended period of time. Due to time constraints, we could not test for
exactly how long the token remains valid, but we observed that a token
remained valid for four weeks. The token also did not become invalidated
whenever the user logged out. We did not find improper usage of authenti-
cation tokens in Diabetes:M

12

Diabetes Connect generated the authentication code by combining the
e-mail address and the password, separated by a colon, and encoding them
with base64. Consequently, if this token is obtained, the e-mail address and
the password can be found and vice versa. This also means that the token
will remain valid for as long as the password and the e-mail address remain
unchanged.

4.5.2 Password policy

The results of our password policy analysis are shown in Table 2. Glucose
buddy and Diabetes:M employ the same password policy. There is only a
requirement on minimum length, which is 8 characters. There are no further
rules in the password policy. The password policy of Diabetes Connect
requires the password to be at least 6 characters and to contain at least
1 letter and 1 number. There are no further rules in the password policy.
Passwords are not converted into lowercase in any of the analyzed apps. In
one app the password was trimmed if it was too long. Diabetes:M trimmed
the password to a length of 72 characters whenever the password exceeded
72 characters.

4.6 Reverse Engineering

This category is for all vulnerabilities that can be found through de-
compiling the apps and analyzing them. For our research, we make a quick
assessment of how much code obfuscation is used. We found that all apps
used some code obfuscation. Often classes or methods that should have had
meaningful names were given random or arbitrary names.

4.7 Overall rating of results

We rated the apps on each OWASP category a rating from one to three.
One means that we found no security issues, or only minor security issues.
Two means that we found security issues that were hard to exploit or had
low impact. Three means that we found vulnerabilities that had a large
impact. These results are displayed in Table 3.

Glucose Buddy Diabetes:M Diabetes Connect
Length minimum 8 minimum 8 minimum 6
Letters no rules no rules at least one letter
Numbers no rules no rules at least one number
Special characters no rules no rules no rules

Table 2: Password policies of the analysed apps

13

OWASP category Glucose Buddy Diabetes:M Diabetes Connect
1: Improper platform usage 1 2 2
2: Insecure data storage 3 2 3
3: Insecure communication 3 1 1
4: Insecure Authentication 2 2 3
6: Insecure authorisation 2 1 3
9: Reverse engineering 1 1 1

Table 3: Results rated from 1 to 3, 1 being no vulnerabilities found, 2 being
minor vulnerabilities found or vulnerabilities found that are hard to exploit
and 3 being major vulnerabilities found

5 Discussion

In Section 4 we presented the vulnerabilities that we found in our re-
search. In this section, we discuss how these vulnerabilities could impact
the users of the diabetes apps. We also discuss the options for developers
to solve these vulnerabilities. Moreover, we suggest solutions for the users
to mitigate these risks for when the developers have not (yet) solved these
vulnerabilities.

5.1 Discussion of results per app

5.1.1 Glucose Buddy

In Glucose Buddy, the app logged the authentication token in the An-
droid system logs. These logs are accessible for all apps. A malicious app or
a malicious actor with physical access to the device could, therefore, extract
the logs and obtain the authentication token. This authentication token
could be used to read and modify the data stored serverside through Appli-
cation Programmer Interface (API) calls.
This security risk is increased by the fact that authentication tokens stay
valid for at least four weeks and are not invalidated by a logout. It is not
clear how long these tokens stay valid exactly, but it could be possible that
a malicious actor can gain access by obtaining a relatively old token. The
likelihood of installing a malicious app might be small, as many users might
not install apps from third parties. Yet, a malicious app could appear in
the play store for a period of time or a user could be tricked into installing
a malicous app through a phishing campaign.

Developers can mitigate this security risk by not storing sensitive data
in the Android system logs and invalidating old authentication tokens after
a reasonable amount of time and after every logout. Users can mitigate this
threat by preventing the installation of malicious apps and implementing
strong physical security. Physical security in this context means securing the

14

device with a strong authentication method and preventing loss or theft as
much as possible. It is also helpful to implement a remote locking mechanism
that can be activated in case of loss or theft. Preventing installation of
malicious apps can be done by installing only apps from a trusted source
through the Google Play store and by being aware of phishing dangers.

Another security risk is that some functionality of the app is handled
through a web viewer and this data is sent over HTTP. This functionality
includes changing passwords, logging in and out, and exporting measure-
ment data. While this functionality is most likely used infrequently, it is
possible for a malicious actor who is intercepting the traffic to obtain the
e-mail address and password belonging to an account whenever the feature
is used.

Developers can mitigate these risks by implementing secure communica-
tion channels. Users can mitigate these risks by connecting their phone to
the internet through a Virtual Private Network (VPN) and only connected
to properly secured WiFi networks.

In Glucose Buddy it is possible to share measurement data through links.
These links are not generated randomly but incremented by 1 every time a
link is generated. This way, anyone can know which links have been gener-
ated in the past. When following such a link, anyone with an account can
log in and view this data. This combined with the possibility to guess share
links makes it possible for unauthorized third parties to view measurement
data. While this can hardly be used for a targeted attack, it is a case of
data leakage nonetheless.

Developers can mitigate this risk by creating random share links with a
large character space. This way it becomes harder to guess links containing
shared data. A better mitigation would be that the share links require a
stronger authentication method. Users can only mitigate this risk by not
sharing sensitive data through share links.

5.1.2 Diabetes:M

In Diabetes:M exported activities can be invoked to see the last logged
measurement and configuration settings. This risk can be mitigated by
developers by requiring permissions for the exported activities.

5.1.3 Diabetes Connect

Diabetes Connect had its android:allowBackup tag set to ”true”. This
can be leveraged to obtain e-mail addresses and passwords. These are not
hard to obtain, as this data is stored unencrypted. Authentication tokens
in this app consist of the base64 encoded e-mail addresses and password,
separated by a colon. Since a malicious actor can obtain the e-mail address
and password as described in this paragraph, the actor can generate the

15

authentication token. Having the authentication token, the malicious actor
can invoke API calls to both read and modify the data stored server-side.
The malicious actor does need physical access to the device or root access
to the device.

This attack is possible because of multiple security flaws. The most de-
sirable mitigation for the developers to implement is to encrypt any sensitive
data that is stored locally and store passwords as a hash whenever it is nec-
essary to store these. Furthermore, it is necessary to generate authentication
tokens randomly and change them for every login, as the authentication to-
kens can be used to obtain a password in their current state. Finally, it is
desirable to set the android:allowBackup to false if possible.
Users can mitigate this risk by implementing strong physical security.

For this next attack, it is worth noting that the app crashed when we
performed this attack, and therefore we cannot prove that this attack can
be successful in practice. While we could not investigate the nature of the
crash completely due to time constraints, we do believe that the attack is
possible. We believe that it is possible to use the exported activity to store
all of the medical data of this app elsewhere on the device. A malicious app
could do this and subsequently read the medical data. The most desirable
mitigation for the developers to prevent this attack is to require a permission
in order to invoke this activity. Users can mitigate this attack by preventing
the installation of malicious apps.

5.2 Overlapping issues

5.2.1 Local storage

None of the apps used encryption for the data in local storage. In all
apps, this data contains some form of personal data and medical data. Ac-
cessing locally stored data does require root privilege, but there are ways in
which a malicious app, for example, can root a phone[25]. Therefore, the
sensitive data that is stored locally would be safer if it were encrypted.

5.2.2 Password Policy

None of the apps enforced a strong password policy. Glucose Buddy and
Diabetes:M required 8 characters and Diabetes Connect required 6 char-
acters and that at least one letter and one number would be used in the
password. Not forcing a user to create a longer password makes users likely
to use short passwords [26]. Passwords of only 8 characters in length are
fairly easy to crack in case the password hashes are leaked in a data breach.
Furthermore, it is likely possible to guess passwords of 6 to 8 characters
when trying to log in with a dictionary attack or a credential stuffing at-
tack, which is an attack where passwords from previous data breaches are
used to attempt a login into other accounts. Requiring at least one letter

16

and one number to be used makes a dictionary attack or credential stuffing
attack slightly less effective but does not mitigate the risk completely.

5.2.3 Connection security

None of the domains to which the apps connected implemented DNS
CAA, but two of the three domains had their TLS certificate registered in
CT logs. These technologies are used to prevent the use of a wrongly issued
certificate. The likelihood of an attack occurring, which involves a wrongly
issued certificate is low, but the impact could be great [27]. DNS CAA is
not a widely used technology, however, as of January 7th, 2019, only 4,3% of
websites indexed by SSL labs used DNS CAA [28]. This indicates that DNS
CAA is currently not standard practice in security. For two of the apps, this
is also not a big security risk, as they can identify wrongly issued certificates
through CT. Mitigating attacks involving wrongly issued certificates can also
be mitigated through SSL pinning, yet none of the evaluated apps implement
this technique.

All servers the apps are communicating with support a few weak encryp-
tion cipher suites. This makes TLS communication vulnerable to downgrade
attacks. These attacks make it possible to view and modify the data being
sent.

5.2.4 Add-ons

All of the analyzed apps use analytics add-ons and two of the apps
used advertisement add-ons. Although analyzing which data is sent through
these add-ons was not possible due to time constraints, it is likely that these
add-ons collect and send sensitive data about the app usage without the
user’s consent. This leads to third parties being in possession of this data
without the user’s knowledge or consent. Furthermore, having more parties
in possession of this data leads to a higher chance of data being compromised
in a data breach.

5.3 Future work

Many subjects were left outside of the scope of this research. This re-
search focused on apps created for the Android operating system. It could
be interesting to look at apps created for another smartphone operating
system to see if security is implemented differently in those apps. iOS is
another widely used smartphone operating system [16], which makes it an
interesting candidate for this topic of research.

In this research, only a few apps were evaluated. It could be interesting
to expand this research and evaluate more apps and to include apps that
have paid-for features.

17

We did not do invasive testing of the server-side security of these apps.
Comprehensively testing the server side security of diabetes apps could be
another interesting subject of research. This kind of research would require
the permission of each app vendor.

Lastly, we also did not include sensors that connect to smartphone apps.
The fact that the measurement data is transferred automatically to the
smartphone poses additional security issues in relation to medication safety,
which makes it an interesting topic for further research.

6 Conclusion

We examined the current state of security in glucose monitoring apps in
this paper. From the research we performed, it can be seen that some kind
of data can be obtained for all the tested apps. In all cases, this is glucose
levels, but in some apps, you are also able to log your blood pressure, heart
rate, and medications. Other personal information, such as e-mail address,
full name, gender, etc., can also be obtained.

We found for the tested apps this data can be extracted via the use of
improper platform usage, insecure data storage, insecure communication,
and insecure authentication. Insecure data storage and authentication pose
the largest risks. Furthermore, the authentication vulnerabilities could be
used in such a way that we were able to modify the data, which was the
case for two out of the three apps. This can be done via abusing insecure
authentication tokens. Additionally, to exploit the vulnerabilities found in
this research, physical access to the device is needed or the vulnerabilities
can be exploited via a malicious app. The app developers should make
glucose monitoring apps as safe and secure as possible, yet users can also
take action to some extent in order to secure the data processed by these
apps.

References

[1] Margaret Chan. “Global report on diabetes.” In: World Health Orga-
nization 58.12 (2014), pp. 1–88. issn: 1098-6596. doi: 10.1128/AAC.
03728-14. url: http://apps.who.int/iris/bitstream/handle/
10665/204871/9789241565257_eng.pdf?sequence=1 (visited on
01/08/2019).

[2] Ralf-Gordon Jahns. The addressable market for diabetes apps in 2016
has increased to 135.5M potential app users (diagnosed diabetics), out
of which 4.1M are active users. url: https://research2guidance.
com/the- addressable- market- for- diabetes- apps- in- 2016-

has-increased-to-135-5m-potential-app-users-diagnosed-

18

https://doi.org/10.1128/AAC.03728-14
https://doi.org/10.1128/AAC.03728-14
http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1
https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/
https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/
https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/
https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/

diabetics-out-of-which-4-1m-are-active-users/ (visited on
01/16/2019).

[3] Health Data in the workplace. url: https://edps.europa.eu/data-
protection/data-protection/reference-library/health-data-

workplace_en (visited on 01/25/2019).

[4] The Real Threat Of Identity Theft Is In Your Medical Records, Not
Credit Cards. url: https://www.forbes.com/sites/forbestechcouncil/
2017/12/15/the-real-threat-of-identity-theft-is-in-your-

medical-records-not-credit-cards/ (visited on 01/26/2019).

[5] WHY ARE HACKERS TARGETING YOUR MEDICAL RECORDS?
url: https://luxsci.com/blog/hackers-targeting-medical-
records.html (visited on 01/26/2019).

[6] Hundreds arrested for $900 million worth of health care fraud. url:
https://edition.cnn.com/2016/06/23/health/health-care-

fraud-takedown/index.html (visited on 01/26/2019).

[7] Hackers stole photos from top plastic surgery clinic in London, threaten
to distribute them. url: https://www.foxnews.com/tech/hackers-
stole-photos-from-top-plastic-surgery-clinic-in-london-

threaten-to-distribute-them (visited on 01/26/2019).

[8] Konstantin Knorr and David Aspinall. “Security testing for Android
mHealth apps”. In: Software Testing, Verification and Validation Work-
shops (ICSTW), 2015 IEEE Eighth International Conference on. IEEE.
2015, pp. 1–8.

[9] B Hewitt, D Dolezel, and A McLeod Jr. “Mobile Device Security: Per-
spectives of Future Healthcare Workers”. In: Perspectives in health in-
formation management 14.Winter (2017). issn: 15594122. url: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85045048263&

partnerID=40&md5=974ec6b5e4790bad1d85e9992d1f5275.

[10] Insulin Overdose: Signs and Risks. url: https://www.healthline.
com/health/diabetes/insulin-overdose#od-symptoms (visited on
01/26/2019).

[11] Sohail Khan et al. “How secure is your smartphone: An analysis of
smartphone security mechanisms”. In: Proceedings 2012 International
Conference on Cyber Security, Cyber Warfare and Digital Forensic,
CyberSec 2012 (2012), pp. 76–81. issn: 01676636. doi: 10 . 1109 /

CyberSec.2012.6246082.

[12] Adrienne Porter Felt et al. “Android Permissions Demystied.pdf”. In:
(), pp. 627–637.

19

https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/
https://research2guidance.com/the-addressable-market-for-diabetes-apps-in-2016-has-increased-to-135-5m-potential-app-users-diagnosed-diabetics-out-of-which-4-1m-are-active-users/
https://edps.europa.eu/data-protection/data-protection/reference-library/health-data-workplace_en
https://edps.europa.eu/data-protection/data-protection/reference-library/health-data-workplace_en
https://edps.europa.eu/data-protection/data-protection/reference-library/health-data-workplace_en
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/the-real-threat-of-identity-theft-is-in-your-medical-records-not-credit-cards/
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/the-real-threat-of-identity-theft-is-in-your-medical-records-not-credit-cards/
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/the-real-threat-of-identity-theft-is-in-your-medical-records-not-credit-cards/
https://luxsci.com/blog/hackers-targeting-medical-records.html
https://luxsci.com/blog/hackers-targeting-medical-records.html
https://edition.cnn.com/2016/06/23/health/health-care-fraud-takedown/index.html
https://edition.cnn.com/2016/06/23/health/health-care-fraud-takedown/index.html
https://www.foxnews.com/tech/hackers-stole-photos-from-top-plastic-surgery-clinic-in-london-threaten-to-distribute-them
https://www.foxnews.com/tech/hackers-stole-photos-from-top-plastic-surgery-clinic-in-london-threaten-to-distribute-them
https://www.foxnews.com/tech/hackers-stole-photos-from-top-plastic-surgery-clinic-in-london-threaten-to-distribute-them
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045048263&partnerID=40&md5=974ec6b5e4790bad1d85e9992d1f5275
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045048263&partnerID=40&md5=974ec6b5e4790bad1d85e9992d1f5275
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045048263&partnerID=40&md5=974ec6b5e4790bad1d85e9992d1f5275
https://www.healthline.com/health/diabetes/insulin-overdose#od-symptoms
https://www.healthline.com/health/diabetes/insulin-overdose#od-symptoms
https://doi.org/10.1109/CyberSec.2012.6246082
https://doi.org/10.1109/CyberSec.2012.6246082

[13] Konstantin Knorr, David Aspinall, and Maria Wolters. “On the pri-
vacy, security and safety of blood pressure and diabetes apps”. In:
IFIP International Information Security Conference. Springer. 2015,
pp. 571–584.

[14] Achilleas Papageorgiou et al. “Security and Privacy Analysis of Mobile
Health Applications: The Alarming State of Practice”. In: IEEE Ac-
cess 6 (2018), pp. 9390–9403. issn: 21693536. doi: 10.1109/ACCESS.
2018.2799522.

[15] Muzammil Hussain et al. “A security framework for mHealth apps on
Android platform”. In: Computers and Security 75 (2018), pp. 191–
217. issn: 01674048. doi: 10 . 1016 / j . cose . 2018 . 02 . 003. url:
https://doi.org/10.1016/j.cose.2018.02.003.

[16] Mobile Operating System Market Share Worldwide - December 2018.
url: http://gs.statcounter.com/os- market- share/mobile/

worldwide (visited on 01/26/2019).

[17] Genymotion Emulator home page. url: https://www.genymotion.
com/ (visited on 01/24/2019).

[18] Android Debug Bridge (adb). url: https://developer.android.
com/studio/command-line/adb (visited on 01/29/2019).

[19] Mobile top 10 2016. url: https://www.owasp.org/index.php/

Mobile_Top_10_2016-Top_10 (visited on 01/26/2019).

[20] Mobile Security Framework github page. url: https://github.com/
MobSF/Mobile-Security-Framework-MobSF (visited on 01/10/2019).

[21] SSLlabs home page. url: https://www.ssllabs.com/ (visited on
01/28/2019).

[22] Burp Suite home page. url: https://portswigger.net/burp (visited
on 01/10/2019).

[23] Dozer home page. url: https : / / labs . mwrinfosecurity . com /

tools/drozer (visited on 01/10/2019).

[24] Addons Detector home page. url: https://public.addonsdetector.
com/ (visited on 01/26/2019).

[25] Dvmap: the first Android malware with code injection. url: https:
//securelist.com/dvmap-the-first-android-malware-with-

code-injection/78648/ (visited on 02/09/2019).

[26] Troy Hunt. The science of password selection. url: https://www.
troyhunt.com/science-of-password-selection/ (visited on 02/04/2019).

[27] Nicole van der Meulen. “DigiNotar: Dissecting the First Dutch Digital
Disaster”. In: Journal of Strategic Security 6.2 (2013), pp. 46–58. issn:
1944-0464. doi: http://dx.doi.org/10.5038/1944-0472.6.2.4.

20

https://doi.org/10.1109/ACCESS.2018.2799522
https://doi.org/10.1109/ACCESS.2018.2799522
https://doi.org/10.1016/j.cose.2018.02.003
https://doi.org/10.1016/j.cose.2018.02.003
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.genymotion.com/
https://www.genymotion.com/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://www.ssllabs.com/
https://portswigger.net/burp
https://labs.mwrinfosecurity.com/tools/drozer
https://labs.mwrinfosecurity.com/tools/drozer
https://public.addonsdetector.com/
https://public.addonsdetector.com/
https://securelist.com/dvmap-the-first-android-malware-with-code-injection/78648/
https://securelist.com/dvmap-the-first-android-malware-with-code-injection/78648/
https://securelist.com/dvmap-the-first-android-malware-with-code-injection/78648/
https://www.troyhunt.com/science-of-password-selection/
https://www.troyhunt.com/science-of-password-selection/
https://doi.org/http://dx.doi.org/10.5038/1944-0472.6.2.4

[28] SSL Pulse. url: https://www.ssllabs.com/ssl-pulse/ (visited on
01/29/2019).

21

https://www.ssllabs.com/ssl-pulse/

	Introduction
	Research questions

	Related Work
	Methods
	App selection
	Test setup
	Results categorization
	Restrictions
	Tools

	Results
	Improper platform usage
	Permissions
	Exported activities

	Insecure Data Storage
	Android system logs
	Local storage
	Advertisement and analytics add-ons

	Insecure Communication
	Usage of HTTP and HTTPS
	SSL analysis

	Insufficient cryptography
	Insecure Authentication
	Authentication tokens
	Password policy

	Reverse Engineering
	Overall rating of results

	Discussion
	Discussion of results per app
	Glucose Buddy
	Diabetes:M
	Diabetes Connect

	Overlapping issues
	Local storage
	Password Policy
	Connection security
	Add-ons

	Future work

	Conclusion

