

Client-side Attacks on the LastPass Browser Extension

Derk Barten

Master Security and Network Engineering, UvA

LastPass

"Cloud based" password manager

13 Million users, 33k businesses

Browser extension in Javascript

Custom implementation of AES/SHA/PBKDF2

Research Question

What client-side attacks be used on the LastPass extension for the Chrome browser?

- 1. File system based attacks
- 2. Memory based attacks
- 3. Javascript attacks, XSS, CSRF

The Scenario

Post exploitation phase

Jumping point for Red Team operations

Internet criminals

Lab Setup

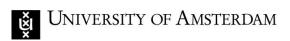
Windows 10 VM, Virtualbox

Google Chrome

LastPass extension

Two Lastpass accounts, victim_alice & victim_bob

Filesystem based Client-side attack


Local database under chrome UserData

Site accounts stored in a binary blob base64 encoded

Master password encrypted (AES) with SHA256 of the email

Vault key is 100100 iterations of PBKDF2 with email & master password

Vault key used to decrypt accounts in local database

LastWish

Automated Python script

Decrypts every site in the local database

Works when browser is closed

```
derk@arch:lastwish$ python lastwish.py
SUCESSFULLY FOUND THE FOLLOWING CREDENTIALS:
  Master username
                              Master password
 victim_bob@protonmail.org | alicehorsespringcottontable
                       Username
                                    Password
 https://secret.com | bob
                                    rabbits123
                                    f0ll0wth3wh1ter4bbit
 https://bank.com
                       bob1273
```


Limitations of the File system attack

Remember password needs to be enabled

Offline mode needs to be enabled or MFA needs to be disabled

Memory based Client-side attack

Previous research suggest plaintext usernames/passwords

Chrome devtools, WinDBG, strings, radare2:)

Found site name, username and vault key

18363 Matches -> 224 Matches -> 90 Matches

0x05870a53	c129	f8de	9f33	0000	0300	0000	2000	0000
0x05870a63	faea	ad75	e058	e15b	3f83	d76f	b14f	a17c
0x05870a73	90d4	4a43	b68c	91aa	81ef	e786	a147	0ddd
0x05870a83	0122	f8de	9f33	0000	0000	0000	e800	0000

Limitations of the Memory attack

Offline mode needs to be enabled

Browser/extension must be open

Implications

File system attack:

- ☐ Passwords can be stolen when remember password
- ☐ Same approach already performed 4yrs ago
- ☐ Likely low priority for Lastpass

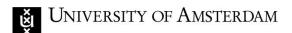
Memory attack:

- Passwords can be stolen when the extension is active
- Have not found functional previous research
- ☐ May be included in the threat model of LastPass

Conclusion

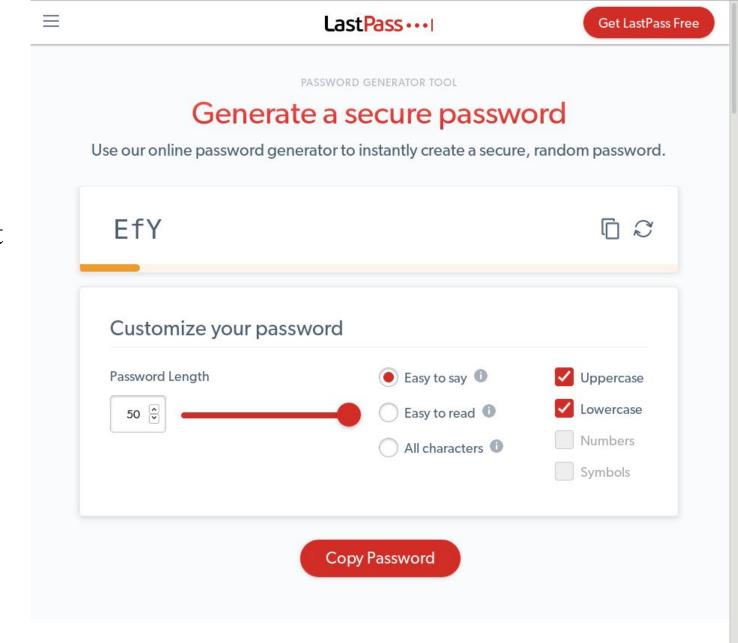
What client-side attacks be used on the LastPass extension for the Chrome browser?

Remembered password function can be abused to decrypt the locally stored database accounts.


The encryption key of the accounts can reliably be found in the memory of the extension

Discussion

Could also just get the vault key from the chrome dev tools


Observation: Offline access can only be DISABLED when MFA is ENABLED

Advice: With MFA, offline access should always be DISABLED when remember password is ENABLED.

Silly Bug

"Easy to say" may result in very short passwords

Generate strong, random passwords