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Abstract - This paper discusses client-side
attacks to the LastPass extension for the
Chrome browser. Two approaches are dis-
cussed: file system based and memory based
attacks. The file system based attacks cover
attacks that use files on the machine of the
client to obtain their credentials. The mem-
ory based attacks consider attacks that use ei-
ther live memory or memory dumps to obtain
credentials. We have discovered that the lo-
cally stored vault can be decrypted when the
remember password function is enabled. Fur-
thermore, we are able to obtain the encryption
key from a memory dump of the LastPass ex-
tension; this can be used to decrypt the local
vault as well.

1 Introduction

In the past decade, the number of web-services has in-
creased significantly. A part of these services contain
important assets of the user, thus requiring a form
of authentication to access. This is generally imple-
mented as a username and password. Because good
password hygiene dictates that an unique password
should be used for every service, the user may end
up with a large number of passwords that need to be
remembered. As a result of the number of passwords,
people often create simple, easily memorizable pass-
words and reuse passwords from different services [1].
Password reuse is dangerous as a compromised pass-
word for a single service may result in other services
becoming compromised as well.

Password managers provide a solution to weak
passwords and password reuse by using a single
strong master password. A password manager stores
the credentials of the services in a digital vault pro-
tected by the master password. The reduced cogni-
tive load of multiple passwords allows one password
to be long and complex. The passwords stored in the
vault can be long and random considering the user
does not have to remember these. The downside of a
password manager a single point of failure; if the mas-
ter password is compromised, the attacker obtains
access to all accounts of the user. As an added layer
of protection, Multifactor Authentication (MFA) can
avoid stolen credentials after a compromised master
password. With MFA enabled, the user requires a
secondary device to authorize access to the vault af-
ter the master password is given.

Our research aims to discover in what ways an at-
tacker can gain access to the vault of an user from
the client-side. We will be using the LastPass pass-
word manager as case study. With 13 million users,
the Lastpass password manager is one of the most
prevalent password managers in the market. Last-
Pass stores an encrypted form of the user’s vault on
their servers, to allows the user to login to their vault
from any device. Our research will focus on specifi-
cally on the LastPass browser extension.

2 Research Question

In this research, we will evaluate the attack vectors
of a possible attacker to obtain user credentials from
the LastPass browser extension. Besides theory, we
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are interested to show proof of concepts attack on a
password manager. We state the research question
as follows:

What client-side attacks can be used on the Last-
Pass extension for the Chrome browser?

To put the research question more concretely, we
will look at two types of attacks: File system based
attacks and Memory based attacks. The file system
based attacks will investigate how files on the file sys-
tem may be used to compromise the password vault
of the user. With this approach, a attacker may, for
instance, look at locally stored files of the LastPass
extension to find valuable data. The memory based
attacks will investigate whether there is confidential
information in the memory of the LastPass extension.
This analysis of the memory is either performed live
while the extension is active or from a memory dump
that was taken while the extension was active.

2.1 Related Work

Li et al. [2] performed a security analysis of five popu-
lar browser-based password managers. For 4 out of 5
password managers, the attacker could extract user
credentials for arbitrary websites. They found vul-
nerabilities a range of features, such as Bookmarklets,
Onetime Passwords and shared passwords. These
were caused by faulty logic, Cross-site scripting and
Cross-site request forgery, among others. This re-
search shows that the security of browser-based pass-
word managers is far from perfect. They have ap-
proached the browser-based password managers from
the perspective of an outside attacker, we will evalu-
ate the attacks from within the system of the user.

The LastPass extension has been the subject of
research multiple times, resulting in the publication
of various vulnerabilities. For instance, there have
been found weaknesses in the auto fill functionality
of lastpass [3] [4]. Furthermore, there were client-side
attacks on the extension where websites could, under
certain circumstances, inject JavaScript code in the
extension [5].

Our research has accidental overlap with previous
research conducted by Martin Vigo and his colleague

Alberto Illera in 2014 [6]. They have performed client
side attacks and have used the same method for the
extraction of the master password from the Lastpass
database as our research. It appears that the over-
lap in research expends further than we initially ex-
pected. Although their blog did not exactly specify
the approach used to decrypt the locally stored ac-
counts, we later discovered that their approach in
their metasploit module appears to be very similar
to our approach. Because both our research has mul-
tiple similarities, this presents an opportunity to dis-
cover whether LastPass has changed their security
model in the years between our studies.

Regarding analysis of memory, this is a field that
has been actively researched in Forensic science. The
extraction of passwords from memory has been stud-
ied before [7], [8], [9]. There exists a plugin for
Volatility from 2016 that is able to extract creden-
tials from a memory dump of the LastPass exten-
sion [10]. This approach relies on a JSON file in the
memory space of the extension that contains plain-
text usernames and passwords. We were not able to
reproduce these results; it appears that the architec-
ture of LastPass has changed after this was published
as passwords are no longer stored in plaintext.

3 Scope and Limitations

In this research is limited to the LastPass extension
for the Google Chrome browser. LastPass was cho-
sen because we observed that it is currently one of
the most popular browser-based password managers;
Chrome was chosen for the same reason, as it is the
most popular internet browser. We will limit the re-
search to the Microsoft Windows 10 operating sys-
tem as Windows is currently the most used desktop
operating system in the market. Although browser-
based password managers are operating system inde-
pendent, the methods for attacking will very likely
vary between operating systems due to different se-
curity models.

The attack scenario we have chosen to investigate
is relevant for Red team operations. In security as-
sessments, a Red team may be tasked to gain access
to a server of a certain company. If the server is diffi-
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Software Version
VirtualBox 6.0.0 r127442
Google Chrome 72.0.3626.81
LastPass Extension 4.24.0
Windows 10 17763.253
WinDbg 1809

Table 1: List of software and their respective versions
that were used during this research

cult to infiltrate directly, a different approach may be
chosen. Red teams may try to break into the machine
of one of the administrators as a jumping point to the
high security machine. On the machine of the admin-
istrator, it is not uncommon to encounter a password
manager; this may contain credentials to the server.
There are currently two methods that Red teams use
when the KeePass password manager is encountered.
First, the KeeThief tool [11] [12] can be used to use
code injection in the process to decrypt the encrypted
passwords in memory. The second and less complex
approach, is the termination of the KeePass process
together with the installation of a keylogger. We aim
to record the attacks that can be used by Red teams
for the LastPass extension.

3.1 Research environment

The research and experiments are performed on the
Window 10 operating system inside VirtualBox on a
GNU/Linux system. We will use the Google Chrome
browser together with the LastPass browser exten-
sion. The specific versions are listed in Table 1.

4 General approach to reverse
engineering the LastPass ex-
tension

Extensions for the Chrome web browser are writ-
ten in the common web languages: HTML, CSS and
JavaScript. In Windows 10, the code that forms the
extension is stored, by default, under the Extensions
folder in the Google Chrome UserData. When the
browser is started, the locally stored code of the ex-

tension will be run. We observed that, when the
page that contains the account credentials is re-
quested, only a limited number of JavaScript files
are called and executed. This excludes the back-
end of the extension, which invokes the connection
with the database and the encryption/decryption of
the credentials, among other tasks. In order to de-
bug the backend parts, we would need to invoke
their respective JavaScript files. Fortunately, with
extension development, it is common to have a file
called background.html. This file invokes all scripts
that run in the background of the extension, this in-
cludes the backend. When this page is called, the
Chrome developer tools can be used to show im-
portant JavaScript variables, such as keys and user-
names, among others. By changing Chrome to de-
veloper mode, the extension could be edited to in-
clude debugging print statements without triggering
Chrome to mark the extension as corrupt. Further-
more, breakpoints can be included in the backend
parts to inspect the content of the JavaScript vari-
ables during runtime.

5 File system based client-side
attack using the remember
password function

This attack is based on the options to remember the
password in the LastPass extension. When remem-
ber password is enabled, the password will be stored
somewhere on the filesystem. If the password can be
found, this can be used to gain access to the victims
accounts.

The Lastpass extension, by default, keeps an
SQLite database in the Chrome UserData under
Default\databases. This database contains vari-
ous tables: LastPassData, LastPassPreferences, and
LastPassSavedLogins2, among others. The most no-
table of these tables is the saved logins table, which
contains the fields: username, password, last login
and protected. This database is displayed in Table 2.
In the username field, we see the username that we
used to login to the extension in plain text. The pass-
word field contains two base64 encoded strings sepa-

3



rated by a pipe. The lastlogin field is a timestamp.
Lastly, as we understand it, the protected field indi-
cated whether the password is stored in the password
field. For the account victim alice@outlook.com,
we disabled the option to remember the password.
As a result, the password field is empty and the pro-
tected field is set to 0. Thus, we may conclude that
the password will be stored in the saved logins table
when remember password is enabled.

Vigo et al. [6] state that the first base64 encoded
string of the password field is the IV and the second
part is the encrypted password. We can verify that
this statement is correct by inspecting the Javascript
code. In the enccbc function under lpfulllib.js,
we can confirm that the password field is split in two
parts. A part of this function, as displayed in Figure
1, describes how data is encrypted and stored using
the Advanced Encryption Standard (AES). Between
the exclamation mark and the pipe, the output of
AES.eb64(c) is inserted, which is the base64 rep-
resentation the IV. After the pipe, we can see the
specific parameters for AES, namely 256 bit key and
CBC mode, which confirms the information that is
listed on the website of LastPass. This allows us
to conclude that the first 16 bytes is the IV, base64
encoded. The second part after the pipe is the en-
crypted data with AES, 256 bits key, Cipher Block
Chaining mode.

5.1 Masterpassword decryption key

At this stage, the encrypted form of the master pass-
word is known. To proceed, we would require the
master password to be decrypted. The next step is
to find what key was used to encrypt the master pass-
word, as the IV and the ciphertext are already known.

Inside the loginOffline function in server.js, the
snippet displayed in Figure 2 can be found. Using
debug statements, it became clear that the variable r
contains the username and o contains the encrypted
data in the password field. The lpdec function de-
crypts the first argument with the key in the second
argument. It appears that the password is encrypted
with the SHA256 sum of the username as encryption
key. We can confirm that this is correct by using
the values that were encountered during the debug

var l = AES. CreateIV (16 ) ,
c = l . s t r ,
u = l . a r r ;

i = ” !” + AES. eb64 ( c ) + ” |” +
AES. Encrypt ({

key : g aKeys [ r ] ,
i v : u ,
data : e ,
b64 : ! 0 ,
b i t s : 256 ,
mode : ” cbc ”

} ) ;

Figure 1: The specification of the AES encrypted
field format. This snippet is located in the enccbc
function in lpfullib.js.

i f (2 == a [ 0 ] . p ro tec ted ) {
re turn void n( lpdec ( o ,

AES. hex2bin (SHA256( r ) ) ) ) ;
}

Figure 2: Code snippet of the method used to decrypt
the master password
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username password last login protected
victim bob@protonmail.org !AMhA9punOT1FtPaZY4rkWA==|Y8T7eY4ojT

dRSetkZClwaUkLy//bZIDfV7FADyr3UFE=

1548087135857 2

victim alice@outlook.com 1548237278532 0

Table 2: This table shows in what format the saved logins are stored in the local database.

Username victim bob@protonmail.org
Key: f2 31 c4 10 3e

56 9f 8e 4d 6f

3c 0c 8b 52 be

14 c4 58 1f f3

c8 5e 71 54 31

61 0a 14 64 b0

60 c5

Password Ciphertext 63 c4 fb 79 8e

28 8d 37 51 49

eb 64 64 29 70

69 49 0b cb ff

db 64 80 df 57

b1 40 0f 2a f7

50 51

IV 00 c8 40 f6 9b

a7 39 3d 45 b4

f6 99 63 8a e4

58

Table 3: Example of values encountered during de-
bugging of the login function of the LastPass exten-
sion

session, given in Table 3.

Using the encryption key, IV, ciphertext with AES
CBC 256, from the example in Table 3, we get the
following plaintext password: followthewhiterabbit.
This is the master password that was used for the
user victim bob

To summarize, if an user has the remember pass-
word option enabled, the master password is stored in
a local database. The master password is encrypted
with AES 256 CBC with the hash of the username as
encryption key. Using this information, it is trivial
to retrieve the master password when the remember
password option is enabled.

5.2 Vault decryption

Once the master password is known, the user is very
likely compromised. Using this technique, the at-
tacker can login to the vault using the browser. How-
ever, when multifactor authentication is enabled, the
attacker will not be able to access the credentials via
the browser. Therefore, an attacker may be inter-
ested to find a way to retrieve the credentials stored
in the local vault.

Recall that we have encountered the LastPassData
table in the local database. This table contains mul-
tiple entries, one of which contains the type ”accts”.
For clarification, an entry is displayed in Table 4.

The data field of this entry consists of two parts
split by a semicolon. The first part indicates the num-
ber of iterations that is required for the key deriva-
tion function to create the key by which the accounts
in the vault are encrypted. The second part is en-
coded in base64, which results in a blob of mostly
binary data. In this binary file, several headers in
ASCII format can be found, such as ”ACCT” and
”EQDN”. We limit ourselves to the ACCT headers,
which refer to the websites stored in the vault. Previ-
ous researchers have noted that not the whole vault is
encrypted. This can be confirmed from the plaintext
URLs from websites that can be observed the binary
blob.

To discover the structure of the binary file,
we searched the string ”ACCT” in the code
base. It appears that the function parsemobile in
lpfulllib.js reads the data blob and extracts the
fields. By setting debugging statements in this func-
tion, we can confirm that this function results in the
data fields. The serialization function is quite com-
plex; we, therefore, decided to search the binary file
for the required fields. Using the debugging state-
ments, the approximate order and position of the
fields can be located in the file.
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id username hash type data
231 f231c4103e569f8e4d6f3c0c... accts iterations=100100;TFBBVgAAAAIzMEFUVlI...

Table 4: Example content of an ”accts” entry in the LastPassData table

For every website in the vault, the data is stored
in one chunk. Every chunk starts of with a unix
timestamp, followed by a sequence of unknown bytes.
Further on in the chunk, we see a string of value
”ACCT”. After this string, there is another sequence
of unknown bytes until a ’ !!’ is encountered. This is
an indicator of the next field, the field that contains
the URL. At the start of the URL field, there are
bytes of unknown meaning, followed by a sequence
of ASCII encoded hexidecimal digits, which make up
the string of the URL. The URL field is followed by
a sequence of null bytes until the next delimiter is
encountered. The encrypted username follows imme-
diately after the URL field and continues until three
null bytes are encountered. The encrypted password
starts either direct after the username or after a ’ !’
if this is present.

It should be clear to the reader that the reverse
engineering effort of this file is time consuming to
perform, error prone and hard to convey in this for-
mat. A more precise definition of the file format can
be found in the parsing code of our tool. With the
test cases that were used, our proposed format seems
to be valid. At this point, we have obtainted the
URL’s, the encrypted username, and the encrypted
password for every site in the vault. To decrypt the
username and password, the vault key is required.

5.3 Vault key generation

The lastpass white paper states that the key that is
used to encrypt and decrypt the fields in the vault
is created by using 100100 iterations of PBKDF2-
HMAC [13]. We can confirm the iteration count by
observing the accounts entry in the local database,
which is prepended with the iteration count. The
PBKDF2-HMAC key is created using the username
as salt and the master password as PBKDF password.
The specific parameters are listed in Table 5. The
key derivation results in the vault key ; the key that

algorithm SHA256
key length 32
salt ”victim bob@protonmail.org”
password ”followthewhiterabbit”
iterations 100100

Table 5: Settings for PBKDF2-HMAC to create the
vault key

is used to encrypt and decrypt the fields in the vault.
The fields in the vault are encrypted with AES 256

CBC. Although, in this case, the IV is not separated
by any delimeters. After looking at the source code
of the extension, it seems that the first 16 bytes of
the encrypted field is the IV; the rest of the field is
the encrypted data. Using this knowledge, all creden-
tials for the websites in the vault of the user can be
decrypted. We have written a proof of concept tool
that performs all steps described in the previous sec-
tions. The output of this tool is displayed in Figure
3.

5.4 Functional Requirements

The file system based attack has a two main require-
ments that must be met in order for this attack to be
functional:

1. Remember password needs to be enabled:
This is the most important requirement. When
remember password is enabled, the master pass-
word is stored on disk and is near trivial to re-
trieve. This master password is required to un-
lock the locally stored vault.

2. Offline mode needs to be enabled: This
requirement is important, but we would argue
that this would almost always be met. By de-
fault, offline mode is enabled, which means that
when the Lastpass servers become unavailable,
it remains possible to access the account data.
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Figure 3: Output of our tool that abuses the remem-
ber password function to decrypt the locally stored
vault.

According to the Lastpass support page regard-
ing vault management, the storage of a local
encrypted vault is a design choice [14]. Offline
mode can only be disabled in the MFA settings.
As a result, MFA needs to be enabled to be able
to disable offline mode.

Disabled MFA is not a requirement on this list.
We have observed that with MFA, our method of the
decryption of the vault remains valid.

6 Memory dump client-side at-
tack

In this section, we will discuss the possibility of an
attacker obtaining credentials from a memory dump
of the Lastpass extension. The motive of this ap-
proach is the fact that usernames, passwords or cryp-
tographic keys may be present in memory.

6.1 Obtaining the memory of the pro-
cess

As with tabs in Chrome, every extension is assigned
its own PID. In our case, we are interested in the
PID of the LastPass extension. Using the key combi-
nation Shift + Esc, we obtain a list of chrome’s pro-
cesses where the PID of the extension can be found.
It is important that the vault is unlocked when the
memory is read, otherwise, the credentials and keys
will not be present. The memory can be read using
two approaches, either live while the process is ac-
tive, or using a dump of the process. We have used
the dump instead of the live memory as this was
more convenient to search and analyse. The mem-
ory was dumped using WinDbg with the .dump /f

C:\path\to\dumpfile command. Besides a dump,
WinDbg can read while the memory of the process is
still active. However, we have not used this feature.

6.2 Memory dump analysis

Once an attacker secures a dump of the password
manager memory, they would be interested in either
extracting credentials or keys. Because the memory
dump contains the memory of the extension when
the vault was unlocked, credentials may be found in
the dump. A common method in Forensic Science
to find plaintext strings, such as username or pass-
words, is using the unix strings command. This pro-
gram can find strings in binary data that are above a
certain length. When strings was run on the dump,
the usernames and the names of the sites were found
in plaintext; the passwords, however, are not present
in plaintext in the dump.

We have noticed that the content of global
JavaScript variables, as seen in the chrome developer
tools, can be found back in the memory dump. Fur-
thermore, the vault key can be found back in memory
as well. This gives an attacker an opportunity to de-
crypt the locally stored accounts after obtaining a
dump of the memory. In the next section, we will
explore what approach can be taken to find this key
in memory.
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6.2.1 The search for the vault key

We have taken six memory dumps of the LastPass ex-
tension between both browser and operating restarts.
An attacker would be interested to create a method
to predict the position of the vault key in the memory
dump of the extension. We have observed that the
location of the key in memory is different for every
dump. This is not unexpected as the variable will be
allocated on the JavaScript heap. In order to predict
the position of the variable in the JavaScript heap, if
this is even possible, it would require in depth knowl-
edge of the v8 JavaScript engine. Using the chrome
developer tools, it is possible to inspect the objects
on the JavaScript heap. However, we have not found
a way to translate between the objects in the chrome
developer tools to the objects in the memory dump.

We have searched for the vault key in order to find
a predictable pattern. Once a pattern is found, this
may be used to predict the vault key for different
users and on different systems.

We know the vault key of bob in advance, as we
can request this from the chrome developer tools:
faea ad75 e058 e15b 3f83 d76f b14f a17c

90d4 4a43 b68c 91aa 81ef e786 a147 0ddd

Using the radare2 hexadecimal search function,
we can find the vault key at the memory address
0x05870a63. The memory is displayed in Table 7
where the vault key is located on the fifth row. In
the second and third dumps, the vault key could be
found as well, however, it was located in at a different
address. We noticed in each of the three dumps that
the key was located near a certain string in memory.
Because searching for this string provided a constant
method to find the key for the user victim bob, we
tried to do the same for victim alice. We observed
that the key is no longer in the vicinity of this string,
thus we were not able to find structures that would
always be in proximity to the key. Lastly, we at-
tempted to discover if enabling MFA would make a
difference on the key in memory, but we did not ob-
serve a difference.

6.2.2 Find the vault key using regular ex-
pressions

After closer inspection, we have observed the follow-
ing properties::

• The key is always 32 bytes long because 256 bits
AES keys are used by LastPass.

• The key is always followed by 6 ”unknown” bytes
and 2 null bytes.

• There is always a 16 bit field before the key, with
what we interpret to be the value of 0x20. This is
present in different dumps, as well as in the two
users this was tested on. We highly expect this
to indicate the length of the next field, because
0x20 is 32 in decimal; this is the length of the
vault key in bytes.

With this knowledge, we have created a regular
expression in Python that matches the bytes in the
memory dump of a potential key. The regular ex-
pression is as follows:

b”\x20\x00 {3} [\ x00−\xFF]{38}\ x00\x00”

The preamble of the key starts with 0x20, followed
by three null bytes. Next are the actual 32 bytes
of the key, followed by 6 unknown bytes and two
null bytes that indicate the end of the match. Us-
ing this expression on the first dump, it results in
18363 matches. The numbers of matches for this and
the other dumps are displayed in Table 6. Note that
the number of matches is high; although a brute force
method is possible, it would be more elegant if this
number can be reduced. We observe that there are
many matches that contain a lot of zeroes and are
very low in entropy, which is an unlikely property of
a key to have. We therefore perform a very basic fil-
ter on the matches and remove the keys that contain
zero bytes. The regex that is used for the raw match
is very similar to the previous one:

b”\x20\x00 {3} [\ x01−\xFF]{38}\ x00\x00”

This removes a significant amount of false positives;
for the first dump, the number of matches decreased
from 18363 to 224. However, there is a 12.5 % chance
that a key will contain a zero byte, and will thus be
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discarded. As this is a proof of concept, we will ac-
cept that this approach will not work for one eight of
the keys. We now have a manageable number of pos-
sible keys that can be tried to decrypt the username
and password fields in the vault. As a further im-
provement, we removed all key candidates that were
entirely printable, this brought the number down to
90 possible keys. We are comfortable with this filter
as the chance that a key is entirely printable is quite
small. We expect that the filters can be further im-
proved to result only in a handful or even a single
key.

We have verified that in all these experiments, the
actual key is present in the selection.

6.2.3 Finding the correct key

Once an attacker has a manageable set of possible
keys, they could use the keys to decrypt one of the
usernames in the vault. It would be reasonable to
assume that the character set that is used for the
username are all printable characters. The attacker
could therefore iterate over every key to observe if
the plaintext contains soley printable characters. If
one of the keys results in a match, the attacker could
use this candidate key to decrypt another one of the
fields to verify that the candidate key is the vault key.
When the attacker finds the correct key, the attacker
will have full access to the accounts stored locally in
the LastPass vault.

6.3 Functional requirements

This approach has limited requirements to correctly
function. There are two important requirements that
must be met:

1. Offline access must be enabled: This is en-
abled by default. If this would be disabled, it is
still be possible to find the vault key in memory,
but access to the offline encrypted vault would
not be possible.

2. The browser must be open and the ex-
tension unlocked: Without this requirement
satisfied, the attacker cannot create a dump of
memory of the extension and can thus not search

for the vault key in memory. Note that this is
only required at the time of the dump; the anal-
ysis of the memory and the decryption of the
credentials can all happen off-site.

A further minor requirement is that administrator
rights may be needed in certain situations where the
LastPass extension is run under a different user than
the attacker is currently logged in as. If the attacker
has access to the user it is targeting, no administra-
tor rights are needed. Unlike the other client side
attack that uses the remember password functional-
ity to generate the vault key, this approach does not
require the password to be remembered as the vault
key will be extracted from the memory.

7 Implementation of the at-
tacks

Both of our approaches are implemented in Python as
proof of concepts. We created the tool called ”Last-
Wish” that is able to get the stored master pass-
word, generate the vault key and decrypt the vault.
This tool requires the locally stored database; the at-
tacker could thus copy the database to their machine
and execute our tool. Regarding the memory attack,
we have created a separate script that implements
the described regular expressions to search for can-
didate keys in a memory dump. An attacker would
first obtain a memory dump on the victims machine
and could consecutively run the python script locally.
The script of the memory based attack currently lacks
the functionality to find the correct key from the se-
lection of candidate keys, although this may be added
in the future. The code base is available at the reposi-
tory: https://gitlab.os3.nl/dbarten/lastwish.

8 Discussion

Approximately four and a half years after the study
of Vigo et al. [6], the method for storing the remem-
bered password has not been changed. Vigo et al.
noted that, after disclosing the flaw, the remember
password function will issue a pop up explaining the
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Dump Username Matches No null bytes Not all printable
01 victim bob 18363 224 90
02 victim bob 19347 211 92
03 victim bob 19008 205 88
04 victim bob 15496 187 83
05 victim alice 16512 190 90
06 victim bob 16760 165 62

Table 6: The number of potential AES keys in the memory of the Lastpass extension. The ”matches”
column indicate the initial number of key candidates without filtering. The ”no nullbytes” column indicates
the key candidates that do not contain null bytes. The ”not all printable” column indicate the number of
key candidates that are not entirely printable. The ”not all printable” key candidates are a subset of the
”no null bytes” matches

0x05870a23 f12c f8de 9f33 0000 d149 f8de 9f33 0000
0x05870a33 c18b 6384 cc6f 0000 091e 1136 526a 0000
0x05870a43 a125 f8de 9f33 0000 a125 f8de 9f33 0000
0x05870a53 c129 f8de 9f33 0000 0300 0000 2000 0000
0x05870a63 faea ad75 e058 e15b 3f83 d76f b14f a17c
0x05870a73 90d4 4a43 b68c 91aa 81ef e786 a147 0ddd
0x05870a83 0122 f8de 9f33 0000 0000 0000 e800 0000
0x05870a93 91ed 734e 975d 0000 2955 c648 0824 0000
0x05870aa3 311a 744e 975d 0000 915d c648 0824 0000
0x05870ab3 6181 f859 dc49 0000 8126 f8de 9f33 0000

Table 7: The position of the vaultkey in the first dump

insecurity of the feature. As the remember password
function is still present and unchanged, this leads us
to believe that LastPass is not concerned about the
security of this feature. In our opinion, the effort
of LastPass to secure the remembered master pass-
word is minimal. It would be more accurate to view
the encryption of master password as an attempt of
obfuscation rather than an attempt of data security.
A more secure approach could be to use native key
storage instead, although we are not certain to what
extend a browser extension is able access such re-
sources.

Both the file system and memory based attacks rely
on the fact that the encrypted vault is stored locally.
As we have seen, when the password is remembered,
this vault can be unlocked without much effort. Fur-
thermore, the encryption key can be requested from
the developer tools and memory. In our opinion, it
would be safer for users to disable offline access by de-

fault. Currently, offline access can only be disabled
if one or more forms of multi-factor authentication
is enabled. We do not see a clear reason why of-
fline access is linked to MFA and cannot be disabled
independently; we recommend this to be a separate
option. LastPass, by design, uses offline access as
a method to allow users to login when the LastPass
servers are unavailable. We would argue that offline
access is a security weakness as this significantly in-
creases the ability to steal credentials using client-side
attacks.

The memory based attack was only performed in
the Windows 10 operating system inside a virtual ma-
chine. Because Windows 10 was virtualized, a valid
critique may be that the memory space can differ be-
tween a virtual machine and bare metal. We have not
validated the method on bare metal and agree that
this would be necessary to form conclusions about
this attack on the Windows 10 operating system.
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Furthermore, we have not performed this attack on
different operating systems. We suspect that a simi-
lar approach will also be valid for different operating
systems as long as a memory dump can be made of
the extension. We have based our conclusions on two
accounts and a total of 6 memory dumps of various
states of the LastPass extension. We are of the opin-
ion that more evidence would be required of different
circumstances and users, thus we are only able to
make limited conclusions about this attack.

We suspect that, with the memory based attack,
the changing memory addresses are due to the v8
engine heap allocation internals. Furthermore, this
may be caused by Address Space Layout Random-
ization (ASLR), although we believe this is unlikely.
To clarify, ASLR is a security measure that allocates
process and parts of processes, such as the stack and
heap, to randomized locations. Thus the location
of variables in a process will very likely be different
every time the process is run. We do not suspect
ASLR is the cause of the random memory locations
because we have not inspected live memory but the
dump of a single process instead. In the memory
dump, all addresses are relative to the start of the
dump. However, the position of the heap and stack
of the process may be subjected to ASLR, despite the
memory dump. Thus, to conclude, the cause of the
random positions of variables in the memory dump
is not clear to us.

The vault key that was used to unlock the vault
in both the file system and memory based attack
is available from the Chrome developer tools. The
variable that contains the key can be requested from
the console when the page background.html is re-
quested. An attacker could therefore use the Chrome
developer tools to get the key, instead of searching
memory dump. It is very likely that LastPass is aware
that the key can be requested from the console, as
they mention a similar problem concerning the de-
veloper tools in their whitepaper [13]. We proceeded
with using the memory dump to illustrate that this
is a valid attack method. Because the memory based
attack is in essence equal to extraction of the key from
the developer tools, it is likely that LastPass is not
concerned with this attack vector. If LastPass would
mind these types of attacks, the key would have to

be removed from memory, which, we expect, would
result in significant architectural changes. To clarify,
currently, the vault key is always present in mem-
ory, thus can be requested at any time to decrypt the
vault. When the vault key is removed from memory,
it needs to be generated from the master password
every time the vault is decrypted. As a result, the
user could be constantly prompted for their master
password to generate the key; this may degrade the
user experience significantly. We expect that Last-
Pass is aware of the difficulty to defend against this
type of client-side attacks and, therefore, do not in-
clude attack vector in their threat model.

Regarding the ethics of our research, both meth-
ods of attack are likely already known to LastPass
and the public. In advance of our research, internet
criminals were already able to perform an equivalent
attack based on the file system using the metasploit
module by Vigo et al. as this is readily available on-
line. Hence, the method described in our research is
already available to the public. Regarding the mem-
ory based attacks, these types of attacks are already
well known but are not performed on the LastPass
extension, as far as we are aware. The approach that
we have described to gain the vault key from the
memory can indeed be abused by criminals. How-
ever, we would like to remember the reader that the
key can be read from the chrome developer tools as
well. Thus, to conclude, our research has not signif-
icantly resulted in novel approaches to obtain pass-
words from the LastPass extension and, therefore, we
expect the ethical impact to be limited.

Lastly, we wanted to discuss a few short points
that we deem important to convey. We have not in-
vestigated what the impact of trusted and untrusted
devices is on our approach. We have used the default
installation of the extension and have not changed
settings regarding trusted devices. We have not used
a keylogger in our approach because we expected that
this will not give new insights. Besides, a keylogger
likely requires administrative rights, while our ap-
proaches are functional with user permissions. We
have performed the attacks on the LastPass exten-
sion with merely two users that were created for this
purpose. Because of this limited number and the time
frame the accounts were created, it will not be possi-
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ble to generalize to all users. For example, during our
research, we have only encountered AES CBC while
older accounts may still be using AES ECB. Further-
more, the method for extracting the username and
password field from the locally stored database may
not be valid for different users or vault contents.

9 Future work

As an extension of our research, it may be inter-
esting to search for methods that will still be valid
when offline mode is disabled. This would require re-
search into the mechanisms that are used when this
mode is disabled. As far as we are aware, when of-
fline mode is disabled, the vault will be requested
from the LastPass servers. We believe that this vault
would be located somewhere in memory and can thus
be read. Furthermore, it may be interesting to inves-
tigate whether the vault key can still be requested
using the chrome developer tools.

10 Conclusion

For our restricted experimental setup, we were able to
obtain credentials from the LastPass extension using
both a file system based attack and a memory based
attack. With the file system based approach, we are
able to obtain the vault key when the remember pass-
word function is enabled, and thus could decrypt the
encrypted credentials in the locally stored vault. Us-
ing the memory based attack, we were able to ob-
tain the vault key from the memory of the LastPass
extension. Using this key, we were able to decrypt
the credentials in the vault using the same method
as the file system based approach. We recommend
LastPass to reconsider the offline access function, as
that makes these two attacks possible.
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