
MSc Security and Network Engineering
Research Project II

Automated end-to-end e-mail
component testing

November 20, 2018

Isaac Klop
isaac.klop@os3.nl

Kevin Csuka
kevin.csuka@os3.nl

Supervisor
Michiel Leenaars
NLnet

Assessor
Prof. dr. ir. C.T.A.M. de Laat

Abstract

The first e-mail was sent in the early 70’s. In almost 50 years, many components have been added to the
e-mail architecture. E-mail software has become complex and now requires a lot of manual configuration, which
creates a large surface for human error. In this research, we aim to take away anxiety of managing a mail server
by researching how one can prove that a mail server is properly set up via automated end-to-end component
testing. We create a taxonomy to identify relevant components in the e-mail architecture. Based on those
components we develop an automated, modular and portable test suite. To support the end-to-end tests, we
set up seven public mail servers. The mail servers have intentional flaws in configuration and DNS records to
simulate different scenarios. In this way, the test suite assures an administrator that IMAP, POP, DKIM, SPF,
DMARC, Greylisting, authentication, Sieve, SMTP (MSA) and DANE are set up properly. It partially covers
the spam filter and TLS, and it does not cover SRS.

Contents

1 Introduction 2
1.1 Research questions . 2

2 Related work 2

3 Method 3
3.1 Taxonomy . 3
3.2 End-to-end testing . 4
3.3 Proof of Concept . 4

3.3.1 End-to-end setup . 5
3.3.2 Process . 6

4 Results 6
4.1 Taxonomy . 6
4.2 Public mail servers . 8
4.3 The Test Suite . 8

4.3.1 SMTP (MSA), POP and IMAP 10
4.3.2 Authentication (MSA and MAA) 10
4.3.3 TLS (MSA and MAA) . 11
4.3.4 DANE . 11
4.3.5 SPF . 12
4.3.6 DKIM . 13
4.3.7 DMARC - Policy . 14
4.3.8 DMARC - Reporting . 15
4.3.9 SRS . 16
4.3.10 Greylisting . 16
4.3.11 Spam filter . 17
4.3.12 Sieve . 17

5 Conclusion 18

6 Discussion 18

7 Future work 19

8 Acknowledgements 20

A Acronyms 23

B Test suite component tests 24

1 Introduction

Handling electronic mail in the modern age involves many different software com-
ponents, as well as significant configuration skills and regular maintenance. This
creates a large surface for human error. An administrator sets up and configures his
mail server. The logs do not show a single error, the Domain Name System (DNS)
[1] records are set and are valid. How does he actually know that the mail server is
set up properly? How does he know there is not a domain out there rejecting his
e-mail? It can be difficult to find the cause of a malfunctioning mail server. This
can create anxiety for administrators that wish to manage their own mail server.

What is currently missing is an automated end-to-end e-mail component test
that administrators managing mail servers can use to see if all the components in
their actual setup are fully functional. Does spam mail get properly classified or
rejected? Does the DNS-based Authentication of Named Entities (DANE) TLSA
[2] record correspond with the actual certificate, and do the correct ciphers and
protocols show up? Do the reports of Domain-based Message Authentication,
Reporting and Conformance (DMARC) [3] get sent out?

In this project we attempt to create a portable automated modular end-to-end
test that administrators can rely on, and we evaluate its reach.

1.1 Research questions

Based on the introduction, we define the research question as:

• To what extent can we prove a mail server is properly set up via
end-to-end component testing?

In order to answer the main research question, we define the following sub-questions:

• What are relevant mail server components, and what are their functions?

• How can we verify, through end-to-end testing, if those components work
properly?

We expect that most components of a mail server can at least partially be
tested. However, the functioning of some elements may only be proven in real use.
It may also prove difficult to identify all components and test cases.

2 Related work

nixcloud.email [4] is part of nixcloud-webservices. It focuses on easily deploying and
operating a mail server. It deploys Postfix [5], along with several components, on
a machine running NixOS [6]. The project includes a simple test suite specifically
designed for its implementation. The tests are run when a user deploys or updates
his nixcloud.email server. The test suite sets up a temporary virtual mail server
to support end-to-end testing. It tests, for example, the sending and receiving
of e-mail, aliases, spam filtering and mailbox quota. This approach allows an
administrator to test his configurations and software versions for errors.

MxToolbox [7] is an online service providing mail related diagnostics. The tool
tests several components such as Transport Layer Security (TLS) support, various
DNS records and whether the mail server acts as an open relay. Open relays are
frequently used to send spam [8]. However, the toolbox does not test how the mail

2

server handles these settings. It sets up a connection to the server to verify the
settings but it does not send or receive e-mail.

Internet.nl [9] provides an easy-to-use mail server test service. The user sub-
mits an e-mail address and receives a test report. The service verifies the syntax
and policies of various DNS records, checks for Internet Protocol version 6 (IPv6)
support and provides an extensive test for TLS. It checks the cipher suites offered
by a mail server against a list published by the Dutch National Cyber Security
Centre (NCSC) [10]. Similar to MxToolbox, Internet.nl does not actually send or
receive e-mail.

mail-tester [11] tries to see whether a received e-mail is likely to be classified
as spam by examining the headers and content. Other than Internet.nl and Mx-
Toolbox, mail-tester comes closer to the end-to-end testing that we are interested
in, because it can receive e-mail. mail-tester validates Sender Policy Framework
(SPF) [12] and Domainkeys Identified Mail (DKIM) [13], it checks the domain
against various blacklists and it uses a spam filter.

The website www.emailsecuritycheck.net [14] provides a web service to verify
the working of a single component, the spam filter. The user provides an e-mail
address to which the web service sends seven malicious e-mails. All of them are
expected to be rejected or classified as spam.

Microsoft’s Remote Connectivity Analyzer [15] is a web-based tool that helps
administrators to identify connectivity issues with their mail servers. The tool is
designed for Microsoft’s own mail server software, MS Exchange, but some tests
work on other e-mail software as well. The tool tests whether a remote user can
send and receive e-mail from a mail server.

Microsoft’s Remote Connectivity Analyzer, mail-tester and emailsecuritycheck.net
do end-to-end testing, but they test a small set of components. Internet.nl and Mx-
Toolbox are more extensive in their approach but lack end-to-end tests. Also, none
of the mentioned tools are automatable, they all require some form of user input
to run.

3 Method

3.1 Taxonomy

We identify relevant components in the e-mail architecture. We do this by creating
a taxonomy. In the taxonomy, we divide the e-mail architecture into six message
agents. Four of the message agents are standardized in RFC 5598 [16], the Internet
Mail Architecture. These are the:

• Message Delivery Agent (MDA),
e.g. Sieve [17]

• Message Transfer Agent (MTA),
e.g. Postfix [5]

• Message Submission Agent (MSA),
e.g. Postdrop [18]

• Message User Agent (MUA), e.g.
Thunderbird [19]

We identify a fifth message agent, the Message Retrieval Agent (MRA), e.g.
Fetchmail [20], and a sixth, the Message Access Agent (MAA), e.g. Dovecot [21].
We consider the functions of an MRA as described on the Mutt wiki [22]: ”A Mail
Retrieval Agent makes connections to a remote mailbox and fetches mail for local
use”. The MAA is sometimes referred to as Mail Access Server. RFC 8314 [23]
describes it as: ”The term ”Mail Access Server” refers to a server for POP, IMAP,

3

www.emailsecuritycheck.net

and any other protocol used to access or modify received messages, or to access or
modify a mail user’s account configuration”.

For each message agent, we use related work on e-mail testing, as well as online
guides for mail servers, to determine which components are part of that message
agent.

3.2 End-to-end testing

Paul [24] describes E2E testing as: ”E2E testing is similar to integration testing;
however, E2E testing focuses exclusively from the end user’s point of view while
integration testing can focus on any subset of subsystems”. In our case, we connect
to the mail server in the same way a normal user, via his MUA, would. We create
a test suite that tests both the sending and receiving of e-mail. We run our tests
from an end-to-end (E2E) perspective. To follow the framework Paul describes, we
treat the mail server we are going to test as a black box.

For this research we assume a mail server provides the functions of an MTA,
an MSA, an MDA and an MAA. These four agents make up our test object. We
consider the MUA and MRA client software, and we will ignore these in our tests.

The test suite uses the Simple Mail Transfer Protocol (SMTP) to submit e-
mail messages to the MSA of the mail server and use the Internet Message Access
Protocol (IMAP) to retrieve messages from the MAA [25, 26].

The benefit of this approach is that the administrator can test the full func-
tionality of the system and that when the tests succeed, he can be confident that
the system will work in real world scenarios. By treating the mail server as a black
box, we also create a test suite that is platform-agnostic. The downside of this
approach is that it is difficult to pinpoint the exact module that is causing the
failure since we have no access to the configuration or logs. When a test fails, we
point at the component that failed the test, but we, for example, do not determine
whether the failure is caused by faulty software or faulty configuration.

We want it to be possible to include the test suite in an automated deployment
pipeline to support Continuous Integration and Continuous Delivery (CI/CD). All
tests in the test suite should run without input from the user. To support an
automatic rollback mechanism, the test suite should return an exit code that the
user can check for.

3.3 Proof of Concept

We develop a test suite to answer the main research question. The test suite should
be modular, so it should be possible to enable or disable specific tests without
affecting the behavior of the other tests. The test suite should be portable as well,
it should be usable on most systems.

We choose Python version 3 as the programming language because this is in-
stalled by default on many operating systems [27]. We organize the test suite using
unittest [28], a unit testing framework for Python. The unittest framework has a
skip feature that can be used to enable/disable specific tests. We use smtplib [29]
to send e-mail and, we use imaplib [30] to retrieve e-mail.

The test suite requires an account on the test object that can send and receive
e-mail. The credentials for this account are only used by the test suite itself and
never leave the machine running the test suite.

4

3.3.1 End-to-end setup

To achieve our end-to-end design we require one or more mail servers from which
e-mails are sent to the test object and from which we can retrieve e-mails sent by
the test object. The mail servers must be reachable by both the test object and the
test suite. In this section, we identify three possible methods of setting up these
mail servers. One where we set up virtualized mail servers on the same host as
the test suite. One similar approach where we also virtualize the test object itself.
And one where we set the mail servers up on another machine, virtual (Virtual
Machine (VM)) or bare metal, and provide them with public IP addresses.

We can not assume that the test suite is run on a publicly reachable machine.
In the first approach, the VMs will most likely not have public IP addresses. It
will not be possible then, to run our test suite from a machine other than the
machine that hosts the test object. A downside of this approach is that setting
up all required VMs requires considerably more resources than running just the
test object. Running the tests sequentially, setting up and tearing down VMs in
between, requires fewer resources, but increases the overhead of the test suite. An
upside of this approach is that it contains the entire test process to a single host.
The administrator is in control of the virtual machines. He can easily modify
settings to his desire. As the virtual machines run locally, access to them is most
likely restricted. This makes it easier to secure the test environment.

In the second approach, where we also virtualize the test object. We take the
exact software and configuration, and we rebuild a virtual copy along with the other
mail servers. As stated in Section 2, Related Work, the nixcloud.email project does
something similar in their test suite. An upside of this approach is that it allows
testing a different configuration without actually deploying that configuration. This
approach also allows the user to run the test suite on any machine, resources are
less of a concern. The downside of this approach is that the test suite is not fully
run ”from the user’s point of view”. The virtual copy of the test object can not
use the same DNS records as the actual test object. In this approach, a series of
non end-to-end tests will have to cover the test object’s DNS records.

The third approach requires almost no extra resources for the user. However, in
this approach, anyone will have access to the mail servers. This creates a burden
of managing and securing those servers. The most important downside is that
the servers require an authentication mechanism to prevent abuse, some kind of
registration process for example. Someone has to manage the servers, update them,
create backups and manage the authentication. The upside is that the tests come
as close as possible to the normal use of the test object. This approach also allows
regular users, other than administrators, to test mail servers for which they have
credentials.

We choose to set up the mail servers according to the third approach, hosting
them publicly. Because the mail servers will be hosted in a different administrative
domain, the test e-mails may pass through intermediary networks, firewalls or
intrusion prevention systems. Although this approach creates a security burden, it
comes closest to the real world use of the test object. The goal of this research is
to take away anxiety. The closer the test suite resembles real world use, the more
confidence it can instill.

The mail servers that we set up are named mail-test-x, where x is replaced by
a number. In the rest of the paper we refer to those mail servers by that name.
We refer to the mail server that is being tested by the test suite as test object.

5

3.3.2 Process

As an example, the process of testing whether the test object can send e-mail, as
seen from the test suite, is shown in Figure 1. Each number correlates to a step as
shown in the list below. The figure shows two mail servers, the test object and a
mail-test-x server, mail-test-01 in this case.

1. Connect to the test object using smtplib and send an e-mail to a test address
on mail-test-01

2. The test object sends the e-mail to mail-test-01

3. mail-test-01 submits the e-mail in the INBOX corresponding with the test
address

4. Connect to mail-test-01 using imaplib and verify that the e-mail arrived in
the INBOX

Figure 1: Example of the process of the test suite verifying whether the test object
can send e-mail

4 Results

In this section we show the taxonomy of the e-mail architecture, we elaborate on
the mail-test-x domains, and we elaborate on our test design.

4.1 Taxonomy

We create a taxonomy based on the e-mail architecture. The taxonomy is shown in
Figure 2. We use several sources to include relevant components for the taxonomy.

6

We use the e-mail testing services described in section 2, Related Work. We
identify the different components that these services test, which we then include in
the taxonomy.

The Dutch Standardisation Forum [31] provides a list of mandatory and recom-
mended open standards for Dutch government and semi-government organizations.
The list includes many open standards related to e-mail. We use this list to identify
components.

We also use online ”how to” guides on setting up mail servers [32, 33, 34, 35].
These guides often set up different components on top of the mail server software,
which we can add to our taxonomy.

Figure 2: Taxonomy of the e-mail architecture

Each component shown in the taxonomy is explained from Section 4.3.1 to
Section 4.3.12.

7

4.2 Public mail servers

To verify the test object’s behavior, we perform end-to-end tests with various pa-
rameters. To perform these tests on all the listed components, we require seven
additional mail servers (mail-test-[1-7]). Each mail server has specific characteris-
tics in terms of configuration of the mail server and its DNS records. There is, for
example, one mail server with an SPF record policy of ”v=spf1 -all” in its domain.
Any e-mail sent from that domain has to be rejected. This example is shown in
Figure 3. We follow the same process for DKIM, DMARC, DANE etc.

Figure 3: Process of verifying how the test object handles SPF

Currently, a user using our end-to-end test has two options: Use our servers or
deploy the servers himself. We automate the installation and configuration of the
seven mail servers using Ansible [36]. We add the Ansible playbook, along with
our test suite, to a Git repository [37]. For convenience, Ansible lists the required
DNS records of the mail-test-x domains. The user can add this list to his DNS.

When the test suite uses the seven mail servers that we provide, we have to
distribute credentials for those mail servers to the user running the test suite. A
lasting solution is outside the scope of this proof of concept, for now we provide
those credentials only to trusted users.

Table 1 shows the mail-test-x servers and their configuration.

4.3 The Test Suite

The automated end-to-end e-mail component testing tool is available on a Git
repository [37]. We developed the tool to use mostly standard Python 3 libraries
and it is possible to switch a test on or off without affecting the other tests. The
README in the Git repository describes the use of the tool.

8

Hostname Mail configuration DNS configuration

mail-test-01
SPF
DMARC
DMARC reporting

Valid SPF record
Correct DKIM record
DMARC policy none (p=none)
Valid TLSA record

mail-test-02 Greylisting
Valid SPF record
Correct DKIM record

mail-test-03
Force DANE
SPF

Valid SPF record
Correct DKIM record
DMARC policy none (p=none)
Invalid TLSA record

mail-test-04 SPF
Hardfail SPF record (v=spf1 -all)
Correct DKIM record
DMARC policy reject (p=reject)

mail-test-05 DMARC
Valid SPF record
Incorrect DKIM record

mail-test-06 none
No SPF record
Incorrect DKIM record
DMARC policy reject (p=reject)

mail-test-07 No TLS TLSA record

Table 1: Used mail-test-x servers, their mail configuration and DNS records

A component can have one or more tests associated with it. The basis for each
test is the same. We send an e-mail to or from the test object, we retrieve the
e-mail from the relevant mailbox and we check one or more headers.

Each test has a unique ID, derived from a time stamp and an incrementing
counter. This ID is used for the subject of the e-mails. This subject is then used
to distinguish the e-mails in the mailbox.

When a test fails, the test suite provides feedback to the user. The feedback
shows:

• the name of the test

• the ID of the relevant e-mail

• what the test suite expected to happen

• what actually happened

• the name of the component that is most likely the cause

The user can look up the name of the test in the test suite’s documentation
[37] for more information on the test.

Table 2 shows which component tests we implemented in the proof of concept.
In the following sections we describe the tests and limitations in more detail.

9

Components Implemented
IMAP 3
SMTP (MSA) 3
POP 3
Authentication (MSA) 3
Authentication (MAA) 3
TLS (MAA) partial
TLS (MSA) partial
DANE 3
SPF 3
DKIM 3
DMARC policy 3
DMARC reporting 3
SRS 7
Greylisting 3
Spam filter partial
Sieve 3

Table 2: Components which the test suite can and cannot verify

A complete list of the tests is shown in Appendix B.

4.3.1 SMTP (MSA), POP and IMAP

IMAP and Post Office Protocol (POP) are protocols used to grant users remote
access to their mailbox. In our case, where we perform end-to-end tests on the test
object, we require IMAP to provide remote access to the received e-mails. In order
to send e-mails from the test object, we also require remote access to its MSA.

We create one test for IMAP/POP and one for the MSA. The test is simple,
we send an e-mail from the test object to a mail-test-x domain and vice versa. We
then list the content of the respective INBOX with both IMAP and POP to verify
that the e-mail arrived.

4.3.2 Authentication (MSA and MAA)

The MSA and MAA require a form of authentication: The MAA to ensure the
mailbox cannot be read by other users and the MSA to ensure only authorized
users can use the mail server to send e-mail. Without MSA authentication, the
mail server becomes an open relay.

We can test this, again, by sending an e-mail from the test object and by
listing the INBOX of a user. For both actions, we require the test object to ask
for authentication first.

Once authenticated to the MSA, the user can send e-mail on behalf of the mail
server’s domain. We test if the test object correctly verifies whether the authenti-
cated user is authorized to send e-mail on behalf of the user set in the MAIL FROM
header. For example, if Alice successfully authenticates as alice@example.com she
should not be able to send an e-mail with bob@example.com as the MAIL FROM
header.

10

4.3.3 TLS (MSA and MAA)

As of RFC 8314 [23], mail servers that have an MSA or an MAA must support
TLS for those agents. We test this by sending an e-mail from the test object and
by listing the INBOX of a user. For both actions, we expect the test object to
require a TLS connection.

We do not check the cipher suites offered by the test object. To test this in an
end-to-end setup it would require creating one mail-test-x server per different com-
bination of TLS version and cipher suite, meaning the amount of required servers
for a single test increases significantly. A unit test, such as the one performed by
Internet.nl [9], provides the same assurance as such an elaborate end-to-end test
would. On their website, Internet.nl states that they will soon publish their source
code [38]. When this happens, we can update the test suite to include this test.

4.3.4 DANE

RFC 7672 [39] describes DANE for SMTP as: ”This specification uses the presence
of DANE TLSA records to securely signal TLS support and to publish the means
by which SMTP clients can successfully authenticate legitimate SMTP servers”.
DANE TLS is resistant to downgrade attacks and man-in-the-middle attacks [39].
RFC 7672 elaborates more on DANE for e-mail and SMTP, and RFC 7671 [40]
is the latest RFC on DANE itself. DANE relies on DNS Security Extensions
(DNSSEC) [41]. To support DANE, a sending mail server must have a local
DNSSEC validating recursive resolver.

The DANE component covers the TLS for MTA to MTA communication. RFC
7672 describes opportunistic DANE: ”With opportunistic DANE TLS, traffic from
SMTP clients to domains that publish ”usable” DANE TLSA records in accordance
with this memo is authenticated and encrypted. Traffic from legacy clients or to
domains that do not publish TLSA records will continue to be sent in the same
manner as before, via manually configured security, (pre-DANE) opportunistic
TLS, or just clear text SMTP.”

In the TLS for MSA and MAA tests, we verify whether the test object supports
TLS for the MSA and MAA. The tests described in the next paragraphs verify, by
verifying DANE, whether the test object supports TLS for MTA to MTA commu-
nication. As with the TLS for MSA and MAA tests, we do not verify the cipher
suites offered by the test object.

Receiving A sending mail server may validate DANE when setting up an SMTP
session with another mail server. To allow this, the test object should have a valid
TLSA record in the DNS. There are three scenarios to test for: the test object can
have no TLSA record, a valid TLSA record or an invalid TLSA record. An invalid
TLSA record is one where the key or certificate does not match the key/certificate
served by the mail server.

We send two e-mails to the test object, one from a mail server that uses op-
portunistic DANE and one from a mail server that forces DANE. We expect both
e-mails to arrive to verify if the test object has a valid TLSA record.

The mail server that forces DANE terminates the connection before an e-mail
is sent when there is no TLSA record. This scenario is shown in Figure 4. In the
figure, mail-test-04 forces DANE. mail-test-03 uses opportunistic DANE and will
in the scenario where the test object does not have a TLSA record, still deliver the
e-mail.

11

If neither e-mail arrives, we conclude that the test object has an invalid TLSA
record. If only the e-mail from mail-test-03 arrives, the test object has no TLSA
record. If both e-mails arrive, the test object has a valid TLSA record.

Figure 4: Verifying the TLSA record on the test object when test object receives
e-mail. In this example, the test object has no TLSA record. Connection is termi-
nated if DANE is forced

Sending A sending mail server using opportunistic DANE should be able to send
e-mail to a mail server with a valid TLSA record as well as a mail server without
a TLSA record. It should not be possible to send to a mail server with an invalid
TLSA record. To protect against downgrade attacks, it should also not be possible
to send an e-mail to a server with a TLSA record when that server does not offer
TLS. We test for all four scenarios: how the test object handles sending e-mail to
a mail server with a valid TLSA record, an invalid TLSA record, a TLSA record
but no TLS and without a TLSA record.

4.3.5 SPF

SPF aims to verify whether a sender is authorized to send on behalf of the domain
he advertises in the HELO and in the MAIL FROM header [12]. The sender places
a TXT record in the DNS that specifies which mail servers are authorized to send
e-mail on behalf of the domain.

Receiving The SPF component in the test object that validates SPF may return
one of seven result values as specified in RFC 7208 [12]. These are: None, Neutral,
Pass, Fail, Softfail, Temperror and Permerror. The RFC also provides guidance
on how to respond to each of these values. It should be noted that RFC 7208
describes: ”there is no comprehensive normative requirement for message handling

12

in response to any particular result”. The guidance is just that, there are no strict
requirements for handling the return values. In our test, however, we are trying to
prove whether a mail server is properly set up. Our definition of proper in this case
corresponds to the Result Handling section of the RFC. We feel that administrators
that deviate from the guidance of the RFC do so consciously and are, as such, not
alarmed when they fail a test in the test suite.

The administrator can configure the SPF component to either handle validation
on its own, the SPF component instructs the MTA to reject or accept an e-mail
based on its validation. Or, the SPF component can add an additional header field
that can later be used by another component to determine whether to accept the
e-mail.

In our test, we test whether the test object accepts an e-mail when the result
should be None, Neutral or Pass and whether the test object rejects the e-mail
when the result should be Fail. We also extract the header from a received e-mail
and verify that the result value in the header is what it should be according to our
test case.

We can not test whether the test object handles a Softfail, Temperror or Per-
merror result correctly. The RFC does not provide guidance on how to handle such
results. It leaves the result handling, for those results, up to the administrator.
For Softfail, the RFC does specify that the mail server SHOULD NOT reject an
e-mail based solely on a Softfail result, but we can not determine whether our test
object rejected an e-mail solely on the basis of the SPF validation.

Sending Sending an e-mail that can be verified with SPF requires an SPF record
in the DNS. We test two cases, one where we send an e-mail from the test object
to a mail-test-x domain with a valid SPF record. And one where we spoof the
MAIL FROM header, so the SPF validation should fail. We then check how our
receiving SPF component validates the e-mail.

In the first test case, we check the SPF authentication header to determine
whether the test object has a valid SPF record that authorizes it to send e-mail
on behalf of its domain. In the second case, the SPF authentication header should
show that the mail-test-x server, is not authorized to send on behalf of the test
object’s domain.

4.3.6 DKIM

DKIM uses a public/private key pair to sign e-mails. The public key is placed in
the DNS of the sender, in the form of a TXT record. The sender signs the e-mail
with a digital signature in the e-mail header. The receiver can verify this signature
using the public key set in the DNS record [13].

Receiving As described in RFC 6376 [13], the evaluation of the DKIM signa-
ture can have three states; SUCCESS, PERMFAIL and TEMPFAIL. However, the
action to be taken for each state should have no effect on handling the receiving
e-mail. RFC 6376 describes this as: ”Survivability of signatures after transit is
not guaranteed, and signatures can fail to verify through no fault of the Signer.
Therefore, a Verifier SHOULD NOT treat a message that has one or more bad
signatures and no good signatures differently from a message with no signature at
all”.

We expect the DKIM component at the test object to communicate the result
of the DKIM verification by adding a verification header.

13

We create a mail-test-x domain which signs e-mails with the correct key. We
also create a mail-test-x domain which signs e-mail with a different key than what
it publishes in the DNS. We send an e-mail from both servers to the test object
and, we determine whether the test object adds the correct verification headers.
This process is shown in Figure 5.

Figure 5: Verifying how the test object handles DKIM signatures

Sending We verify that the test object correctly signs its outgoing e-mail. In
this test, we also count the number of signatures in the outgoing e-mail. An
administrator may have, unknowingly, set up multiple components that do DKIM
signing. While the specification allows this, we still warn the user when the test
finds multiple signatures.

The test fails when an outgoing e-mail has one or more signatures that fail to
validate or when the outgoing e-mail has no signatures at all.

4.3.7 DMARC - Policy

DMARC is a reporting, authentication and policy protocol combining SPF and
DKIM. RFC 7489 [42] describes DMARC as: ”DMARC allows domain owners and
receivers to collaborate by sending assertions of the domain owners’ policies to the
receiver and provide feedback to the sender for monitoring authentication”.

Receiving The owner of a domain publishes a DMARC DNS record. Upon
receiving an e-mail from such a domain, the DMARC component checks both SPF

14

and DKIM, and applies a certain policy when one or both of the checks fail. The
policy is set in the DNS record at the sender’s domain, which can be either None,
Reject or Quarantine.

We verify whether the test object applies the correct policy when it receives an
e-mail from a domain that publishes a DMARC record. We do this by configuring
a mail-test-x domain with a bad DKIM key and a DMARC policy of reject. The
DKIM verification at the test object should return a fail and the DMARC com-
ponent should apply the reject policy specified in the DNS record. We verify that
the e-mail is indeed rejected.

Sending We expect the test object to have a DMARC record with a sufficient
policy, either reject or quarantine. A policy of none would allow senders with a
spoofed address to send e-mails to the domain.

We verify the test object’s policy by sending a spoofed e-mail to a mail-test-x
domain. We spoof the e-mail by setting the MAIL FROM header to the e-mail
address of the test account, while we send the actual e-mail from another mail-test-x
domain. We then expect the e-mail to be either rejected or quarantined.

4.3.8 DMARC - Reporting

DMARC also provides a reporting scheme where domain owners send reports to
each other to provide feedback and to report failures [42].

Receiving The e-mail address to send these reports to is set in the rua (feedback)
and ruf (failures) field of the DMARC DNS record. For this test to work, the test
suite requires the credentials of the account where the DMARC reports are sent
to. Our mail-test-x server sends out two DMARC reports every minute, one to the
rua address and one to the ruf address. We verify that the test object receives the
DMARC reports.

Sending We expect the test object to send out DMARC reports of its own. The
interval between reports can be specified in the DMARC record of the domain
receiving the reports. A domain sending out DMARC reports must be able to
send a report once every 24 hours and should be able to send a report every hour
[42]. A one-hour interval is also the minimum interval, the receiver of the report
may specify a value lower than that but a reporting MTA is not forced to honor
that [43].

The test verifies whether the test object sends out a DMARC report to a mail-
test-x domain within 24 hours of receiving an e-mail from that domain. The test
will wait for up to 24 hours, checking for DMARC reports at one-hour intervals,
before failing. RFC 7489 [42] describes that: ”anything other than a daily report
is understood to be accommodated on a best-effort basis.” To account for the best-
effort basis, the test expects a report within 24 hours. It will, however, report to
the user if it receives reports before that. The DMARC record at the mail-test-x
domain specifies a requested reporting interval of one hour.

The test is optional. Since we have to account for the use case where our test
suite is used in a CI/CD pipeline, we do not always want to wait this long before
returning the test results.

We test whether the test object sends out a DMARC report. We do not verify
the content of the report. Section 7 of RFC 7489 provides a list of data that a

15

DMARC report should contain. It is possible to use this list to verify the content
of a DMARC report, but this requires automatically processing the e-mail attach-
ment. We have no control over the content of an attachment, the content can be
malicious. Automatically processing the content is a complex and potentially dan-
gerous operation. An operation that the test suite would carry out on the user’s
machine.

4.3.9 SRS

If a domain forwards a message from another domain, the Return-path is changed
to the address of the account that forwards it. This may result in delivery issues
when the receiver validates SPF. The e-mail might be rejected or marked as spam.
This mechanism is shown in Figure 6.

Sender Rewrite Scheme (SRS) is a method to fix this. It is a way for forwarding
MTAs to rewrite the envelope sender MAIL FROM header, so it passes the SPF
check at the receiver [44].

Figure 6: SPF blocking e-mail forwarding

When the test object acts as a mail relay for another domain, it should apply
SRS. To verify if the SRS is applied correctly, we require credentials of the mail
server for which the test object acts as a relay. Because we treat the test object as
a black box, we can not control for which domains the test object acts as a relay.
We can not configure one of our mail-test-x domains as a relay domain on the test
object.

If the test object acts as a relay for an existing domain, we would require
credentials of that domain. We decide to exclude this test from the test suite
because, for security implications, we do not want to store the credentials of another
domain.

4.3.10 Greylisting

Greylisting is an anti-abuse system that temporarily rejects e-mail from unknown
sources. RFC 6647 [45] describes greylisting as: ”Broadly, the term refers to any
degradation of service for an unknown or suspect source, over a period of time
(typically measured in minutes or a small number of hours). The narrow use of
the term refers to generation of an SMTP temporary failure reply code for traffic
from such sources.”

16

RFC 6647 recommends a mail server to: ”Include a configurable range of time
within which a retry from a greylisted host is considered and outside of which it is
otherwise ignored.” The RFC also specifies that: ”The default range SHOULD be
from one minute to 24 hours. Retries within the range are permitted and satisfy
the greylisting test, and the client is thus no longer likely to be a sender of spam.
Retries after the end of the range SHOULD be considered to be a new message for
the purposes of greylisting evaluation.”

Sending When the test object sends an e-mail to a mail-test-x server that does
greylisting, the mail-test-x server first responds with an SMTP temporary failure
reply code.

We test this by sending an e-mail from the test object to a mail-test-x server
that does greylisting. This e-mail should be rejected at first. After a timeout of
one minute, as configured in mail-test-x, the e-mail should be accepted whenever
the test object tries to re-send the e-mail. For the test, we expect the test object
to re-send the e-mail within 10 minutes of being first rejected.

Receiving We expect the test object to adhere to the recommended time range.
We send an e-mail from a mail-test-x domain to the test object. The test object
should temporarily reject this e-mail. We verify that the e-mail is indeed rejected
and after a time out of one minute, we re-send the e-mail. We then verify that the
e-mail arrived at the test object.

This test covers the low end of the time range. We test the high end of the time
range by waiting for 24 hours after the last test. We expect the test object to start
greylisting the mail-test-x domain again after 24 hours have passed. This test is
optional. Users that do not want to wait 24 hours before returning the test results
can disable the test and test the high end of the time range by simply running the
test suite again after 24 hours have passed.

4.3.11 Spam filter

There are several spam filter software implementations available to reject unso-
licited e-mails [46]. Each spam filter has their own default configuration and some
spam filters are even self-learning [47]. An administrator can configure the spam
filter to his own liking. It is therefore difficult to create a predictable test for the
spam filter.

SpamAssassin created a Generic Test for Unsolicited Bulk Email (GTUBE)
[48]. The GTUBE is a specific string that can be set in the message body. Spam
filters are not forced to recognize this test string but most implementations do.

We test the spam filter on the test object by sending an e-mail with the GTUBE
string to the test object. We verify that the e-mail is either rejected or marked as
spam.

4.3.12 Sieve

Sieve [17] is a language for e-mail filtering at time of final delivery. It is designed
to be used not only by administrators, but also regular users.

ManageSieve [49] is an addition to Sieve, it is a protocol that allows users to
manage their Sieve scripts remotely. The test uses ManageSieve to submit a Sieve
script to the test object. We verify whether the test object correctly applies the

17

rules in the Sieve script by sending an e-mail to the test object that matches a rule
in the script.

5 Conclusion

The goal of our research was to take away the anxiety of administrators by creating
a comprehensive automated test suite that assures mail server components work
properly via end-to-end testing.

We identified relevant e-mail components and placed those in a taxonomy.
Based on the taxonomy, we developed a test suite consisting of 31 tests. A complete
list of these tests is shown in Appendix B.

Table 2 shows to what extent we can prove that a mail server is properly set
up. The test suite assures an administrator that IMAP, POP, SMTP (MSA),
Authentication, TLS, DANE, SPF, DKIM, DMARC, greylisting and Sieve are
properly set up. We are limited in proving that TLS cipher suites and the spam
filter are properly set up, and we do not prove whether SRS is properly set up.

We verify whether the mail server supports TLS, but we do not verify whether
the correct cipher suites show up.

We verify whether the mail server has a spam filter that supports SpamAssas-
sin’s GTUBE pattern. We cannot verify the spam filter if it does not support the
GTUBE, and we do not verify whether the spam filter correctly identifies spam
beyond the GTUBE.

The tool tests a large part of the mail server components in the e-mail architec-
ture. This should take away some of the anxiety around managing a mail server.
The tool is open source and may form the basis for a comprehensive automated
test suite that tests all aspects of a mail server.

6 Discussion

The test suite proves that certain components or parts of components are set up
correctly. Our research depends on the taxonomy we created. The taxonomy is
based on other work on mail servers and e-mail (security) testing. There are many
components in the e-mail architecture and even more different software implemen-
tations of those components, many of them glued together with various glue soft-
ware such as milters, proxies and plugins. The taxonomy covers all standardized
e-mail components, but for certain functions, e.g. blacklisting, spam and malware
filtering, there are implementations that are not covered in the taxonomy.

Our test suite is designed to work on all mail server software. The functionality of
a mail server, from an end-to-end perspective, should always be the same. However,
we have not tested our test suite on all mail server software.

There are many software implementations for each component. Ideally, we
would like to test the test suite on not just different MTAs, but also on different
component software and the various combinations one can make with these compo-
nents. We have tested the test suite on a mail server running Postfix, OpenDKIM,
OpenDMARC, Rspamd, pypolicyd-spf and Dovecot [50, 51, 47, 52, 21]. This covers
a subset of the many combinations of component software implementations. There
may be software that we have not covered that may cause false positives or false
negatives.

18

This research only covers end-to-end testing. Unit or integration tests may pro-
vide a user with more granular feedback. However, unit or integration tests may
not always test the full functionality of a component. Some tests, such as those
that verify whether a DNS record is set and valid, may benefit from the granularity
of unit or integration testing.

Although the modular test suite allows turning on/off tests, we believe that an
administrator has to set up all tested components correctly in order to have a fully
functional mail server. We expect the administrator to pass all required tests.
In creating the test suite, we have to make decisions on when to mark a test as
”failed” or when to warn the user. We are, inevitably, opinionated. Since we are
testing a black box, we can not use the configuration of the test object to determine
when a test should fail. For each component, we consult the respective RFC or
specification on how to handle different results. The guidance in an RFC often
uses the keyword SHOULD or SHOULD NOT to describe an item. This keyword
means that the item can be ignored or deviated from in particular circumstances
[53]. Therefore, behaviour of the test object may, in exceptional cases, be different
from what our test suite expects.

The user of our test suite has to either use our seven hosted servers or host his
own. We want everyone to be able to use our test suite without limitation, but at
the same time we have to prevent abuse. This requires some form of registration
and authentication before a user can use our servers. When a user hosts his own
servers, he shifts the burden of securing and managing them to himself.

7 Future work

The amount of components in the e-mail architecture has been expanding since
the first e-mail was sent. The test suite tests are based on the components in
the taxonomy. It would be very useful to extend the taxonomy to include all the
various software implementations of the e-mail infrastructure components as well
as new components. One of the latest relevant drafts is Authenticated Received
Chain (ARC) [54]. Once the taxonomy is expanded, one can come back to this
research and expand the test suite.

The goal of this research was not to compare existing solutions with our solution,
but rather fill the gap. It can be interesting to perform a comparison study of our
test suite against existing, perhaps commercial, mail server testing solutions.

There is currently no system to verify whether a user is authorized to run the
test suite on his domain. We send around ten to fifteen e-mails to that domain,
and we set up as many IMAP connections. In the current setup, we only allow
trusted users access to our seven mail-test-x domains. In the future, when others
want to use the test suite, we require some form of authentication and registration
mechanism.

There are many techniques for classifying an e-mail as spam. There has been
research into comparing and evaluating these techniques, such as Blanzieri and
Bryl [55]. One can use this and similar research to create a test suite for spam
filters.

19

8 Acknowledgements

We would like to thank Michiel Leenaars from NLnet for his active support and
supervision during this project.

References

[1] P. Mockapetris. Domain names - implementation and specification. STD 13,
RFC Editor, November 1987. http://www.rfc-editor.org/rfc/rfc1035.

txt.

[2] P. Hoffman and J. Schlyter. The dns-based authentication of named entities
(dane) transport layer security (tls) protocol: Tlsa. RFC 6698, RFC Editor,
August 2012. http://www.rfc-editor.org/rfc/rfc6698.txt.

[3] M. Kucherawy and E. Zwicky. Domain-based message authentication, re-
porting, and conformance (dmarc). RFC 7489, RFC Editor, March 2015.
http://www.rfc-editor.org/rfc/rfc7489.txt.

[4] nixcloud. nixcloud.email. https://github.com/nixcloud/

nixcloud-webservices/blob/master/documentation/nixcloud.email.

md. Accessed, Oct. 19 2018.

[5] Wietse Venema. The Postfix Home Page. http://www.postfix.org/start.
html, 2018. Accessed, Nov. 02 2018.

[6] NixOS. About NixOS. https://nixos.org/, 2018. Accessed Nov. 19 2018.

[7] MxToolbox, Inc. MxToolbox. https://mxtoolbox.com/SuperTool.aspx.
Accessed, Oct. 10 2018.

[8] IBM. Open relays. https://www.ibm.com/support/knowledgecenter/

zh/SSKTMJ_8.5.3/com.ibm.help.domino.admin85.doc/H_OPEN_RELAYS_

DETAILS.html, 2009. Accessed, Oct. 15 2018.

[9] Dutch Internet Standards Platform. About the email test. https://en.

internet.nl/test-mail/. Accessed, Oct. 10 2018.

[10] NCSC. ICT-beveiligingsrichtlijnen voor Transport Layer Se-
curity (TLS). https://www.ncsc.nl/actueel/whitepapers/

ict-beveiligingsrichtlijnen-voor-transport-layer-security-tls.

html, November 2014. Accessed, Oct. 19 2018.

[11] MailPoet & AcyMailing. Test the Spammyness of your Emails. https://www.
mail-tester.com/. Accessed, Oct. 10 2018.

[12] S. Kitterman. Sender policy framework (spf) for authorizing use of do-
mains in email, version 1. RFC 7208, RFC Editor, April 2014. http:

//www.rfc-editor.org/rfc/rfc7208.txt.

[13] D. Crocker, T. Hansen, and M. Kucherawy. Domainkeys identified mail (dkim)
signatures. STD 76, RFC Editor, September 2011. http://www.rfc-editor.
org/rfc/rfc6376.txt.

20

http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
https://github.com/nixcloud/nixcloud-webservices/blob/master/documentation/nixcloud.email.md
https://github.com/nixcloud/nixcloud-webservices/blob/master/documentation/nixcloud.email.md
https://github.com/nixcloud/nixcloud-webservices/blob/master/documentation/nixcloud.email.md
http://www.postfix.org/start.html
http://www.postfix.org/start.html
https://nixos.org/
https://mxtoolbox.com/SuperTool.aspx
https://www.ibm.com/support/knowledgecenter/zh/SSKTMJ_8.5.3/com.ibm.help.domino.admin85.doc/H_OPEN_RELAYS_DETAILS.html
https://www.ibm.com/support/knowledgecenter/zh/SSKTMJ_8.5.3/com.ibm.help.domino.admin85.doc/H_OPEN_RELAYS_DETAILS.html
https://www.ibm.com/support/knowledgecenter/zh/SSKTMJ_8.5.3/com.ibm.help.domino.admin85.doc/H_OPEN_RELAYS_DETAILS.html
https://en.internet.nl/test-mail/
https://en.internet.nl/test-mail/
https://www.ncsc.nl/actueel/whitepapers/ict-beveiligingsrichtlijnen-voor-transport-layer-security-tls.html
https://www.ncsc.nl/actueel/whitepapers/ict-beveiligingsrichtlijnen-voor-transport-layer-security-tls.html
https://www.ncsc.nl/actueel/whitepapers/ict-beveiligingsrichtlijnen-voor-transport-layer-security-tls.html
https://www.mail-tester.com/
https://www.mail-tester.com/
http://www.rfc-editor.org/rfc/rfc7208.txt
http://www.rfc-editor.org/rfc/rfc7208.txt
http://www.rfc-editor.org/rfc/rfc6376.txt
http://www.rfc-editor.org/rfc/rfc6376.txt

[14] Byteplant Software Solutions. Free Email Security Check. https://www.

emailsecuritycheck.net/index.html. Accessed, Oct. 15 2018.

[15] Microsoft. Remote Connectivity Analyzer. https://testconnectivity.

microsoft.com, 2018. Accessed, Oct. 17 2018.

[16] D. Crocker. Internet mail architecture. RFC 5598, RFC Editor, July 2009.
http://www.rfc-editor.org/rfc/rfc5598.txt.

[17] P. Guenther and T. Showalter. Sieve: An email filtering language. RFC 5228,
RFC Editor, January 2008. http://www.rfc-editor.org/rfc/rfc5228.txt.

[18] Wietse Venema. postdrop - Postfix mail posting utility. http://www.postfix.
org/postdrop.1.html, 2018. Accessed, Nov. 15 2018.

[19] Mozilla. Software that makes e-mailing easier. https://www.thunderbird.

net, 2018. Accessed, Nov. 15 2018.

[20] Matthias Andree. Fetchmail - the mail-retrieval daemon. https://

sourceforge.net/projects/fetchmail/, 2018. Accessed, Nov. 15 2018.

[21] Timo Sirainen. Dovecot, Secure IMAP server. https://dovecot.org/, 2018.
Accessed, Nov. 02 2018.

[22] Mutt Project. Mutt Documentation - Mailconcept. https://gitlab.com/

muttmua/mutt/wikis/MailConcept, 2018. Accessed, Oct. 15 2018.

[23] K. Moore and C. Newman. Cleartext considered obsolete: Use of transport
layer security (tls) for email submission and access. RFC 8314, RFC Editor,
January 2018. http://www.rfc-editor.org/rfc/rfc8314.txt.

[24] Raymond Paul. End-to-end integration testing. In Quality Software, 2001.
Proceedings. Second Asia-Pacific Conference on, pages 211–220. IEEE, 2001.

[25] J. Klensin. Simple mail transfer protocol. RFC 2821, RFC Editor, April 2001.
http://www.rfc-editor.org/rfc/rfc2821.txt.

[26] M. Crispin. Internet message access protocol - version 4rev1. RFC 3501, RFC
Editor, March 2003. http://www.rfc-editor.org/rfc/rfc3501.txt.

[27] Python. Python. https://www.python.org/, 2018. Accessed, Oct. 08 2018.

[28] Python. unittest - Unit testing framework. https://docs.python.org/3/

library/unittest.html. Accessed Oct. 09 2018.

[29] Python. smtplib - SMTP protocol client. https://docs.python.org/3/

library/smtplib.html. Accessed Oct. 08 2018.

[30] Python. imaplib - IMAP4 protocol client. https://docs.python.org/3/

library/imaplib.html. Accessed Oct. 08 2018.

[31] Forum Standaardisatie. Lijst verplichte open standaarden. Online, Forum
Standaardisatie, September 2018. https://www.forumstandaardisatie.nl/
sites/bfs/files/Lijst_verplichte_open_standaarden_sept-2018.pdf.

[32] European Commission. Guidelines and best practices for the Postfix email ser-
vice (MECSA). https://mecsa.jrc.ec.europa.eu/en/postfix, 2018. Ac-
cessed, Oct. 19 2018.

21

https://www.emailsecuritycheck.net/index.html
https://www.emailsecuritycheck.net/index.html
https://testconnectivity.microsoft.com
https://testconnectivity.microsoft.com
http://www.rfc-editor.org/rfc/rfc5598.txt
http://www.rfc-editor.org/rfc/rfc5228.txt
http://www.postfix.org/postdrop.1.html
http://www.postfix.org/postdrop.1.html
https://www.thunderbird.net
https://www.thunderbird.net
https://sourceforge.net/projects/fetchmail/
https://sourceforge.net/projects/fetchmail/
https://dovecot.org/
https://gitlab.com/muttmua/mutt/wikis/MailConcept
https://gitlab.com/muttmua/mutt/wikis/MailConcept
http://www.rfc-editor.org/rfc/rfc8314.txt
http://www.rfc-editor.org/rfc/rfc2821.txt
http://www.rfc-editor.org/rfc/rfc3501.txt
https://www.python.org/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/imaplib.html
https://docs.python.org/3/library/imaplib.html
https://www.forumstandaardisatie.nl/sites/bfs/files/Lijst_verplichte_open_standaarden_sept-2018.pdf
https://www.forumstandaardisatie.nl/sites/bfs/files/Lijst_verplichte_open_standaarden_sept-2018.pdf
https://mecsa.jrc.ec.europa.eu/en/postfix

[33] Cullum Smith. How To Run Your Own Mail Server. https://www.c0ffee.

net/blog/mail-server-guide/, 2017. Accessed, Oct. 19 2018.

[34] Skelleton. Build Your Own Email Server on Ubuntu: Ba-
sic Postfix Setup. https://www.linuxbabe.com/mail-server/

setup-basic-postfix-mail-sever-ubuntu-14-04, 2015. Accessed,
Oct. 19 2018.

[35] Xiao Guo-An. How to eliminate spam and protect your
name with DMARC. https://www.skelleton.net/2015/03/21/

how-to-eliminate-spam-and-protect-your-name-with-dmarc/, 2018.
Accessed, Oct. 19 2018.

[36] Red Hat, Inc. Ansible is Simple IT Automation. https://www.ansible.com/.
Accessed, Oct. 12 2018.

[37] Isaac Klop, Kevin Csuka. https://github.com/csuka/automated_end2end_
email_component_testing, 2018. RP2 - End-to-end automated email com-
ponent testing, Accessed, Nov. 20 2018.

[38] Internet.nl. Copyright. https://en.internet.nl/copyright/, 2018. Ac-
cessed Nov. 19 2018.

[39] V. Dukhovni and W. Hardaker. Smtp security via opportunistic dns-based au-
thentication of named entities (dane) transport layer security (tls). RFC 7672,
RFC Editor, October 2015. http://www.rfc-editor.org/rfc/rfc7672.

txt.

[40] V. Dukhovni and W. Hardaker. The dns-based authentication of named en-
tities (dane) protocol: Updates and operational guidance. RFC 7671, RFC
Editor, October 2015. http://www.rfc-editor.org/rfc/rfc7671.txt.

[41] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Dns security
introduction and requirements. RFC 4033, RFC Editor, March 2005. http:

//www.rfc-editor.org/rfc/rfc4033.txt.

[42] M. Kucherawy and E. Zwicky. Domain-based message authentication, re-
porting, and conformance (dmarc). RFC 7489, RFC Editor, March 2015.
http://www.rfc-editor.org/rfc/rfc7489.txt.

[43] dmarc.org. FAQ - Wiki. https://dmarc.org/wiki/FAQ, 2016. Accessed, Oct.
15 2018.

[44] Julian Mehnle, James Couzens. Sender Policy Framework, SRS: Sender
Rewriting Scheme. http://www.openspf.org/SRS, 2018. Accessed, Oct. 19
2018.

[45] M. Kucherawy and D. Crocker. Email greylisting: An applicability statement
for smtp. RFC 6647, RFC Editor, June 2012. http://www.rfc-editor.org/
rfc/rfc6647.txt.

[46] Apache Software Foundation. Apache SpamAssassin. https://

spamassassin.apache.org/, 2018. Accessed, Oct. 20 2018.

[47] Rpamd LTD. Rspamd spam filtering system. https://rspamd.com, 2018.
Accessed, Oct. 20 2018.

22

https://www.c0ffee.net/blog/mail-server-guide/
https://www.c0ffee.net/blog/mail-server-guide/
https://www.linuxbabe.com/mail-server/setup-basic-postfix-mail-sever-ubuntu-14-04
https://www.linuxbabe.com/mail-server/setup-basic-postfix-mail-sever-ubuntu-14-04
https://www.skelleton.net/2015/03/21/how-to-eliminate-spam-and-protect-your-name-with-dmarc/
https://www.skelleton.net/2015/03/21/how-to-eliminate-spam-and-protect-your-name-with-dmarc/
https://www.ansible.com/
https://github.com/csuka/automated_end2end_email_component_testing
https://github.com/csuka/automated_end2end_email_component_testing
https://en.internet.nl/copyright/
http://www.rfc-editor.org/rfc/rfc7672.txt
http://www.rfc-editor.org/rfc/rfc7672.txt
http://www.rfc-editor.org/rfc/rfc7671.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc7489.txt
https://dmarc.org/wiki/FAQ
http://www.openspf.org/SRS
http://www.rfc-editor.org/rfc/rfc6647.txt
http://www.rfc-editor.org/rfc/rfc6647.txt
https://spamassassin.apache.org/
https://spamassassin.apache.org/
https://rspamd.com

[48] Apache Software Foundation. https://spamassassin.apache.org/gtube/.
The GTUBE, Accessed, Oct. 10 2018.

[49] A. Melnikov and T. Martin. A protocol for remotely managing sieve scripts.
RFC 5804, RFC Editor, July 2010. http://www.rfc-editor.org/rfc/

rfc5804.txt.

[50] The Trusted Domain Project. OpenDKIM. http://opendkim.org/, 2018.
Accessed, Nov. 02 2018.

[51] The Trusted Domain Project. OpenDMARC. http://www.trusteddomain.

org/opendmarc/, 2012. Accessed, Nov. 02 2018.

[52] Scott Kitterman. pypolicyd-spf. https://launchpad.net/pypolicyd-spf,
2017. Accessed, Nov. 02 2018.

[53] Scott Bradner. Key words for use in rfcs to indicate requirement lev-
els. BCP 14, RFC Editor, March 1997. http://www.rfc-editor.org/rfc/

rfc2119.txt.

[54] K. Andersen and B. Long, Ed. and S. Blank, Ed. and M. Kucherawy, Ed. Au-
thenticated Received Chain (ARC) Protocol. Internet-Draft draft-ietf-dmarc-
arc-protocol-18, IETF Secretariat, October 2018.

[55] Enrico Blanzieri and Anton Bryl. A survey of learning-based techniques of
email spam filtering. Artificial Intelligence Review, 29(1):63–92, 2008.

A Acronyms

ARC Authenticated Received Chain. 19

CI/CD Continuous Integration and Continuous Delivery. 4

DANE DNS-based Authentication of Named Entities. 2

DKIM Domainkeys Identified Mail. 3

DMARC Domain-based Message Authentication, Reporting and Conformance.
2

DNS Domain Name System. 2

DNSSEC DNS Security Extensions. 11

E2E end-to-end. 4

GTUBE Generic Test for Unsolicited Bulk Email. 17

IMAP Internet Message Access Protocol. 4

IPv6 Internet Protocol version 6. 3

MAA Message Access Agent. 3

23

https://spamassassin.apache.org/gtube/
http://www.rfc-editor.org/rfc/rfc5804.txt
http://www.rfc-editor.org/rfc/rfc5804.txt
http://opendkim.org/
http://www.trusteddomain.org/opendmarc/
http://www.trusteddomain.org/opendmarc/
https://launchpad.net/pypolicyd-spf
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt

MDA Message Delivery Agent. 3

MRA Message Retrieval Agent. 3

MSA Message Submission Agent. 3

MTA Message Transfer Agent. 3

MUA Message User Agent. 3

NCSC National Cyber Security Centre. 3

POP Post Office Protocol. 10

SMTP Simple Mail Transfer Protocol. 4

SPF Sender Policy Framework. 3

SRS Sender Rewrite Scheme. 16

TLS Transport Layer Security. 2

VM Virtual Machine. 5

B Test suite component tests

Table 3 shows which tests the suite contains to test the components of a mail server.

Send/receive Component Method Expected result
Send Greylisting

lower boundary
Send mail from all mail

servers
Mail should be rejected for 1
minute, because we expect
greylisting. Then the mails
should arrive, unblocking us
from the greylisting, so we

can continue tests
Send First send mail Send a mail and verify

SMTP
Mail should be sent

Receive First receive
mail

Receive a mail and verify
IMAP

Mail should be received

Send TLS availability Verify STARTTLS is
available on target

TLS is available on SMTP

Receive TLS availability Test if TLS is available
for IMAP

TLS is available on IMAP

Send TLS forcing Test if TLS is forced for
SMTP

TLS is forced on SMTP

Receive TLS forcing Test if TLS is forced for
IMAP

TLS is forced on IMAP

Receive POP3 Test if target can receive
POP, by sending mail
from mail-01 to target

Mail arrives

24

Receive POP3 TLS Test if TLS is available
for POP, by connecting

via pop

TLS is available

Receive POP3 TLS
forcing

Test if TLS is forced for
POP

TLS is forced

Receive SPF hardfail Send mail from mail-04
to mail server, mail-04

has “v=spf1 -all” record

Mail should be rejected

Send SPF send a mail pretending
to be the mail server to

mail-04 which checks
SPF

Mail should be rejected

Receive DKIM bad
signature check

Send mail from mail-05,
which has a bad DKIM

signature

Mail in inbox or junk, with
dkim=fail or

‘DKIM INVALID’ string in
header

Receive DKIM good
signature check

send mail from mail-01,
which has a good DKIM

signature

mail received in inbox, with
dkim=pass or

‘DKIM VALID’ string in
header

Send DKIM signature Send mail from mail
server to mail-01

dkim=pass string for all
signatures in the header

Send Sieve 1. Login via managesieve
2. Place and activate a
test script which places

mail from mail-01 in
Junk folder 3. Send mail
from mail-01 and verify
4. Place an empty script
and delete previous test

script

Mail should be in Junk

Receive Spamfilter Send mail from mail-01
to mail server with

GTUBE string

Mail should not be in the
inbox

Send Greylisting Send a mail to mail-02
(mail-02 does

greylisting). This test
waits at most 10 minutes

before failing

After rejecting, the mail is
re-sent and should be in the

inbox of mail-02

Send Send as other
user

Send mail from mail
server pretending to be
postermaster@domain
while authenticated as

the test user

Mail should not be sent

Send Open relay Test if test object allows
the sending of e-mail
before authentication

Is not allowed to send when
not authenticated

25

Receive OpenDMARC
report rua

Test if test object
receives a ruf DMARC

report sent from mail-01,
mail-01 sends out a

DMARC report every
minute

Report is received

Receive OpenDMARC
report rua

Test if test object
receives a rua DMARC

report sent from mail-01,
mail-01 sends out a

DMARC report every
minute

Report is received

Receive DMARC policy Does test object handle
mail correctly when a

DMARC record specifies
Reject? mail-06 is

configured with a bad
DKIM key and a

DMARC policy of reject

Mail should be rejected

Send DMARC policy Send a mail pretending
to be from the test
object to mail-05,
mail-05 only uses
OpenDMARC to
evaluate a sender

Mail should be rejected

Send DMARC
reporting

Test if test object
correctly sends out
DMARC reports

Receive a DMARC report
from test object

Receive DANE TLSA
record

Test if test object can
receive email from a

domain that validates
DANE

Mail should be received

Receive DANE no
TLSA record

Can test object receive
mail from a domain that

expects a valid TLSA
record, test fails if there

is no or a bad TLSA
record

Mail should be received

Send DANE validator Send mail to mail-03,
mail-03 has a bad DANE

record

Test object should not set
up a connection, so mail

should not arrive
Send DANE no TLS Send mail to mail-07,

mail-07 has a TLSA
record but does not offer

TLS

Test object should not set
up a connection, so mail

should not arrive

Send DANE
strictness

Send mail to mail-04,
mail-04 has no TLSA

record

Mail should arrive

Receive Greylisting
upper boundary

Does test object
correctly start greylisting

again after 24 hours

Test object should greylist
after a 24 hour timeout

26

Table 3: List of tests in the test suite

27

	Introduction
	Research questions

	Related work
	Method
	Taxonomy
	End-to-end testing
	Proof of Concept
	End-to-end setup
	Process

	Results
	Taxonomy
	Public mail servers
	The Test Suite
	SMTP (MSA), POP and IMAP
	Authentication (MSA and MAA)
	TLS (MSA and MAA)
	DANE
	SPF
	DKIM
	DMARC - Policy
	DMARC - Reporting
	SRS
	Greylisting
	Spam filter
	Sieve

	Conclusion
	Discussion
	Future work
	Acknowledgements
	Acronyms
	Test suite component tests

