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Abstract
In 2018, more than 2,730 Autonomous Systems on the Internet were

affected by 12,600 incidents[1] (including outages, attacks, route leaks and
hijacks); and new incidents appear on a daily basis[2]. BGP policies are
a key countermeasure operators have against these incidents[3]. The two
route servers at AMS-IX connect more than 714 clients each and manage
more than 340,000 prefixes. Because of their central position in the IXP’s
topology, they play an important role in enforcing the BGP policies of
their clients. To ensure the consistency of these policies, the IT systems
of AMS-IX query the Internet Routing Registry database (IRRDB)[4] on
an hourly basis. As the number of clients and prefixes increase yearly,
concerns about their scalability and maintainability arise. What are the
limits of the current architecture? Are there other ways to receive updates
in real time? And if so, what are the consequences of these alternatives?
To address these concerns, we identify, reproduce and measure the impact
of the current BGP policy update process on the network infrastructure.
Our tests revealed that the route server’s blocking time (CPU utilization
at 100% during reconfiguration) is the main bottleneck in the system, and
that it increases with the size of the route server’s configuration file and
the amount of route server clients undergoing policy changes. Further-
more, by studying the frequency of the policy changes based on historical
data, we are able to evaluate and discuss the blocking probability of the
system, and discuss ways to improve its scalability. Finally, we propose
a Publish-Subscribe messaging system that enables real time processing of
BGP policy updates and explain the changes required on the current ar-
chitecture. We discuss how to decrease the processing time by improving
the way policy updates are processed at IXPs, and show the feasibility of
the design with a proof of concept. We conclude recommending IXPs to
monitor usage statistics of BGP policy updates in production and compare
them against actual measurements on their network infrastructure.

Keywords – BGP Policies, IXPs, RPSL, Route Servers, Bird, PubSub, Messaging
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1 Introduction
The Amsterdam Internet Exchange (AMS-IX) is the second largest internet
exchange in the world, in terms of peak throughput1. Internet exchange points
(IXPs) facilitate the interconnection of organizations (typically Internet Service
Providers, ISPs), by offering a high capacity local network.
Route servers (RSs) occupy a central position in the IXP’s infrastructure in
order to help IXP clients establish multilateral interconnections and exchange
of network topology information, and in this way avoid a full-mesh topology.
Because of their position, route servers also contribute in applying policies that
the network operators specify.
The IT systems of the AMS-IX update on an hourly basis their Border Gateway
Protocol (BGP) policy information of its route server clients. While this is a
relatively short interval when compared to other IXPs (see Section 2.2.1), it still
leaves the system working with stale data for up to one hour, in the worst case.
Because the number of clients and prefixes handled by the route servers of AMS-
IX keep increasing2, concerns arise about the scalability and maintainability of
the current systems. AMS-IX would like to improve the current policy update
process, make it more timely and the systems more scalable. AMS-IX would
also like to know the requirements and consequences of these improvements.
Since data sources and tools used to process BGP policies are developed, main-
tained and widely adopted by the community[5][6], it is likely that the chal-
lenges faced by AMS-IX are also present in other large IXPs. To the best of
our knowledge, there is no scientific research on the improvement of the policy
update process of route servers at IXPs.
The aim of our research is to evaluate the performance of the current BGP policy
update process, identify and measure bottlenecks. More concretely, we design
experiments to measure the CPU, memory and network traffic impact on the
route server and its clients, and study the influence of the size of configuration
files and protocol updates triggered by policy changes.
In Section 2.2 we provide an overview of data sources that are involved in the
BGP policy update process. We chose to evaluate in detail the Internet Routing
Registry Database (IRRDB) because it has been operational the longest and it
is likely to offer more opportunities for improvement.
The main contributions of our research are:

• We identify the main bottleneck in the system, and describe how the size
of the configuration file and the number of route server clients undergoing
protocol updates (see Section 4.1.2) increase it. Furthermore, we show
the trend and frequency of BGP policy changes at the AMS-IX using
historical data from RIPE[4].

• We introduce the usage of the Erlang B formula[7] to predict the blocking
probability of the system, and hypothesize over the system’s behavior in
normal and busy scenarios. Furthermore, we discuss how the Erlang B
formula can help to identify capacity expansion alternatives and optimiza-
tion opportunities.

• We propose a Publish-Subscribe messaging system that enables processing
in real time of policy changes, we suggest improvements to the IXP IT

1https://www.pch.net/ixp
2https://stats.ams-ix.net/rs-stats.html

3



and route server systems to decrease the blocking time in the current
architecture and show the feasibility of the design with a proof of concept.

Our paper is structured as follows: Section 2 provides background informa-
tion on the domain of BGP policies, route server architecture and related data
sources. In Section 3 we discuss the setup required for the experiments and
their design. We present the results in sections 4. In Section 5 we list the
requirements and propose our Publish-Subscribe messaging system and coun-
termeasures to decrease the blocking time.
Finally, in Sections 6 through 7, we reflect on the results and proposed design,
present our conclusions and suggestion for future research.

1.1 Research question
To help us achieve the goals aimed in this paper, we answer the following research
questions:

• Regarding the route server’s BGP policy update process, what are the main
performance and scalability indicators? What are the bottlenecks of the
process? What is the impact of these bottlenecks?

• If required, how can we improve these indicators in a new, achievable
design?

1.2 Literature review
Vouteva and Turgut describe[8] the RS configuration architecture of AMS-IX,
its tooling and current BGP configuration practices, and propose a tool to au-
tomate BGP configuration as a whole. Automated BGP configuration is a key
component in the process of BGP policy configuration, and therefore, to our
research.
Regarding the scalability of BGP route server implementations, Jenda Brands
and Patrick de Niet looked at BGP Parallelization[9] as a way to overcome the
CPU bottlenecks in route servers, which cause long convergence times. While in
their research focuses on convergence time of the systems, it helps our research
in confirming the relation between number of peers undergoing BGP UPDATES
and the time the CPU runs at 100% utilization.
We reevaluate the integration options between the data sources and the route
server, and propose a design based on a Publish-Subscribe messaging integration
pattern, described by Hohpe et al. in Enterprise Integration Patterns[10].
We make extensive reference to relevant RFCs, namely on: BGP, Routing Policy
Specification Language (RPSL), Resource Public Key Infrastructure (RPKI),
and the operational and security aspects of route servers.
Finally, practical aspects of the experiments and proof of concept are possible
thanks to the following projects/services: the Bird routing daemon[5], aroute-
server configuration parser [6] and Google’s PubSub cloud service.

2 Background
In this section we cover the necessary background information to understand
the rest of the paper. We point to additional information where appropriate.

2.1 BGP Policies
Policies help network operators achieve certain goals. For instance, network
operators might want to filter out non-optimal routes, to avoid paying transit
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charges.
Caesar et al.[11] categorize policies in four groups, namely business relationship
policies, resulting from the relationship between the network operator and its
neighbor; traffic engineering policies, which are meant to control the quality of
service and traffic load on the peering links; scalability, meant to reduce control
traffic and load on routers, and security policies, to protect the network operator
from malicious or accidental attacks.
RSs might contribute in applying policies of RS clients due to its central location
in the IXP infrastructure. For example, they can filter of prefixes depending on
the policies specified by administrators of RS clients on IRRDB.
RFC-7454: BGP Operations and Security [12] summarizes common existing
guidelines defined by the Internet community and help operators implement
BGP policies.

2.2 Baseline Architecture

Figure 1: Baseline architecture: IRRDB, Resource Public Key Infrastructure
and Bogon prefix validation processes, components and interfaces

To illustrate the interactions between the components in the architecture de-
picted in Figure 1, we describe below the main components in the architecture.

2.2.1 The route server

The route server’s main function is to broker network reachability information
among its RS clients, forming in this way a multilateral interconnection. In
a multilateral interconnection, three or more external BGP speakers exchange
routing information via a route server[13]. In this way a full mesh topology
(and the resulting higher complexity and operational costs) is avoided. RSs are
different from a route reflector because they use eBGP instead of iBGP, and they
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need to support path distribution on a per-client basis. This requires special
handling of BGP UPDATE and path calculation functionalities, not present in
normal BGP implementations[13]. Because of the broker role of route servers,
they also play an important role in enforcing BGP policies.

IXP Clients Connected to RS Update frequency
AMS-IX[14] 845 714 1 hour
DE-CIX[15] 870 846 6 hours
LINX[16] 819 640 at least 3 hours[17]

Table 1: Route server clients and update frequency

Table 1 shows the amount of networks peering with the route servers and the
frequency with which route servers update BGP policies in major IXP’s.
RFC-7948: Internet Exchange BGP Route Server Operations[18] and Brands et
al.[9] deal with the main aspects relevant to scaling RSs on the network side.
Bird is the main route server implementation used by IXPs[5]. Bird runs on
a single thread and uses only one CPU core, and this explains the blocking
behavior during reconfigurations (CPU utilization becomes 100% while the new
configuration file is processed)[9].
The configuration of Bird is done with a text file which contain directives, data
structures, functions and filters. For example, an RPSL route-set object from
the IRRDB is typically translated by the Configuration Parser into a set data
structure containing prefixes in the configuration file. Other data structures
include the Bogon prefix list, and the Routing Origin Authorization (ROAs)
used by the Resource Public Key Infrastructure (RPKI). In general, the main
contributors to the file size are:

• ROA records: this table contains information about prefixes, network
mask lengths and their allowed origin ASNs. This part of the configuration
is static, meaning it does not increase with the number of peers.

• RS client configuration: typically containing protocol details, such as peer
ASN number and IP addresses. Additionally, to support the policies ap-
plied at the route server, functions (for example, check_prefix_lengths)
and filters (prefix_list for a given ASN) are typically used in the configu-
ration file. This part of the configuration varies with the number of peers,
and the size of the objects they refer to (the size of the prefix_list, in our
example).

Example of Bird configuration files are available in our project repository3.
To take new configurations into use, Bird reads them without restarting the BGP
protocol, by default. However, changes in filters (for instance, those introduced
by an updated BGP policy) will usually lead to a restart of BGP[19]. In Section
4.2 we show how frequently changes in BGP policies occur.

2.2.2 The Configuration Parser

The Configuration Parser periodically aggregates the information retrieved from
data sources in Figure 1, plus any other changes that might have happened in
the environment (e.g. new peers, new interface addresses), and generates a
new configuration file for the route server. The Configuration Parser typically

3https://bitbucket.org/david-garay/rp2
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includes in the configuration file a set of common rules derived from best prac-
tices among IXPs and network operators, such as basic filters and prefix / origin
ASN validations. Examples of the former are minimum and maximum prefix
length and bogon filters. Examples of the latter are IRRDB- and RPKI-based
filtering).[6]

2.2.3 RPKI - Resource Public Key Infrastructure

RPKI provides mechanisms for validating the contents of BGP announcements
and map an origin ASN to a list of prefixes. In this way, attacks such as route
hijacks are prevented. To achieve this, it relies on three main elements[20]:

• The RPKI: defined following the current organization for IP block and
ASNs allocation, with IANA at the root of the hierarchy, and the 5 RIRs
(Regional Internet Registries) below, managing a defined geopolitical re-
gion. Currently, the RPKI Trust Anchor (TA) function is carried out by
the RIRs4.

• Routing Origin Authorization (ROAs): provides an explicit authorization
that a given autonomous system is permitted to originate routes to a set
of addresses. The ROA contains the ASN to be authorized, the prefix that
might be originated by the ASN and the maximum length of the prefix.

• A distributed repository system: to validate all ROAs, network operators
need to acquire all the certificates and certificate revocation lists.

2.2.4 IRRDB - Internet Routing Registry Database

The IRRDB is a set of databases maintained by different organizations on the
internet (RADB5, NTT6 and RIPE NCC7, to name a few). The information
on the IRRDB is represented using the Routing Policy Specification Language.
In the baseline architecture depicted in Figure 1, multiple databases compose
the IRRDB, serving different regions of the world. The services these registries
provide are exposed through the following interfaces[4]: whois, RDAP8 and
REST APIs9. Moreover, network operators can host their own copy of the
database while receiving near real-time updates thanks to the Near Real Time
Mirroring protocol (NRTM)[21] (denoted as caching in Figure 1). RIRs typically
offer network operators web, email or API interfaces, so they can update their
RPSL objects[4].
RPSL - Routing Policy Specification Language: RFC-2622[22] states that RPSL
is designed to contain a view of the global Internet policy on a single-cooperatively
maintained database. RPSL is object oriented, and uses classes to represent pol-
icy and administrative objects.

1 aut−num: AS29263
2 org : ORG−GDH1−RIPE
3 as−name : HAAGNET−AS
4 . . .
5 import : from AS6777 ac t i on p r e f =200; accept AS−AMS−IX−

ROUTESERVER
6 export : to AS6777 announce AS−HAAGNET
7 . . . .

4http://localcert.ripe.net:8088/trust-anchors
5http://www.irr.net/
6https://www.us.ntt.net/support/policy/rr.cfm
7https://www.ripe.net/
8https://www.icann.org/rdap
9https://apps.db.ripe.net/db-web-ui/#/query

7



8 de f au l t : to AS−KPN
9 admin−c : HH3038−RIPE

10 tech−c : HRA19−RIPE
11 s t a tu s : ASSIGNED
12 mnt−by : RIPE−NCC−END−MNT
13 mnt−by : HAAGNET−MNT
14 c rea ted : 2003−07−16T08 : 4 5 : 5 3Z
15 l a s t−modi f i ed : 2017−11−15T09 : 2 1 : 2 1Z
16 source : RIPE

Listing 1: Example content of aut-num object

Listing 1 is an example of an aut-num object. The attributes indicate the
autonomous-system number (aut-num: AS29263), name (as-name: HAAGNET-
AS), and administrative information. Multiple import/export fields are allowed,
and in the example above we highlight the policies of HAAGNET-AS relevant to
the route servers of AMS-IX (AS6777). The import policies refer to the prefixes
the routers at HAAGNET-AS expect to receive. More concretely, they specify
a BGP attribute the routers of HAAGNET-AS apply (pref=200) to the list of
prefixes (AS-AMS-IX-ROUTESERVER) the routers of HAAGNET-AS are expect-
ing. The policies on the export field refer to the prefixes being advertised by the
routers of HAAGNET-AS: they only advertise the prefixes in the AS-HAAGNET
prefix list10.

2.2.5 Team Cymru bogon prefix list

Bogons are prefixes that should not appear on the routing tables (for instance,
private ranges defined by RFC-1819 and prefixes that have not been allocated
to a RIR). Filtering these prefixes helps in anti-spoofing and preventing their
usage in DDOS attacks. The list of these prefixes is updated dynamically by
Team Cymru11.

2.3 Application integration patterns
Applications don’t live in isolation. Integration deals with how applications
interact with each other. Hohpe et al.[10] outline the main application inte-
gration approaches: file transfer, database, Remote Procedure Call (RPC) and
messaging.
In a file system integration, one application writes and another reads. Applica-
tions need to agree on timing, filenames and locations, and who is in charge of
deleting the files. In a shared database, multiple applications read from a single
physical database, and one schema. The disadvantages of these approaches is
that they produce tightly-coupled systems: each application must have specific
knowledge about the files or database composition, structure and data format.
Coming up with a unified schema suitable for different applications can be chal-
lenging. Another disadvantage of these systems has to do with the timeliness:
the time it takes from when one application decides to share data until the other
application can consume it can be large, which causes applications to work with
stale data.
Ideally, one application would invoke behavior from another application when an
event (such as an update) occurs. In an RPC system, applications communicate
by means of synchronous calls over the network, the same way local calls are

10https://www.ams-ix.net/ams/documentation/ams-ix-route-servers
11https://www.team-cymru.com/bogon-reference.html
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made. The communication occurs in real time and synchronously. The problem
with this approach is that network performance problems and failures are often
not evident, while these are pervasive problems in distributed systems.[10]
Integration using messaging promotes loose-coupling between systems, scalabil-
ity and hides network unreliability.

2.3.1 Publish-Subscribe messaging

Messaging systems enable messages produced at one producing application to
be transported to a consuming application. To accomplish this, they rely on a
Messaging System, also called Message-oriented Middleware[23][10]. Compared
to RPC, messaging systems allow, among other things, synchronous and re-
liable communications, throttling and mediation. A key feature that enables
these capabilities is the store-and-forward operation. When a message is sent
to the messaging system, the message is stored and then delivered. An offline
consumer can retrieve the message when it comes back online.
Messaging channels are logical addresses in a messaging system[10]. They are
meant to transfer a particular type of information. The sending application does
not know what particular application will consume its message, but it can be as-
sured it is interested in the information. A Publish-Subscribe a type of channel
well suited to broadcasting information. In a Publish-Subscribe channel, end-
points need to subscribe to so-called topics before they can receive notifications.
Whenever an endpoint publishes a message to this topic, the message is either
consumed by a subscriber immediately, or remains in the messaging queue until
it expires.

2.4 The Erlang B formula
Whenever a system is able to receive request for event processing simultaneously,
in the absence of a queue, events might be lost because the system is busy
handling other requests. A typical example of this is a telephone switch with a
limited amount of lines serving a bigger number of subscribers. The probability
that a call is lost is called the blocking probability.[7]
The Erlang B formula provides the blocking probability, as long as the arrival
process is a Poisson process (criteria satisfied with a large amount of indepen-
dent events)[7]. The blocking probability is a function of the number of resources
(telephone lines, in our previous example) and the traffic intensity (Ti = n ∗ tp,
where Ti is the traffic intensity, n the number of events and tp is the average
time the resource is kept).[7] Other approaches to modeling the blocking prob-
ability are discussed in the section "Analyzing service capacity" of Distributed
Systems[23]. However, we chose for the Erlang B formula since it is well-known
in telephony applications and recommended by ITU-T. The formula and its
parameters are described in detail by Parkinson.12
Our current policy update process works in Pull mode, which means updates
are retrieved at configured time intervals. In this mode we are in control of the
time to pull information, and throttling is achieved naturally because pulling
only happens when the system is free. The downside of this mode of operation
is that when the retrieval interval is large, the data becomes stale. On the other
hand, pulling more frequently comes at the cost of higher resource usage.
To have a more timely processing of events, we want to consider a Push mode
of operation. Here, BGP policy updates are sent to the IXP as soon as they

12http://www.kt.agh.edu.pl/ brus/kolejki/Tutorial.pdf
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are produced. It follows then that with an increased blocking time, collisions
are more likely to happen. The Erlang B formula can provide the blocking
probability of the route server, help us predict scalability limits resulting from
the blocking probability and elaborate strategies to expand the system capacity.
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3 Methodology
Our goal is to describe the impact BGP policy updates have on the CPU,
memory of the route server and the traffic between the route server and clients.
Our approach consists of three steps:

• Evaluating the impact of updates: in our exploratory tests, we identify the
file size and the number of route server clients undergoing BGP UPDATEs[24]
to have an effect on the blocking time of the route server. The route server
sends the BGP UPDATEs whenever policy changes are processed.

• Evaluating the frequency of BGP policy changes: here, we assess the
amount of changes coming from the IRRDB by counting the version his-
tory of the aut-num, route and route6 RPSL objects.

• Profiling of the Bird routing daemon: we use a C profiler with Bird to
learn which functions are called and how much CPU time is spent in them
during reconfigurations.

3.1 Evaluating the impact of updates
To evaluate the impact of updates, we look at the effect of the file size and the
amount of route server clients on the network infrastructure.

3.1.1 Test environment

In our setup the route server is configured with rules equivalent to the ones used
in production networks[6] (for instance RPKI/IRRDB validations, bogon filters,
etc).

Figure 2: Test environment, component locations and dedicated link

Figure 2 depicts the main components of our setup:
• Configuration Parser - arouteserver[6] v0.21.1: Python tool that automat-

ically generates configuration for IXP route servers.
• Route Server - Bird 1.6.3[5]: our route server instance runs on a physical

server with Intel(R) Xeon(R) CPU E3-1220L V2 @ 2.30GHz CPUs.
• RS clients - Bird 1.6.3[5]: running on a different server, the deployment

in containers[25] of Bird RS clients allow to have multiple copies running
in parallel and perform scalability tests - each Bird client consumes less
than 5 MB of memory during execution.

A dedicated network link of 1000 Mbps between the servers provides the con-
nectivity and ensures no external disturbances.
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3.1.2 Experiment 1: RS reconfiguration with different file sizes

Our exploratory experiments show that the route server CPU utilization goes to
100% during reconfiguration, and the time spent in this state varies with the size
of the configuration file in use. We use the standard GNU time (version 1.7),
top (version 3.3.12) and tcpdump (version) Linux tools to measure the time,
CPU, memory and capture the network traffic under three different scenarios:

• Scenario 1: Bird configuration file of 2.5 MB, which we generate with the
Configuration Parser[6] and one RS client as input.

• Scenario 2: Bird configuration file of 61 MB, which we obtain with the
Configuration Parser and the list of the 714 RS clients at AMS-IX13.

• Scenario 3: Bird configuration file of 116 MB, obtained with the Configu-
ration Parser and the 2472 route server clients as input, chosen from the
top five IXPs (IX.br14, DE-CX[15], AMS-IX; LINX[16] and MSK-IX15).

The number of RS clients and their policy specifications are responsible for the
difference in the sizes of the configuration files. The contents of the configuration
file are described in Section 2.2.1.
Unfortunately bigger files could not be tested because of an error in arouteserver,
which prevented us from configuring more than 2,500 ASNs16.

3.1.3 Experiment 2: Reconfiguration with different peers sending
BGP updates

Reconfigurations of the route server after a policy change trigger a BGP UPDATE
procedure, which increases the load on the network and the time spent in the
reconfiguration process. Such an policy change happens, for example, when the
administrator of an RS client adds a new prefix to its policy specification.
To test this behavior, we configure the route server clients with stub networks.
We then reload the route server multiple times using two different configuration
files, each containing different prefix sets (differing in one prefix).
We measure the time taken to reconfigure Bird while varying the number of
route server clients. We chose the work with the arbitrary values 2, 4, 8 (testing
with more than 700 RS clients would provide a more realistic view of AMS-IX’s
current load, and is recommended for future work).
To ensure the effect of different file sizes are accounted for, we perform ex-
periments without BGP UPDATEs, with only one node, and with multiple nodes
sending BGP UPDATEs.

3.1.4 Experiment 3: Route server peering with large number of
clients ( >1400 route server clients)

To test the limits of our setup, we designed an experiment where 1400 RS clients
(approximately twice the number of clients on AMS-IX’s RS) are peering with
the route server. For this experiment, we reuse the list of clients obtained in
Experiment 1 - Scenario 3. Details are available in the project repository.17

13https://www.ams-ix.net/ams/connected-networks
14https://ix.br/
15https://www.msk-ix.ru/en/
16https://github.com/pierky/arouteserver/issues/48
17https://bitbucket.org/david-garay/rp2
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3.1.5 Experiment 4: ROA and Bogon list updates

The objective of this test is to identify how other BGP policy changes (in par-
ticular, changes to the ROA and Bogon list) might trigger a BGP UPDATE pro-
cedure. To accomplish this, we evaluate the traffic between the route server
and its clients while adding prefixes to the ROA and Bogon lists. For these
experiments, we reuse the configuration file in Experiment 1 - Scenario 1.

3.2 Evaluating the frequency of BGP policy changes
Configuration changes might result from different processes. For instance, a new
ROA record, a bogon prefix introduced or due to a peering with a new route
server client. In our evaluation, we focus on BGP policy updates done at the
IRRDB.
In Listing 1 we show that policies can be specified on the import and export
attributes. These attributes contain in turn policies which refer to other RPSL
objects (aut-num, route/route6 and as-set/route-set). Changes on any of
these attributes or objects result in a BGP policy change. Still, not every change
is relevant to a given IXP, so we need to exclude changes affecting other IXPs.
With these considerations, we collect historical information (timestamp of ob-
ject changes) using the Historical Whois API from RIPE STAT18. The list of
aut-num objects to be queried comes from the list of connected route-server
clients at AMS-IX. The list of route objects come from the IPv4 and IPv6 pre-
fixes present at the route-server routing table and kindly provided by AMS-IX
for the purposes of this research.
A limitation with our method is that RIPE STAT APIs does not provide infor-
mation about objects from another region.

3.3 Profiling of the Bird routing daemon
To understand which functions are responsible for the CPU blocking observed
in our experiments, we run Bird using a profiler. Valgrind19 offers C-program
analysis capabilities by providing a just-in-time recompilation of the code to
an intermediate Ucode, and in doing so it enables different tools to debug and
profile. Valgrind requires the program under analysis to be compiled with debug-
ging symbols on. We use Kcachegrind20 to interpret the results. The source code
of Bird is publicly available21 and can fulfill this requirement. The experiments
to identify the top functions consuming CPU cycles during reconfiguration are:

• Experiment 1: 2.5 MB file reconfiguration, no BGP Updates
• Experiment 2: 116 MB file reconfiguration, no BGP Updates
• Experiment 3: 2.6 MB file reconfiguration, 4 clients triggering BGP Up-

dates
The content and specification of the test configuration files are described in
Section 3.1.2.

18https://stat.ripe.net/docs/data_api
19http://www.valgrind.org/
20https://github.com/KDE/kcachegrind
21https://github.com/BIRD/bird
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4 Results
The results of the experiments and measurements in Section 3 are shown below.
Despite having monitored CPU, memory and traffic, we present our results in
terms of blocking time because no significant impact on the route server or its
clients was observed in terms of the other parameters. All results are available
in the project repository22.

4.1 Evaluating the impact of updates
This section contains the results of experiments to measure the impact on the
network infrastructure.

4.1.1 Experiment 1: Reconfiguration with different file sizes

Following the definitions for Experiment 1 in Section 3.1, we obtain:

File size [MB] Blocking time [s]
2.5 0.09± 0.003
61.0 2.01± 0.05
119.0 4.29± 0.10

Table 2: Reconfiguration time [s] as function of configuration file size

Table 2 shows the average blocking time for different file sizes, measured over
20 reconfigurations[26] with a confidence level of 95%. The main effect of the
number of reconfigurations is that when we calculate the confidence interval,
we use the t-distribution instead of the Normal distribution. We believe that in
our case the difference between the two alternatives is negligible.
In Table 2 we see a nearly linear relationship between blocking time and file
size.

4.1.2 Experiment 2: Reconfiguration with different peers sending
BGP updates

Following the definitions for Experiment 2 in Section 3.1, we obtain the results:

#peers No active BGP sessions One node All nodes
2 0.09 4.05± 0.02 4.51± 0.02
4 0.09 3.95± 0.03 5.41± 0.04
8 0.09 3.95± 0.02 7.48± 0.03

Table 3: Reconfiguration time [s] as function of the number of peers undergoing
protocol updates

Table 3 shows the average blocking time for different number of peers in three
scenarios: "No active BGP sessions", "One node" and "All nodes". The exper-
iments are measured over 20 reconfigurations with a confidence level of 95%.
Three factors contribute to the increase in time: firstly, the effect of the file
size can be seen in Column "No active BGP sessions". Secondly, there is a pro-
cess (which is seen when a node undergoes BGP UPDATE) causing approximately

22https://bitbucket.org/david-garay/rp2
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3.95s, which can be seen in Column "One node". Finally, we observe an addi-
tional increase of approximately 0.5s per additional RS client in the topology
undergoing BGP UPDATE.
When interpreting these results, we need to consider that we use test prefixes
while testing the BGP UPDATES. This means that the route server filters them
out, instead of aggregating and exporting them further to other route server
clients. We believe that the actual time contributions due to BGP UPDATES,
without the filtering, would be slightly higher because the prefixes need to be
propagated by the RS and processed by its clients. We opt to keep the filters
enabled to keep the experiments simple.

4.1.3 Experiment 3: Route server peering with large number of
clients (>1400 peers)

Following the definitions for Experiment 3 in Section 3.1, we get a continuous
restart of the route server instance when reaching 1013 sessions open. The error
message is:

2019-06-27 12:37:49 <ERR> BGP: Error on listening socket:
Too many open files

The error is related to the Linux security configurations, which determine how
many file handlers a process spawned from shell might open. In this case, the
limit is set to 1024, causing the resource exhaustion. These settings are changed
with the ulimit command.23

4.1.4 Experiment 4: ROA and Bogon list updates

The results of Experiment 4 defined in Section 3.1 are:
• Updating the Bogon list results in BGP UPDATES.
• Notably, we do not observe BGP UPDATES when we modify the ROA list,

despite our tests via the command line interface and modifications on the
static configuration file.

Apart from IRRDB policy changes, we note that modifications to the Bogon
list also trigger BGP UPDATE procedures.

23https://www.manpagez.com/man/1/ulimit/
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4.2 Frequency of BGP policy changes
Following the definitions Section 3.2 for the evaluation of the frequency of policy
changes, we obtain:

Figure 3: Aut-num and route object changes, aggregated per hour, 2019-01
till 2019-06

In Figure 3 each point represent the number of changes in an hour (we aggregate
the timestamps on an hourly basis). The orange line represents the monthly
averages calculated at the end of the month. When multiple RPSL objects
related to the same ASN have changes, only the object with most changes
is considered. Moreover, outliers (points with Z-score higher than 3) are not
included. Based on the values show in Figure 3, we define the "normal scenario"
to be 4 (the monthly average) and the "busy scenario" (the frequent spikes in
policy updates) to be 28.
To show the trend in policy changes, it is useful to inspect the data in a longer
time frame. Figure 4 below shows the rate of policy changes since 2004. Com-
pared to Figure 3, we can see higher values, which is because in this time frame
there are outliers with higher values, and the criteria to filter out outliers is
higher.
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Figure 4: Aut-num and route object changes, aggregated per hour, 2004-01
till 2019-06

Examining the monthly average, we can see a slight increase along the years.
If the number of ASNs and the usage of the IRRDB increase, we expect the
monthly average of policy changes to increase.
In Sections 4.1 we show that there is a nearly linear relationship between the
RSs configuration file size and the time taken to process it. Also, there is a
near 4s increase in time when BGP UPDATEs are performed by at least one RS
client. Finally, we observe an 0.5s increase per node undergoing BGP UPDATEs
added to the topology. Our analysis of the amount of hourly changes of RPSL
objects in Section 4.2 improves our comprehension of the system. In Figure
3, the monthly average of changes per hour is between 3 and 4, and there are
frequent spikes above 20. We believe that in a Push model, if we restart the
route server only when a BGP policy change arrives instead of on an hourly
basis, the overall utilization of the system will go down. We also highlight
the importance of measuring accurately the frequency of policy changes: for
example, if we consider the "normal scenario" of 4 arrivals per hour, using the
Erlang B formula (see Section 2.4) we obtain a blocking probability of 0.88%
(with a service time of 8s, following the results discussed previously). On the
other hand, in a "busy scenario" (28 arrivals per hour and a service time of 20s),
we obtain 13.46%. Measuring the rate of changes in a production environment
is therefore key for IXPs to dimension the system accurately.

4.3 Profiling of the Bird routing daemons
Following the definitions for the profiling of Bird given in Section 3.3, we obtain:
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# Function Module % CPU cycles
(including)

% CPU cycles
(excluding)

1 cf_parse’2 cf-parse.tab.c 97,13% 16,09%
1 cf_lex cf-lex.c 69.83% 43.88%
2 cf_lex cf-lex.c 36.76% 23.02%
2 trie_node_same trie.c 26.57% 26.57%
2 i_same filter.c 11.54% 11.52%
3 cf_lex cf-lex.c 69.63% 47.30%
3 bgp_rx packets.c 11.93% 0.02%
3 rte_update2 rt-table.c 11.84% 0.03%

Table 4: Top functions consuming CPU cycles during reconfiguration

Table 4 list the top functions of Bird that consume CPU cycles. The column
% CPU cycles (including) counts CPU cycles made by the function and sub-
sequent calls to other functions - so in Experiment 1, cf_parse might wrap a
call to cf_lex. To have a better impression of the work done exclusively by a
function, refer to the column % CPU cycles (excluding).
At smaller file sizes, the majority of the processing effort goes into the parsing of
the configuration file (Experiment 1). As the file size increases, the more CPU
cycles are spent on the data structures containing IP prefixes (Experiment 2).
When BGP UPDATEs are present, processing of the protocol procedures increas-
ingly claims more resources (Experiment 3). There are no functions with a ’2
suffix in the source code24. Instead, according to the output of Valgrind the
suffix indicates a recursive call to the function output 25. The rest of the CPU
cycles is consumed on external libraries (for instance, libc string utilities such
as strtol or strcmp).

24https://github.com/BIRD/bird
25https://bitbucket.org/david-garay/rp2

18



5 Solution Design
We present our design by first listing our main design goals. We discuss then the
changes introduced by our new design, and their effect on the existing system.
Finally, we evaluate the feasibility of our design with a proof of concept.

5.1 Design goals
The main goals for our design are:

• Manage system blocking: if we consider for example "busy scenario" and
an arbitrary arrival rate of 28 changes per hour (Figure 3), we get a pro-
cessing time of 20s (following the contributions discussed in Section 4).
The Erlang B formula gives then a blocking probability of 13.46%[27]. Al-
most 1 in 8 notifications would be lost, and leave the RS with stale config-
uration, unless queuing and retry mechanisms are in place. Furthermore,
we hypothesize that operational tasks and protocol keep alives[9] might
also suffer from lack of resources under these situations.

• Decrease network load: more reconfigurations result in more BGP UPDATES.
We require mechanisms to protect the network infrastructure from spikes
of policy change events, and keep the network load low.

• Real time processing of notification: apart from decreasing the risk of
working with stale data, reconfiguring the RS only when required and
not at fixed intervals is likely to bring the overall system utilization down
(specially when we configure the frequency of policy changes in Section
4.2).

5.2 Publish-Subscribe messaging systems
We apply the Publish-Subscribe messaging pattern[10] to enable asynchronous
communications and loose-coupling between the IRRDB and the operators’ net-
work infrastructure. An ISP might have multiple interested parties to its policy
changes (e.g. service providers and IXPs), and this make scalability an impor-
tant factor for our design. The Publish-Subscriber offers better scalability than
Point-to-point channels because it decouples producers from consumer(s), and
new clients just need to subscribe to a topic to receive notifications.
In the current operation, IT systems at each IXPs query the data sources at fixed
intervals of time, potentially leaving the systems with stale data and unnecessary
restarts. In our design we introduce a push model: data sources publish BGP
updates to a Publish-Subscribe topic in a Messaging System, which then relays
these messages to one or more consumers at IXPs. To enable these messaging
capabilities, existing applications require new functions:

• Messaging Gateway: Hohpe et al.[10] describe that the main function of
a Messaging Gateways is to encapsulate access to the messaging system
from the rest of the application. In our case, the Messaging Gateway is
simply a thin layer around the Configuration Parser which enables it to
receive messages. This component is typically implemented using client
libraries provided by the Messaging System. A Message Gateway is also
required at the IRRDB.

• Messaging System: this component provides store-and-forward delivery
of messages, and implements higher level services such as message queues
and channels, so that e.g. addressing of endpoints and message retries are
hidden from endpoints.
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5.3 Subscription and Notification flow

Figure 5: Publish/Subscribe sequence for the BGP policy update process

Figure 5 shows the procedures and interaction between components of the archi-
tecture, during a BGP policy update procedure. The IRRDB (and its Messaging
Gateway) have the publisher role, and the Configuration Parser (and its Mes-
saging Gateway) the consumer role. The Subscribe and Publish procedures are
numbered 1 and 2, and the detailed description is provided below:

1. During the Subscribe procedure, the Configuration Parser initializes its
Messaging Gateway. The Messaging Gateway sends a message to the
Messaging System to subscribe to relevant topics (the channel where
policy updates of a given ASN is published) and starts listening for no-
tifications.

2. During the Publish procedure, the IRRDB uses its Messaging Gateway to
publish messages to a topic. The Messaging System ensures that copies
of the message are pushed to the interested endpoints, and remove the
messages when they have been consumed (acknowledged). When a BGP
update notification arrives to its Messaging Gateway, the Configuration
Parser generates a new configuration file and then reconfigures the route
server with it.

We describe further the following aspects:
• Flow Control/Queuing: in a Push model a policy update might arrive

while the RS is still busy handling another request, prompting the need
for a queue or retry mechanisms. Furthermore, a sustained high rate of
BGP updates might bring the system close to a grinding halt[23], this, in
turn, asks for Flow Control mechanisms. Message systems typically pro-
vide a message queue, and can adapt the frequency of messages delivered
dynamically according to the rate of consumption. On the other hand,
having a local queue at the Messaging Gateway offers implementation in-
dependence and provides more granular control (as messages are locally

20



available) to enable parallelism, for example. We opt for the implementa-
tion of Flow Control and Queuing both in the Messaging System and in
the Messaging Gateway.

• Support for multiple route servers: if more route servers are introduced,
our Message Gateway will benefit from the dispatcher pattern: an ar-
chitecture for the Message Gateway where one master thread listens for
incoming messages and one or more workers consume them from a local
queue. In this way, the message gateway is able to receive notifications
while still processing events.

• Message format and distribution: one option is to send the entire RPSL
object in a document message[10]. However, in the scenario where the
message remains in the queue long enough, this might present the con-
sumer with stale information. A command message expects a reply from
the consumer, increasing the complexity also at the producer side. For the
purposes of updating policies, an event message that triggers synchroniza-
tion at the consumer is more suitable. In this way, the consumer remains
in control and decide, for instance, if it processes the update immediately
on an individual basis or waits and performs batch processing.

• Idempotency: in messaging, a consumer is said to be idempotent when a
message sent multiple times have the same result. Since an update noti-
fication invariably result in a synchronization with the IRRDB, repeated
messages have no consequence other than the cost of executing again the
procedure.

Perhaps the best alternative to our messaging based approach is an RPC system
where BGP update notifications are sent in real time to the IXP. The advan-
tage of an RPC system is that the implementation complexity is likely to be
lower compared to a messaging system, because new systems are not required
(although modification to existing ones are). The disadvantage of RPC is, how-
ever, that every endpoint in the architecture has to deal with details such as
addressing, protocol parameters and queue/retransmission details, to name a
few. These disadvantages make RPC not scalable. With loosely-coupled sys-
tems enabled by messaging, new applications and different protocols can be
mediated by the messaging system.
We do not mention details about transport and addressing schemes, for instance,
because these depend on the choice of Messaging System implementation.

5.4 Proof of Concept
To validate the feasibility of our design, we built a proof of concept that imple-
ments the Configuration Parser’s Messaging Gateway, and rely on a commercial
Publish-Subscribe[28] service for the delivery of messages.26

26Our criteria for selecting this solution was its simplicity and the availability of libraries in
Python.
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Figure 6: PoC environment, Messaging System (Google PubSub) and Mes-
sage Gateway wrapping the Configuration Parser and route server to enable
messaging

Figure 6 shows the components in our proof of concept. For the Messaging
System we rely on Google’s PubSub cloud service. This service also provides
the libraries required to implement the Messaging Gateway.
In our proof of concept27, we create a topic on our Messaging System and attach
subscriptions to it: contrary to the classical description of Publish-Susbscriber
systems in the literature[10], our Messaging System service adds a second layer of
abstraction (the "subscription") to control the behaviour of the message queue.
Without it, the consumers behave as Competing consumers[10]: only one end-
point consumes the message, which is then unavailable to other consumers. We
use one subscription per consumer to achieve the desired broadcast behavior.
During the Subscribe procedure, the Messaging Gateway subscribes to a topic
and spawns a listener thread that awaits for new messages. During the Publish
procedure, when a new message is published to a topic the message is made
available to the different subscriptions attached to the topic. In this way, mul-
tiple IXPs are able to receive the message.
The libraries from the Messaging System provide high level primitives such
as subscribe, create_topic and publish[29]. These functions simplify the
development of the Messaging Gateway. Except for an initial setup required
for authentication, the client library hides the implementation details such as
endpoint addresses, protocols and timers. During execution, we observe that the
Messaging Gateway maintains a SSL/TCP session with the cloud server. When
the application restarts and a new session is made, messages are still sent to the
client. To recreate the complete behavior at the network infrastructure side, we
have the Configuration Parser’s Messaging Gateway parse a new configuration
file and restart Bird with the new configuration.
Our main observations resulting from the proof of concept are:

• Asynchronous pull: our Messaging System offers an alternative to the
Push model. Asynchronous pull relies on a permanent connection initi-
ated by the Messaging Gateway. The advantage of this model is that
messages are still pushed asynchronously and without noticeable delays

27https://bitbucket.org/david-garay/rp2
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over the permanent connection, while decreasing the requirements on the
Messaging Gateway (the "proper" Push mode implementation requires an
HTTP server, DNS-resolvable URLs and not-self-signed certificates[30]).
The permanent connection uses an HTTP2 / GRPC stack28.

• Lack of ordering of messages:29 the Messaging System does not guarantee
the order of messages. This fact, however, does not impact our use case.

• Message queue size: for completeness, we note that the buffer size in our
chosen implementation[30] of the Publish-Subscribe messaging system is
10 MB, which can be allocated to one or multiple messages.

• Partitioning of file and processing time: remarkably, adding the configura-
tion parser to the chain highlights the inefficiencies in the current process.
Currently, the Configuration Parser retrieves and parses the information
for every single ASNs in the IXP’s route server. Then, the reconfigura-
tion is read by Bird, which also reconfigures all ASNs and process the
BGP UPDATES of the affected ASNs. This inefficiency prompts the need
for Data Partitioning[23] (which we cover in more detail in Section 6).

The proof of concept shows the feasibility of a Publish-Subscribe Messaging
system to process notifications in real time. It highlights parts of the system that
can be further improved (the Configuration Parser and the processing of BGP
policy updates by Bird). Implementing the solution on different IXPs would
require a small adaptation on the Messaging Gateway (in particular, in how the
particular implementation of the Configuration Parser is done), and apart from
user accounts, authentication and subscriptions, the Messaging System itself
require no further modifications.
Although not tested in our proof of concept, flow control mechanisms and capa-
bilities to support concurrent handling of events30 are available in the Messaging
System and its client libraries.

28https://cloud.google.com/pubsub/docs/pullstreamingpull
29https://cloud.google.com/pubsub/docs/ordering
30https://googleapis.github.io/google-cloud-python/latest/pubsub/subscriber/api/scheduler.html
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6 Discussion
In the previous sections we investigated the current route server BGP policy up-
date process in an effort to answer the question: what are the main performance
and scalability indicators? What are the bottlenecks of the process? What is
the impact of these bottlenecks?
We investigated the CPU and memory utilization, the time taken to process
reconfigurations and the network traffic generated. In our results we show that
the main indicator affecting performance and scalability is the CPU blocking
time. During this time, the system is unable to process new updates —which
might lead to loss of information in a push model, if countermeasures such as
queuing are not taken. We also believe that operational activities and protocol
keep alives might be affected.
Our research complements the previous work of Jenda Brands and Patrick de
Niet[9], who studied the effects of high CPU usage on the BGP convergence time
in the network infrastructure of the IXP. Our results show how the blocking
time depends on the file size of the configuration file, and the number of RS
clients undergoing BGP UPDATEs procedures. Because the configuration file size
depends on the number of RS clients configured and their respective policies,
we can predict the blocking time of the system based on the number of RS
clients and the amount of policy changes arriving to the system. By profiling
Bird we identified the functions where the route server is spending most of the
CPU time during reconfiguration. In line with our experiments, we see that the
main contributions are related to parsing of the configuration file and protocol
processing. These observations allow us to hypothesize that the blocking time
can be improved with more efficient parsing in Bird (for instance, using binary
configuration files) and through better processing of RS client reconfiguration,
both in the Configuration Parser and Bird.
Although Bird claims it has no hard limits in software that can limit its scala-
bility, we observed a curious behaviour of Bird in combination with the default
settings of Ubuntu: when enough BGP sessions are open, Ubuntu’s default limit
of 1024 file handlers per process is reached and Bird restarts after raising a seg-
mentation fault. This is easily resolved by changing the ulimit settings for the
Bird process. Still, we recommended Bird support to update the documentation.
When considering the scalability of the system, another important aspect is the
frequency of BGP policy changes. We show in Figure 3 that during normal
hours the rate of policy changes is on average 4, while frequently it goes above
20 changes per hour.
Considering our limitations in methodology during measuring the frequency of
changes (and the fact that only IRRDB policy changes were considered), we
believe that it is likely that the number of policy changes per hour is higher
than what we show in Figure 3. Furthermore, as network operators increase the
rate of policy changes and new clients join, we believe that the trend of policy
change rate is to keep increasing.
We recommend IXPs to monitor the amount of changes arriving at their pro-
duction Configuration Parser and evaluate their impact on the blocking time
of the route server, to provide a more accurate view of the impact of policy
changes, adjusted to their RS client profiles and network topology.
An important consequence of our evaluation of the impact and frequency of pol-
icy changes is that it allows us to predict the blocking probability of the system
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using the Erlang B formula. It can be useful, for example, to express the scal-
ability limit of the system in terms of its blocking probability: we hypothesize
that at high values (e.g. above 80%) operational tasks, protocol keep alives and
processing of new reconfigurations will suffer from lack of resources, and going
to even higher values might bring the system to a grinding halt.
Our second research question deals with the improvement opportunities in a new
design. We propose a design that enables the system to react in real time to
policy changes by adopting a Publish-Subscribe messaging system that largely
relies on the design patterns described by Hohpe et al.[10] We propose the
introduction of a Messaging System, and Messaging Gateways at the IXP and
data source sides, in order to enable messaging capabilities in these systems.
The first element required to support messaging is the Messaging System. In
general, Message Systems are a mature technology and there are options to ac-
quire commercial and open source solutions, both in the cloud and on premise.
Perhaps the biggest investment required are related to operational costs —i.e.
configuration, capacity and security management. We believe that the more fre-
quently the messaging system is adopted for other use cases (e.g. Bogon prefix
list update), the more economically justifiable it becomes. Another incentive
to adopt a messaging solution is the possibility to unify existing processes into
a unified process, while providing faster time to market to new applications
(e.g. the introduction of a feedback notification, so that network operators can
be aware of which IXPs implemented their new policies in real time). Regard-
ing the position and operational responsibilities of the Messaging System, we
consider two alternatives: at one hand, we can expand the scope of services pro-
vided by any of the existing data sources, or, rely on new organization that can
provide this capability to the community. The evaluation of these alternatives
fall outside the scope of our research.
The second functionality required to support messaging in our design is the
Messaging Gateway. It introduces the functionality required on the Configura-
tion Parser (at the IXP) and on the IRRDB to enable the Publish-Subscribe
messaging capabilities. The responsibilities for their implementation fall at the
organizations operating the endpoints. By using a dispatcher architecture with
a local queue, we allow the Messaging Gateway at the IXP side to implement
flow control and parallelism.
In our proof of concept, we implement a limited Messaging Gateway using
Google’s PubSub service and libraries, and describe how an event is processed
in real time. Thanks to the proof of concept, the inefficiencies in the handling
of BGP policy updates become evident: at every new update the Configuration
Parser (arouteserver in our environment) refreshes the information about all
clients and generates a new configuration file. Bird, the route server, reads and
processes the complete configuration file, even if the change affect only one RS
client. Data partitioning (processing subsets of the configuration file, in this
case) offer an opportunity to improve the reconfiguration time. Another ob-
servation derived from our proof of concept has to do with the selection of the
Messaging System implementation, and how it affects the capabilities available
at implementation time (for instance, the asynchronous pull discussed in Section
5.4 sped up our implementation by lowering infrastructure requirements. Still,
this feature might not be available in other Messaging Systems).
We believe our proposal can satisfy the design goals set (namely, manage system
blocking, decrease network load and process notifications in real time) and is
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technically feasible. Still, in our design we considered only the IRRDB BGP
policy update process and relied on a Publish-Subscribe channel. New use
cases (for instance, a feedback flow where the IXP informs which policies were
refreshed) might require point-to-point channels, for instance. These additional
capabilities need to be taken into consideration when selecting the Messaging
System implementation. We did also not explore in detail other well-known
scaling techniques: partitioning, replication and caching, and should be revisited
as the design is implemented and improved.
We believe the design is future proof because it focuses on introducing the mes-
saging capability to the architecture, which enables loosely-coupled applications
to integrate with ease. Additionally, it offers potential to improving scalabil-
ity by adding more route servers, more efficient processing of policy updates
through data partitioning and more efficient parsing of Bird configuration files.
These topics are recommended for future work.
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7 Conclusion
This paper has investigated the current process handling BGP policy updates
at an IXP’s route server.
The results in this study indicate that the route server’s blocking time (CPU uti-
lization 100%) is the main bottleneck in the system. The blocking time during
reconfiguration depends on the file size and the amount of peers that undergo
protocol reconfiguration procedures. By studying the frequency of policy up-
dates, we are able to describe the blocking probability in different situations
using the Erlang B formula. We discuss the main considerations IXP need to
make to dimensioning the route servers. Taking these results in consideration,
we propose and evaluate a Publish-Subscribe messaging system that enables
processing in real time of BGP policy updates, and demonstrate its feasibility
with a proof-of-concept. Additionally, we highlight improvements to the Con-
figuration Parser and Bird protocol processing that would further decrease the
processing time. By profiling popular route server implementation Bird, we
identify and discuss the modules which affects processing time the most, and
suggest new research directions on these topics. As a short term countermea-
sure, we recommend IXPs to monitor usage statistics of this BGP process and
get an accurate view of the update process impact using production data.

27



8 Future work
Future research should consider the potential effects of CPU blocking on other
tasks more carefully, for example operational queries and protocol keep alive
processing. In this way, IXPs can better determine the levels where blocking
time become service affecting. Moreover, future research should be devoted to
the development of data partitioning on
arouteserver and Bird, and optimizations in the functions behind the high
CPU utilization times. Another topic that deserves further research pertains
the introduction of new route servers, in order to partition the processing of
policy updates, and the consequences on the network topology and BGP.
Additionally, the evaluation of the arrival of updates can be improved to include
other RPSL objects.
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