
#RP55

Kees de Jong
Anas Younis

Sharing digital objects
using NDN:

PID interoperability,
planning and scaling

1

SeaDataCloud

● SeaDataCloud is a distributed marine data infrastructure
network in different geographical domains
○ 8 institutes with over 100 data centers
○ Aiming to make research data available to scientists

● Sharing large data sets becomes a challenge
○ Congestion
○ Interoperability

2

SeaDataCloud

3

Figure 1: Current SeaData cloud setup

SeaDataCloud

4Figure 2: Potential solution

Research question

● How to make the Persistent Identifier (PID) and NDN
(Named Data Networking) namespace interoperable?
○ How to support different PID types?
○ How to incorporate extensibility for future PID schemes?

● How to plan and scale an NDN network?
○ Which NDN scaling problems are known?
○ Which method can be used to plan an NDN network?
○ How to deploy an NDN network in a scalable way?

5

Outline

● Short introduction about NDN and PID
● Related work
● System architecture and virtualized NDN functions

○ PID interoperability
○ Virtual NDN planning, automation and scaling

● Experiment results
● Conclusion and future work

6

Why NDN?

● NDN is the most mature variation of ICN
○ ICN = Information Centric Networking
○ ndn-cxx solution was used in our proof of concept

● Forwarding based on name prefixes rather than IP
○ No end-to-end connections needed
○ Data cached on intermediary hops

7Figure 3: IP versus NDN

PID types

8

Related work

● Rahaf Mousa
○ Focused on DOI > NDN

■ Concluded that PID > NDN is possible
○ Most optimal caching strategy in NDN

● Andreas Karakannas
○ For every PID type a PID > NDN mapping server
○ States:

■ "PID > NDN mapping will be highly depended on the clients
NDN browser which will need to be updated every time new
rule would be appeared or changed"

● Spiros Koulouzis et al.
○ NaaS4PID

■ Supports one PID type 9

PID → NDN namespace interoperability

● Translation is transparent to the user
● Support for multiple PID types
● Extensible with future PID types with different naming

schemes

Handle: [http://hdl.handle.net/]20/5000/481/objects/example_object
NDN: /ndn/handle/20/5000/481/objects/example_object

URN: [http://resolver.kb.nl/resolve?urn=]anp:1938:10:01:2:mpeg21
NDN: /ndn/urn/anp/1938/10/01/2/mpeg21

10

PID → NDN model

11

Figure 4

Proof of concept

12

How to make NDN scalable and software definable?

● Kubernetes
○ Open-source container-orchestration system

■ Deployment
■ Scaling
■ Management

● SDN-style control
○ Centrally deploy and configure containers (NDN functions)

■ Add roles (routers)
■ Configure routes
■ Allocate resources

13

Architecture drawing - Proof of concept

14Figure 5

How to plan the NDN network

● The challenge becomes
○ How to manage/plan/deploy such a diverse infrastructure?

● Single description to plan and deploy needed
○ Is there an open standard available?

15

How to plan the NDN network (TOSCA)

● What is TOSCA?
○ Topology and Orchestration Specification for Cloud Applications
○ Declarative Domain Specific Language (YAML/XML)
○ TOSCA descriptions → orchestrator
○ Used to describe complete lifecycle

■ Hosts (bare metal, VM, containers)
■ Software components (applications, databases, middleware)
■ Network components (load balancers, gateways, VNF’s)

● TOSCA is agnostic towards orchestrators
○ DRIP
○ OpenStack
○ And gaining popularity

16

Different types in TOSCA to describe building blocks

● Eight different types to use
○ Node
○ Relationships
○ Artifacts
○ Capabilities
○ Interface
○ Groups
○ Policies
○ Data

17

● Node
○ Host, container, VM, etc.

● Relationships
○ Connects nodes to each other
○ dependsOn, hostedOn, connectsTo

● Interface
○ Set of hooks
○ Actions to: Create, configure,

start, stop or delete

18

Figure 6: TOSCA diagram

How to make NDN software definable? (Kubernetes)

spec:
 hostname: ndn-router-1
 nodeName: mulhouse
 containers:
 - image: aqual1te/ndn:router3
 name: ndn-router1
 env:
 - name: gateway
 value: ndn-producer-2
 - name: routes
 value: /ndn/handle /ndn/ark
 - name: protocol
 value: tcp

19

20

Demo

21

http://www.youtube.com/watch?v=laOrVno-5_c

Conclusion

22

● Deployment planning
○ TOSCA can describe complete lifecycle of infrastructure

● Easy scaling out to other clouds
○ VM’s used to allocate/deallocate resources in the cloud
○ Kubernetes used to scale in/out the application (NDN)
○ Bringing data closer to the user decreases latency and chance of

congestion

● Interoperability between different PID types is possible
○ Adding new PID types is low effort cost

Future work

● TOSCA blueprints are conceptual
○ The VM and Kubernetes was deployed manually
○ Full implementation developed needed with an orchestrator such as

e.g. DRIP

● NDN is still experimental
○ Explore performance bottlenecks (benchmarking)
○ Test routing protocols (e.g. OSPFN)

● Extent Kubernetes with intelligence
○ Where to deploy NDN routers (containers)?

● Incorporate the PID → NDN translation into NDN software
natively

23

Questions?

24

Performance of proof of concept setup

● TODO: Graphs of NDN vs TCP/IP (boxplot or barplot)
● TODO: Explain why the performance differs

25

Performance of proof of concept setup

26

Performance of proof of concept setup

● Difference in percentage
○ 100MB file:

■ NDN (UDP) vs PID (TCP/IP): 27%
■ NDN (TCP) vs PID (TCP/IP): 150%
■ NDN (TCP) vs NDN (UDP): 98%

○ 1000MB file:
■ NDN (UDP) vs PID (TCP/IP): 18%
■ NDN (TCP) vs PID (TCP/IP): 24%
■ NDN (TCP) vs NDN (UDP): 5%

27

28

NDN performance bottlenecks

● Underlay (TCP/IP)
○ UDP vs TCP
○ MTU sizes

● Processing problems in software
○ Slow packet decode functions

(35.4% time spend on decoding)
○ Long names can degrade

performance

29

● Named data forwarding scaling
○ Routing table sizes
○ Forward strategies

● Named data caching scaling
○ Cache strategies + size

■ LCE (Leave Copy
Everywhere)

○ Cache replacement strategies

