#RP55

Kees de Jong Anas Younis Sharing digital objects using NDN: PID interoperability, planning and scaling

SeaDataCloud

- SeaDataCloud is a distributed marine data infrastructure network in different geographical domains
 - \circ 8 institutes with over 100 data centers
 - \circ $% \left({{\mathbf{x}}_{i}} \right)$ Aiming to make research data available to scientists
- Sharing large data sets becomes a challenge
 - Congestion
 - Interoperability

SeaDataCloud

Figure 1: Current SeaData cloud setup

Figure 2: Potential solution

Research question

 How to make the Persistent Identifier (PID) and NDN (Named Data Networking) namespace <u>interoperable</u>?

• How to support different PID types?

- \circ $\:$ How to incorporate extensibility for future PID schemes?
- How to **plan** and **scale** an NDN network?
 - \circ $\,$ Which NDN scaling problems are known?
 - \circ Which method can be used to plan an NDN network?
 - \circ $\,$ How to deploy an NDN network in a scalable way?

Outline

- Short introduction about NDN and PID
- Related work
- System architecture and virtualized NDN functions
 - PID interoperability
 - \circ $\,$ Virtual NDN planning, automation and scaling $\,$
- Experiment results
- Conclusion and future work

Why NDN?

- NDN is the most mature variation of ICN
 - \circ ICN = Information Centric Networking
 - \circ $\$ ndn-cxx solution was used in our proof of concept
- Forwarding based on name prefixes rather than IP
 - \circ $\:$ No end-to-end connections needed
 - \circ $\,$ Data cached on intermediary hops $\,$

PID types

PID Types	PID Type Identifier	Delimiter	Authority	Delimiter	Name		
	Identifier						
URN	urn	;	<nid></nid>	:	<nss></nss>		
HANDLE	handle	:	<handle authority="" naming=""></handle>	1	<handle local="" name=""></handle>		
DOI	doi	:	10. <naming authority=""></naming>	/	<doi name="" syntax=""></doi>		
ARK	ark	:	/ <naan></naan>	1	<name>[<qualifier>]</qualifier></name>		

Related work

- Rahaf Mousa
 - \circ $\,$ Focused on DOI > NDN $\,$
 - Concluded that PID > NDN is possible
 - \circ Most optimal caching strategy in NDN
- Andreas Karakannas
 - \circ $\,$ For every PID type a PID > NDN mapping server $\,$
 - States:
 - "PID > NDN mapping will be highly depended on the clients NDN browser which will need to be updated every time new rule would be appeared or changed"
- Spiros Koulouzis et al.
 - NaaS4PID
 - Supports one PID type

$\text{PID} \rightarrow \text{NDN}$ namespace interoperability

- Translation is transparent to the user
- Support for multiple PID types
- Extensible with future PID types with different naming schemes
- Handle: [http://hdl.handle.net/]20/5000/481/objects/example_object
 NDN: /ndn/handle/20/5000/481/objects/example_object
- URN: [http://resolver.kb.nl/resolve?urn=]anp:1938:10:01:2:mpeg21
 NDN: /ndn/urn/anp/1938/10/01/2/mpeg21

Proof of concept

How to make NDN scalable and software definable?

• Kubernetes

• Open-source container-orchestration system

- Deployment
- Scaling
- Management
- SDN-style control
 - Centrally deploy and configure containers (NDN functions)
 - Add roles (routers)
 - Configure routes
 - Allocate resources

Architecture drawing - Proof of concept

Figure 5

How to plan the NDN network

- The challenge becomes
 - How to manage/plan/deploy such a diverse infrastructure?
- Single description to plan and deploy needed
 - \circ Is there an open standard available?

How to plan the NDN network (TOSCA)

- What is TOSCA?
 - Topology and Orchestration Specification for Cloud Applications
 - Declarative Domain Specific Language (YAML/XML)
 - \circ _TOSCA descriptions \rightarrow orchestrator
 - \circ $\:$ Used to describe complete lifecycle $\:$
 - Hosts (bare metal, VM, containers)
 - Software components (applications, databases, middleware)
 - Network components (load balancers, gateways, VNF's)
- TOSCA is agnostic towards orchestrators
 - DRIP
 - OpenStack
 - \circ $\,$ And gaining popularity $\,$

Different types in TOSCA to describe building blocks

- Eight different types to use
 - <u>Node</u>

_ __ __

- <u>Relationships</u>
- Artifacts
- Capabilities
- Interface
- Groups
- Policies
- Data

- Node
 - Host, container, VM, etc.
- Relationships
 - \circ $\;$ Connects nodes to each other $\;$
 - **dependsOn**, hostedOn, connectsTo
- Interface
 - \circ $\,$ Set of hooks
 - Actions to: Create, configure, start, stop or delete

How to make NDN software definable? (Kubernetes)

```
spec:
hostname: ndn-router-1
nodeName: mulhouse
containers:
- image: aqual1te/ndn:router3
name: ndn-router1
env:
- name: gateway
value: ndn-producer-2
- name: routes
value: /ndn/handle /ndn/ark
- name: protocol
value: tcp
```

_ _ _

Demo

R .	empirita (1994)						111100			
(a) and the second s	Surfi Not-concernent Inde producer 1 John toxion 5	1/1 1/1 1/1	VALUE SULLES RATION RATION	NESTRATS	10.25	19 10:346 4.35 18:366 4.35 18:346 4.35	ittet nilhoose salhouse nilhouse	AREALTS AND classes contac- contac- contac-	infant: we MADASS SITE HOUSE HOUSE HOUSE	1.84) - 1.18,88,18 J
	(k) pognačtati – ja kušeci kose, stronovane a pam (netrodo-netroveci –) že prehod not citaret ap (netrodo-netroveci –) že prehod not citaret ap (not needa (2000) (2000) (2010) (20					9407 1 3000 1 0000 461 (461 (461)	(Rionaporfaert -)k suberti ever -it sum consumer é tann			
1.500 ACL Adjust a folgowith a memori 2004 etholog and of the any processing and the pro- service and of the pro- service and the								- 00 - 01 - 1.1	2020-07-07	Internation

Conclusion

- Deployment planning
 - \circ TOSCA can describe complete lifecycle of infrastructure
- Easy scaling out to other clouds
 - \circ $\,$ VM's used to allocate/deallocate resources in the cloud $\,$
 - \circ $\,$ Kubernetes used to scale in/out the application (NDN) $\,$
 - Bringing data closer to the user decreases latency and chance of congestion
- Interoperability between different PID types is possible

Future work

- TOSCA blueprints are conceptual
 - \circ $\,$ The VM and Kubernetes was deployed manually
 - Full implementation developed needed with an orchestrator such as e.g. DRIP
- NDN is still experimental
 - Explore performance bottlenecks (benchmarking)
 - Test routing protocols (e.g. OSPFN)
- Extent Kubernetes with intelligence
 - \circ $\,$ Where to deploy NDN routers (containers)?
- Incorporate the PID \rightarrow NDN translation into NDN software natively

Questions?

Performance of proof of concept setup

NDN/UDP vs NDN/TCP vs TCP/IP 100MB object

Performance of proof of concept setup

NDN/UDP vs NDN/TCP vs TCP/IP 1000MB object

Performance of proof of concept setup

- Difference in percentage
 - 100MB file:

_ __ __

- NDN (UDP) vs PID (TCP/IP): 27%
- NDN (TCP) vs PID (TCP/IP): 150%
- NDN (TCP) vs NDN (UDP): 98%
- \circ 1000MB file:
 - NDN (UDP) vs PID (TCP/IP): 18%
 - NDN (TCP) vs PID (TCP/IP): 24%
 - NDN (TCP) vs NDN (UDP): 5%

NDN performance bottlenecks

- Underlay (TCP/IP)
 - UDP vs TCP
 - MTU sizes
- Processing problems in software
 - Slow packet decode functions
 (35.4% time spend on decoding)
 - Long names can degrade performance

- Named data forwarding scaling
 - Routing table sizes
 - Forward strategies
- Named data caching scaling
 - Cache strategies + size
 - LCE (Leave Copy Everywhere)
 - Cache replacement strategies