
Research Project 1

Zero Trust Network Security Model in
containerized environments

February 9 2020

Students:
Catherine de Weever
cweever@os3.nl

Marios Andreou
mandreou@os3.nl

Abstract

In security, it is important for an organization to prevent leak of confidential data
by lowering the risks of cyber-attacks. Zero Trust is a security model that treats all
network traffic as hostile, even if it is inside the perimeter. However, securing work-
loads particularly those who are running in the public cloud is essential: Cloud assets,
containers, functions and Virtual Machines (VMs) are vulnerable and are attractive
targets for malicious actors.
In this research, we focus on the investigation and implementation of the appropriate
operational controls, which are illustrated in figure 11, in order to implement Zero
Trust to mitigate data leakage for ”east/west” traffic in a containerized environment.
In order to mitigate data leakage, we need to be able to regulate the traffic so we can
trace and find where, how and when the attack occurs. We also need to protect the
data when it is in transit to prevent man in the middle attacks. In order to implement
this, we search for the necessary tools, which are going to provide regulation in depth
and protection for the data that are being transferred. We demonstrate our solution
by implementing a Proof of Concept with the necessary tools.
Our results show that having the appropriate tools, which provide the necessary opera-
tional controls we can apply protection to the data that are being transferred between
microservices (”east-west” traffic), as well as regulating the traffic flowing between
them.

page 1 of 12



Research Project 1

1 Introduction

Not too long ago the workplace was like a castle: Data was stored and managed in one
place and one needed to be physically there to access this data. Security was applied by
monitoring and protecting everything that was going into or out of the premises. The basic
assumption was that everything within the security perimeter can be trusted. Nowadays one
do not necessarily have to set foot in the office building to come to work. Companies enable
employees to access companies’ assets through mobile devices and cloud software, regard-
less of where they’re located. Valuable business data transfer continuously between SaaS
applications, IaaS applications, data centers, remote users, IoT devices etc. This makes
cybercriminals’ life much easier. It causes a wider attack vector, meaning that there are
more entry points to exploit. It can take months to locate a malicious attack.
In 2010, Forresters’ John Kindervag introduced his Zero Trust security strategy in the United
States. This entails that no device, user, workload or system should be trusted by default
regardless of the location it is operating from, either inside or outside the security perime-
ter.[17]
Zero Trust builds on familiar concepts such as multi-factor authentication, identity access
management, cloud orchestration, analytics, encryption, scoring and file system permissions.
Zero Trust is as much about one’s security approach as it is about specific tools and im-
plementation strategies. On2IT’s Zero Trust framework[18] consists of operational controls
shown in figure 11 that need to be applied to implement Zero Trust.
In cloud environment, there is not only traffic travelling from service to user (North-South),
but also service-to-service (East-West). ”East-West” traffic can also contain confidential
data that one have to protect during transition in order to prevent man in the middle at-
tacks, as well as observing the traffic and events happening in order to be able to trace and
find when, how and who tried to act maliciously to one’s services.[16] Thus, this leads us to
our following research question:
”How to implement Zero Trust for ”east/west” traffic between microservices in container-
ized environment?”
To answer this, we drafted with the following sub-questions:

• How to regulate the ”east/west” traffic flow?

• How to implement confidentiality for transit data?

2 Related Work

There has been some research done on how to protect data in a cloud environment while
implementing Zero Trust. Here, we discuss the different approaches that have been done.

Casimer DeCusatis et al. did research on a Zero Trust approach based on a steganographic
overlay, which embeds authentication tokens in the TCP packet request and first packet
authentication. This approach protects data on the transport-level. It ensures prevention
of fingerprinting of key resources and data protection against reconnaissance attacks. They
demonstrate the application of this approach in a enterprise-class server and cloud environ-
ment. From the demonstration they showed that DDoS, fingerprinting and reconnaissance
attacks were blocked. This approach provides protection on layer 3/4, but it does not on
layer 7.[6]

Fatima Hussain et al. proposed the API gateway/proxy-based approach to implement Zero
Trust. This approach entails implementing a secure API service mesh. They used the tools
Istio[12] and Kubernetes[14] to achieve this. These tools are used in our Proof of Concept
that we’ll discuss in our Background section. They also found a way to automate the linking

Catherine de Weever, Marios Andreou page 2 of 12



Research Project 1

of new APIs to already existing categories of the service mesh by using a machine learning-
based intelligent association model. However, they did not implement this model in a real
environment.[11]

Zirak Zaheer et al. came up with a network-independent perimeterization solution for mi-
croservices called eZTrust. eZTrust focuses on finegrained, context-rich micro-service iden-
tities. It entails tracing data of microservices made available by extended Berkely Packet
Filter (eBPF)[13] and classifying packets based on micro-service contexts. They tested the
feasibility of their solution by implementing a Proof of Concept prototype. They also com-
pared the performance of their solution with other approaches and concluded that their
solution performed better. This solution only focuses on the tracking of traffic between
microservices. Although they mentioned in the discussion section that it is possible to add
encryption, encryption is not implemented in their Proof of Concept.[20]

3 Background

To get a better understanding of how our setup works we describe in this section the appro-
priate tools we used and their functionalities.

Google Kubernetes Engine
Google Kubernetes Engine (GKE) is a platform for containerized applications by Google.
We used GKE to deploy our demo application and used Kubernetes and Istio as orches-
tration planes in a collaborative manner. The microservice architecture consists of nodes
where the nodes are worker machines that can be virtual or physical machines. A node can
consists of one or multiple pods. ”A Pod is a group of one or more application containers
(such as Docker or rkt) and includes shared storage (volumes), IP address and information
about how to run them.” according to Kubernetes Documentation [15]. When Kubernetes is
used along side Istio it provides managing of availability and resource consumption of nodes
and adding of pods when needed. Meanwhile Istio adds extra containers such as a sidecar
proxy for security to the pod.

Istio
Istio is an open source service mesh for networking of microservices applications. The core
features of Istio are the following:

• Configure rules to control the flow of traffic and API calls between services.

• Provide security at the network and application layer by securing the communication
channel, managing authentication, authorization and encryption of service communi-
cation.

• Provide access control by configuring custom policies for an application.

• Provide tracing, monitoring and logging to get visibility into the performance of the
services.

We are only interested in the Security aspect of Istio, so we will focus on that. The Istio
service mesh consists of two parts, the data plane and the control plane. The control plane
contains the following components for security:

• Pilot: Configure and deploy policies to the Sidecar proxies.

• Mixer: Manage auditing. It provides logging and monitoring of all the traffic route in
a cluster.

• Citadel: Manage keys and certificates for authorization.

Catherine de Weever, Marios Andreou page 3 of 12



Research Project 1

These components are centrally-managed and they operate independently of the applica-
tions running within the service mesh as shown in figure 1.
The data plane contains Envoy[1] proxies to secure ”east-west” traffic between containers
by implementing security rules. They work directly with the applications to provide local
security features such as mutual TLS and routing policies. In a Kubernetes environment,
the data plane contains Envoy sidecars instead. They are added to each deployed pod. The
data plane communicates with the control plane via these sidecars. By adding authorization
policies to the sidecar proxies, Istio provides micro-segmentation.[19]

As mentioned before, Istio provides encryption of transit data by using mutual TLS. When
a container wants to communicate with another container, the following steps are taken:

1. The sidecar proxy of a container on the client side starts a TLS handshake with the
sidecar proxy of a container on the server side.

2. During the TLS handshake the sidecar proxy on the client side does a secure naming
check[2].

3. After the check, they establish a mutual TLS connection and Istio sends the traffic
from the client side sidecar proxy to the server side sidecar proxy.

4. After authorization, the server side sidecar proxy forwards the traffic to its targeted
service.

Something to note is that the data is unencrypted between the sidecar proxy and the service
inside the pod.
So Istio redirects every traffic to the sidecar proxies. This redirection can be costly when
for example an IP based tooling such as iptables is used: the entire TCP/IP stack has to
be traversed multiple times.[4] Another problem with Istio is that it doesn’t provide any
protection for the sidecar proxies themselves, so they can be compromised. However, the
following tool (Cilium[3]) can be a solution for these problems and can provide us more
functionalities for our .

Figure 1: Istio Architecture. [5]

Cilium
Cilium is a networking plugin that can be integrated with Istio. Cilium enhances the security

Catherine de Weever, Marios Andreou page 4 of 12



Research Project 1

features and performance of Istio. The foundation of Cilium is Berkeley Packet Filter[7],
which contains one of the features called sockmap[8]. With this feature Cilium can provide
filtering and redirection on a socket level and thus makes Cilium socket-aware. When this
feature is applied to Istio, it accelerates the TCP connection between the application and
the sidecar proxy by short-circuiting TCP sockets on the same node.

Cilium also provides L3/L4 security policies for ”east/west” traffic and protection from
compromised sidecar proxies by defining service level security policies. Another function-
ality that Cilium provides is collecting the visibility of the traffic that is done by its unix
domain socket monitor and the cilium API. The cilium API is provided by the cilium agent.
So with Cilium we can collect the data between the microservices, but with the following
tool (Hubble[10]) we can observe it and get deep visibility.

Hubble
Hubble is a networking and security observability platform for cloud native workloads. It
requires Cilium and extended Berkeley Packet Filter. As mentioned before, it enables deep
visibility into the communication and behavior of services and networking infrastructure.
Hubble gets the traffic from Cilium by reading the Cilium unix domain socket monitor and
the Cilium API. When Cilium is integrated with Istio, the data between microservices is
encrypted by using mutual TLS as mentioned before. However, Hubble can get L7 visibility
by extracting from within the Istio sidecar and thus can see the unencrypted traffic.

4 Methodology

4.1 Approach

Based on the related work, implementation of Kubernetes in combination with Istio is a big
part of the Zero Trust model, but this combination can only provide visibility on the ingress
and egress traffic of a node and not the communication between two containers within a
node. Traffic between microservices needs to be observed in case of an attack or a service
failure. This makes the administrators’ life much easier in finding and tracing where the
problem arose.

With a Proof of Concept we determined that with the combination of the following appro-
priate tools one can achieve encryption of transit data and deep traffic visibility between
microservices:

• Google Cloud Platform

• Google Kubernetes Engine

• Istio

• Cilium

• Hubble

This setup was built in Google Cloud Platform (GCP) using Google Kubernetes Engine
(GKE), where we created one cluster with four nodes using a machine type ”n1-standard-
2”. Cilium was deployed as a Container Network Interface (CNI) plugin to provide net-
working, security, and loadbalancing. Cilium also is able to collect the data between mi-
croservices as mentioned in section 3. Istio was then deployed on top of Cilium providing
micro-segmentation with the help of sidecar proxies by having the appropriate authoriza-
tion policies, as well as encryption of transit data between microservices using mutual TLS
(mTLS). Finally we deployed Hubble on top of Istio. The combination of eBPF, Cilium,

Catherine de Weever, Marios Andreou page 5 of 12



Research Project 1

Istio and Hubble will give us the ability to enable deep visibility into the communication and
behavior of the microservices, as well as protection to the data that are being transferred
between them. The whole setup is depicted in figure 2.
It is important to prove that the network traffic between two containers was visible. In order
to achieve this we deployed a demo application to have traffic flowing between microservices
so we could visualize it.

Figure 2: Implementation Setup.

4.2 Scope

The general scope of this project is to mitigate the data leakage within a containerized
environment. In order to achieve this, an actionable traffic visualization needs to be accom-
plished as well as encryption when the data are transferred between containers. By having
reasonable traffic logging, we can have a proper analysis by tracing and finding where and
when the attack occurred and by who.
Thus, the scope of our research was limited to the operational level[18] and more precisely,
providing deep visibility of the traffic that occurs between microservices (east-west) and
implementing encryption of the transit data. This can be achieved by using the appropriate
tools that were mentioned previously in section 3.

5 Results

This section describes the results of our research. In order to have viable results we deployed
a demo application, which is illustrated in figure 3. The traffic we monitored for our Proof of
Concept was the communication between the ”product-page” and the ”reviews-v1” sidecar
proxies.

Catherine de Weever, Marios Andreou page 6 of 12



Research Project 1

Figure 3: Demo Application.

Since Hubble is observing the traffic between microservices inside the envoy proxy , we are
able to visualize the following traffic data unencrypted: the timestamp, source, destination,
type, verdict and a summary about the packet. This is depicted in figure 4. In figure 4 we
can observe the http request from the ”product-page” pod to the ”reviews-v1” pod, as well
as the response from the ”review-v1” pod to the ”product-page” pod.

Figure 4: Traffic captured with Hubble.

Catherine de Weever, Marios Andreou page 7 of 12



Research Project 1

We know that with the help of Istio we can have encrypted traffic flowing between the
microservices. In order to check that encryption (mutual TLS) was indeed implemented
we used a function that Istio provides to check if the mTLS was enabled and operating. In
figures 5 and 6 we can see that mutual TLS was indeed operating on both services. However,
this is not enough to verify that mutual TLS was enabled, so we needed to sniff the traffic be-
tween the microservices. We did this by executing tcpdump[9] in the proxy sidecar container
of the ”product-page” and sending requests from the ”reviews-v1” to the ”product-page”.
In figures 7 and 8 one can see how we’ve done it and in figure 9 one can see the part of the
output of the tcpdump that includes the packets originated from ”review-v1”. As expected,
one cannot see any detail about the communication since it happened through TLS.

Figure 5: Review-v1 pod mTLS encryption.

Figure 6: Product-page pod mTLS encryption.

Figure 7: Tcpdump command executed in sidecar proxy of product-page.

Figure 8: Sending http request from reviews-v1 pod to product-page pod.

Figure 9: Output of tcpdump is encrypted because of TLS.

Catherine de Weever, Marios Andreou page 8 of 12



Research Project 1

Finally the last results we got from this research is micro-segmentation. We deployed a
container in our cluster, which is not part of the Istio service mesh in order to try and
send out requests to one of the containers that is implemented with Istio service mesh. The
container we chose is ”reviews-v1”, which has an IP address 10.56.1.112. We tried to send
a http request to ”reviews-v1” container from the new container that we deployed. Since
the new container that we deployed is not part of the Istio service mesh and not part of the
application, the communication could not be established. This is illustrated in figure 10.

Figure 10: Sending http request from a non service mesh container.

6 Discussion

In this section we discuss the following topics.

6.1 Operational controls

In this subsection we discuss what are the operational controls that are used by the tools
we implemented to achieve our goal.
First, Istio service mesh tool provides Secure Sockets Layer (SSL) encryption for ”east-west”
traffic as well as for ”north-south”. Considering that there is an ingress and egress sidecar
proxy for the traffic flowing from inside the service mesh to outside and vice versa we can
have ”north-south” SSL encryption. Another operational control that Istio provides to our
project is that Istio as mentioned in the background section consists of a control plane that is
a set of centrally-managed services that operates independently of the applications running
within the service mesh. Furthermore, micro-segmentation can be achieved by adding the
appropriate authorization policies to the sidecar proxies. Lastly, since there is ingress and
egress sidecar proxies to monitor traffic flowing in and out of the service mesh, we can apply
restrictive inbound and outbound access for our service mesh.
For the Cilium tool in our setup, is for enhancing the network security rules by loadbalancing
the traffic or preventing traffic to flow to specific containers.
On the other hand, Hubble, which operates in combination with eBPF and Cilium, provides
data classification by separating traffic via protocols, as well as it provides us deep obser-
vation in the traffic, which is flowing between the microservices. Hubble also gives us the
ability for deep visibility into the behavior of services as well as the networking infrastructure
in a completely transparent manner.

6.2 Compromised sidecar proxies

As mentioned before Hubble reads the unencrypted traffic from within the sidecar proxy. To
access the sidecar proxy container one need root privileges. Now let’s assume that the sidecar
proxy is compromised. To mitigate capturing of the unencrypted traffic, this sidecar proxy
needs to operate with least privileges. This can be achieved by using Cilium in addition to
Istio by defining service level security policies.

6.3 Hubble used in practice

Hubble is a fairly new platform; the first version was released in December 2019. It is still
in beta stage: new functionalities are being added like automation, etc. Thus Hubble can
be implemented in a Proof of Concept, but since it’s not in a stable, production stage, it
cannot be implemented in practice yet.

Catherine de Weever, Marios Andreou page 9 of 12



Research Project 1

7 Conclusion

In this research, the following research question was answered: How to implement Zero
Trust for ”east/west” traffic between microservices in containerized environment. In order
to answer our research question, we first needed to answer the following sub-questions: How
to regulate the ”east-west” traffic flow? and How to implement confidentiality for transit
data?. To answer our sub-questions we have performed research regarding the operational
controls (figure 11) that were required to be implemented in order to achieve Zero Trust in
containerized environment.
The implementation of Kubernetes and Istio service mesh provides a big part of the Zero
Trust model in the containerized environment, but there is an important piece that was
missing from the implementation, which is deep traffic visibility between microservices. In
order to cope with this problem, another tool was needed to be implemented, which is Cilium,
and which comes with extended Berkeley Packet Filter (eBPF). Cilium is a networking plugin
that integrates with Istio and enhances the security and performance of Istio, as well as
collecting traffic between microservices. Lastly, since we’re limited to the fact that Cilium is
only collecting the data between microservices, but we wanted to observe the traffic as well,
Hubble needed to be implemented, which enables deep visibility into the communication
and behavior of services and networking infrastructure.
By installing the above tools we were able to regulate the traffic by implementing micro-
segmentation while adding the appropriate authorization policies to the sidecar proxies,
as well as having encrypted communication between them by using mutual TLS. We also
managed to get deep visibility of the communication between microservices (”east-west”
traffic). To support our solution we’ve implemented a Proof of Concept. In conclusion, with
these tools we are able to apply some of the required Zero Trust operational controls to
mitigate data leakage in a containerized environment.

8 Future Work

8.1 Data leakage detection

To mitigate data leakage, one also need to detect it. So an interesting future work could
be is to implement data leakage detection by applying data leakage detection protection
controls.

8.2 Behavioral Analytics

An interesting operational control to mitigate data leakage is behavioral analytics. With
this control one can detect abnormalities on normal traffic flows. So to implement behavioral
analytics could be another future work.

8.3 Content-Inspection

Inspecting the content of the traffic to detect intruders and prevent them to cause data
leakage can also be an interesting future work. We can achieve this by adding Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems (IPS).

Catherine de Weever, Marios Andreou page 10 of 12



Research Project 1

References

[1] Envoy Project Authors. Envoy Proxy. url: https://www.envoyproxy.io/.

[2] Istio authors. secure naming. url: https://istio.io/docs/concepts/security/
#secure-naming.

[3] Cilium. Cilium. url: https://cilium.io/.

[4] Cilium. How Cilium enhances Istio with socket-aware BPF programs. url: https:

//cilium.io/blog/2018/08/07/istio-10-cilium/.

[5] Cilium. Istio. url: https://cilium.io/blog/2018/08/07/istio-10-cilium/.

[6] Casimer DeCusatis et al. “Implementing zero trust cloud networks with transport ac-
cess control and first packet authentication”. In: 2016 IEEE International Conference
on Smart Cloud (SmartCloud). IEEE. 2016, pp. 5–10.

[7] Cilium Docs. BPF and XDP Reference Guide. url: https://docs.cilium.io/en/
v1.6/bpf/.

[8] GoDocs. package sockmap. url: https://godoc.org/github.com/cilium/cilium/
pkg/maps/sockmap.

[9] The Tcpdump Group. tcpdum manpage. url: https://www.tcpdump.org/manpages/
tcpdump.1.html.

[10] Hubble. Hubble. url: https://github.com/cilium/hubble.

[11] Fatima Hussain et al. “Intelligent Service Mesh Framework for API Security and Man-
agement”. In: 2019 IEEE 10th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON). IEEE. 2019, pp. 0735–0742.

[12] Istio. 2018. url: https://istio.io/.

[13] Michael Kerrisk. Linux Programmer’s Manual BPF(2). url: http://man7.org/

linux/man-pages/man2/bpf.2.html.

[14] Kubernetes. url: https://kubernetes.io/.

[15] Kubernetes. Kubernetes. url: https://kubernetes.io/docs/tutorials/kubernetes-
basics/explore/explore-intro/.

[16] ON2IT. Cloud container security. [Online; accessed 6-January-2020]. url: https :

//on2it.net/en/cloud-security/container-security/.

[17] ON2IT. Zero Trust. [Online; accessed 28-January-2020]. url: https://on2it.net/
en/zero-trust/.

[18] ON2IT. Zero Trust Security Framework. [Online; accessed 6-January-2020]. url: https:
//on2it.net/en/zero-trust-security-framework/.

[19] Limin Wang. Micro-Segmentation with Istio Authorization. url: https://istio.io/
blog/2018/istio-authorization/.

[20] Zirak Zaheer et al. “eZTrust: Network-Independent Zero-Trust Perimeterization for
Microservices”. In: Proceedings of the 2019 ACM Symposium on SDN Research. 2019,
pp. 49–61.

Catherine de Weever, Marios Andreou page 11 of 12

https://www.envoyproxy.io/
https://istio.io/docs/concepts/security/#secure-naming
https://istio.io/docs/concepts/security/#secure-naming
https://cilium.io/
https://cilium.io/blog/2018/08/07/istio-10-cilium/
https://cilium.io/blog/2018/08/07/istio-10-cilium/
https://cilium.io/blog/2018/08/07/istio-10-cilium/
https://docs.cilium.io/en/v1.6/bpf/
https://docs.cilium.io/en/v1.6/bpf/
https://godoc.org/github.com/cilium/cilium/pkg/maps/sockmap
https://godoc.org/github.com/cilium/cilium/pkg/maps/sockmap
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://github.com/cilium/hubble
https://istio.io/
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
https://kubernetes.io/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://on2it.net/en/cloud-security/container-security/
https://on2it.net/en/cloud-security/container-security/
https://on2it.net/en/zero-trust/
https://on2it.net/en/zero-trust/
https://on2it.net/en/zero-trust-security-framework/
https://on2it.net/en/zero-trust-security-framework/
https://istio.io/blog/2018/istio-authorization/
https://istio.io/blog/2018/istio-authorization/


Research Project 1

9 Appendix

Figure 11: Operational controls.

Catherine de Weever, Marios Andreou page 12 of 12


	Introduction
	Related Work
	Background
	Methodology
	Approach
	Scope

	Results
	Discussion
	Operational controls
	Compromised sidecar proxies 
	Hubble used in practice

	Conclusion
	Future Work
	Data leakage detection
	Behavioral Analytics
	Content-Inspection

	Appendix

