The Current State of DNS Resolvers and RPKI Protection

By Erik Dekker and Marius Brouwer

Motivation

OWhy is this research important?

Motivation

OBGP is old

OFirst RFC was published in 1989 (RFC 1105)

OBGP was developed in times when security problems were less prevalent

OAnd is vulnerable for certain attacks

• For example, BGP is prone to IP Prefix Hijacks

BGP IP Prefix Hijack

Resource Public Key Infrastructure

- RPKI comes to the rescue!
- O Documented in RFC 6480
- But also in RFC 6481,6482, 6483, 6484, 6485, 6486, 6487, 6488, 6489, 6490, 6491, 6492, and 6493

How does **RPKI** work?

- RIRs assign IP prefixes to network operators
- For example RIPE assigns prefixes to SURFnet
- RPKI allows network operators to sign their assigned IP prefixes
 - To prove that they have the right to originate this prefix
 - O The RIRs host the Trust Anchors
 - This results in a Route Origin Authorization (ROA) record
 - Which contains the AS number, Prefix(es) and optionally prefix length
- Routers can validate ROA records (Route Origin Validation)
- ROV == RPKI filtering

BGP IP Prefix Hijack with RPKI

• What does this have to do with DNS resolvers?

BGP IP Prefix Hijack

Example

- Amazon Route 53 BGP Hijack
- All traffic directed to MyEtherWallet was hijacked

Research question

- Main question:
- "What is the state of RPKI filtering on DNS resolvers?"

- Sub questions:
- How does the length of the AS path between resolver and authoritative DNS server influence the level of RPKI protection?
- How does anycast influence the protection of DNS resolvers?

Scope

ONO DNSSEC

ONo IPv6

Method – test setup

ORIPE Atlas Probes

OCan send DNS queries to their resolvers

OWho query our authoritative DNS servers

OBeacon

OTCPdump of all the queries

OMade a BGP dump

Method – experiment

Results

Results – Probe RPKI Coverage

Results – Probe/ Resolver **RPKI** Coverage

Results – Top 10 AS

Results – Top 19 AS highest filtering ASes

Results – Influence of Cloudflare anycast

Results – Influence of AS path length

Results – Influence of AS path length

Results – Influence of AS path length

Main Research Question: "What is the state of RPKI filtering on DNS resolvers?"

• How does the length of the AS path between resolver and authoritative DNS server influence the level of RPKI protection?

• How does anycast influence the protection of DNS resolvers?

Discussion

- RPKI query coverage ≠ RPKI protected clients
- Atlas probe AS could still be hijacked.
- Small amount of ASes are fully protected
- Expectation: Longer AS path more RPKI protection
 - Based on reverse path
- Influence of anycast DNS relatively high and growing
- Population of experiment is western oriented and geek biased

Future Work

- Take DNS forwarders into account in future research
- Make use of another query generator other than RIPE Atlas for a different population
- Place more beacons in different regions/AS
- Focus on specific open DNS resolvers e.g. Cloudflare and Verisign Public DNS
- Longitudinal study of ongoing data capture
- Analyze which DNS resolvers are aided by filtering along the path.

Acknowledgements

Questions?

