
Research Project 1
APFS checkpoint management behaviour in macOS

Maarten van der Slik
maarten.vanderslik@os3.nl

Security and Network Engineering
University of Amsterdam

Amsterdam, The Netherlands

Supervisor: Ruud Schramp
Nederlands Forensisch Instituut (NFI)

The Hague, The Netherlands
20-01-2020

Abstract—The Apple File System (APFS) is the default file system
for Apple devices since macOS High Sierra and iOS 13 [1]. APFS has
the ability to create and restore snapshots, in addition to other new
features. Snapshots create and restore checkpoints, which contain the
actual data and metadata [2]. While other researches have focused
on decoding the file system [3] [4], no research has been done on
when macOS creates and removes checkpoints. This paper shows
the correlation between different file operations and the amount of
data traces macOS leaves behind. Therefore, 12 experiments with
different file operations are performed and analyzed.

From the results, we conclude that macOS does not always use
the Copy-on-write principle, which, in some cases, leaves only one
file version behind. In other cases, macOS does use this principle,
leaving many or all the file versions behind. Restarting macOS can
cause some file versions and checkpoints to be overwritten.

While there might be some gaps between series of checkpoints,
macOS creates them a lot and they contains a vast amount of
metadata, which can be retrieved by parsing a tree with inode
information like MAC times and owner.

I. INTRODUCTION

Since 2017, Apple uses his new file system technology, Apple
File System (APFS), by default on his macOS and iOS devices.
APFS is the successor of HFS+, that served the Apple platforms
for almost two decades. When the new system was introduced
during WWDC on June 14, 2016, Apple stated that it is crash
protected, supports ”Space Sharing” between volumes, cloning,
and snapshots. It should also feature enhanced encryption options,
compared to its predecessor. [5]

The new snapshots feature holds the state of an APFS system
at a past point in time [1]. Snapshots refer to a certain checkpoint,
which are copies of important file system structure metadata [3].
Because these checkpoints refer to actual files, they could contain
forensically interesting data.

Nowadays, there has been done a couple of researches on
the low-level technology, on both the general structure of the
system, as well as the forensic possibilities the platform offers.
For example, Hansen and Toolan describe the tables and artifacts
of APFS [3] in their paper, Dewald and Plum found an effective
way to recover removed file content from it [2] and Song et al.
analyzed timestamps of directories and files [6].

However, to the best of our knowledge, the behavior of han-
dling APFS checkpoints in macOS has not been analyzed yet and
the frequency of creating and removing them is still unknown. In

this research, we try to specify when checkpoints are created and
removed and which data could be extracted from it.

II. RESEARCH QUESTION

The research question we defined is: When does macOS
Catalina create APFS checkpoints and which data could be
retrieved from them?

This paper researches the correlation between certain file
system operations and the amount of data traces in an APFS
partition that are left behind by macOS. We look at the results
of a set of experiments with certain disk operations in a testing
environment. We create, change, clone, move and delete volume
items. We also change file content using different file access
modes (low-level method) and using the Foundation API (higher-
level method). Lastly, we use the TextEdit application to show,
which is the default graphical text editor of macOS [7].

The experiments show which versions of a file or a volume
remain after changing it for a certain amount of time and how
much meta-data is available. Lastly, we explain what could cause
these differences in results, based on the differences between the
experiments and the data we retrieve during them.

To be able to interpret the results, this paper also gives
the necessary background information about APFS checkpoints,
based on former research. We look into the properties of an APFS
checkpoint (what are the technical differences and interdependen-
cies between them and a regular checkpoint).

III. RELATED WORK

In the first year of the introduction of APFS, no technical
information was available about its structure [3], which was
the motivation for Hansen and Toolan to decode APFS. They
described the major components and structure of APFS, using
their own naming schema [4]. A very important component of
APFS is the Container Superblock (CSB), which is the table that
defines the overall structure of an APFS container. Therefore, it
describes the total number of blocks, block size limitations and
the locations of earlier versions of the CSB (checkpoints). The
Master Superblock (MSB) is a subset of the latest CSB. [3] While
containers describe a whole APFS system, they are subdivided
by volumes. The locations of the volumes are specified in the
CSB. Many important information about a volume is saved in



the Volume Superblock (or as Hansen and Toolan name it: the
Volume Checkpoint Superblock) [1]. One example of important
information in the Volume Superblock is the block number to the
catalog B-tree. The OS uses this B-tree to find out where a file is
located and if it has Extents (file content) [3]. Snapshots point to
a previous CSB (sblock oid) and a backup of the extent-reference
tree using a block address (extentref tree oid) [1]. Hansen and
Toolan also described the Bitmap Structures (BMS). This is a
collection of tables, that records used and unused blocks. Using
this mechanism, blocks can be allocated to a specific volume [3].
The Bitmap tables should be maintained, because when data is
written to a block without knowledge of this system, it may be
overwritten [8].
After the research paper of Hansen and Toolan, a couple of new
papers where published. Plum and Dewald described in their
paper how files could be carved from APFS. The tool they created
searches for references in the container- and volume superblock
to find pointers to file extends. Because APFS is a copy-on-write
system, there is a great chance that removed files still exist. Plums
and Dewald showed that using their file system parsing method,
a significantly greater percentage of content could be recovered
[2].
To the best of our knowledge, the macOS behavior of creating
and removing checkpoints has not been analyzed jet, and as
Plum and Dewald pointed out: it still has to be researched [2].
CSB’s could also be generated without a snapshot reference (e.g.
the first checkpoint of the initial state of the container), which
should also contain metadata of the volumes [3], which makes
it forensically interesting. As far as we know, the frequency of
generating checkpoints is still unknown.

IV. METHOD

To find out how many versions of a file or a volume are
available after performing certain disk operations, we use a test
setup, consisting of a computer (Core i7-6700HQ, 16GB RAM,
256GB SSD) running VMware software, with a macOS Catalina
(10.15.2) VM. We use APFS version 1412.61.1. We disable
automatic snapshot creation in macOS, to prevent the system to
create read-only checkpoints during the experiments, which would
influence the checkpoint results.

We perform 12 experiments, 4 of them change the content of a
file and the remaining 8 the structure of a volume. All experiments
perform a disk operation 65 times, the file content experiments
wait for 60 seconds between each operation, the volume structure
experiments 30 seconds. All experiments are automated using a
script, except for the TextEdit file content experiment. We perform
the experiments at least two times. Before each experiment, we
create a raw disk of 256MB which does not contain any data. We
used diskutil to format the disk with a GPT partition table and
an unencrypted, case-insensitive APFS partition. The block size
is 4096, which is the default configuration [4].

A. File content experiments

For each file content experiment, a UTF-8 file of 400.0kB is
created. The file contains 9999 lines, every line contains the ctime
(time changed) and a line number. We perform four different
experiments which execute one of the following file operations:

• Seek & write file editing (system calls: open, seek through
the file, rewrite only 40 bytes, close)

• Normal file editing (system calls: open, rewrite all the blocks
of the file, close)

• Appending to file (system calls: open, seek to the end of the
file, write 41 bytes, close)

• Edit using a file handle with Foundation API (system calls:
open, seek through the file, rewrite only 40 bytes, close)

• GUI file editing by TextEdit application (system calls: open
file and temporary, write all blocks to temporary, close both,
change inode entry of original file, delete the inode of the
temporary file)

While the scripts we use perform simple changes to a text file,
we aim to cover the common file access write modes that are
used by macOS applications.

According to Apple’s documentation, most applications that
need to read or write a disk will use the Foundation API [1]. We
use an Objective C script to see if macOS checkpoint behavior
differs when using this high-level API’s. We also use TextEdit,
which is a regular GUI application that works fundamentally
different than the other file content operations.

Between each file operation, the file is closed and opened again
and we check the system calls using the dtruss and fs usage log
tools. After the experiment, we analyze the low-level data on the
disk, by carving for the magic UTF-8 bytes ”APSB” (a method
which is described by Plum & Dewald [2]) and parsing the
Volume Superblocks using The Sleuth Kit, to find out how many
versions are available from the checkpoint mechanism. Also, we
verify this method by also manually search the low-level data
of the seek & write and Foundation-API disks for file content
blocks.

After this first collection of experiments, we execute the file
content operations again but restart the system two times during
the experiment. The first time after 23 disk operations, the second
time after 44 operations. We analyze the low-level data and see
if there is a difference in the number of checkpoints.

To verify that macOS does handle APFS Checkpoints in the
same way on smaller disks as it does with bigger disks, we also
perform the seek & write and Foundation API experiments on a
48GB raw disk image.

B. Volume structure experiments

We also research the checkpoint behavior of macOS when
changing the file system structure. We perform the following file
system operations:

• Create a file (touch)
• Create a folder
• Move a file
• Move a folder
• Clone a file (using the clonefile() function)
• Clone a folder (using the clonefile() function)
• Remove a file
• Remove a folder
We do not create file content during the file creation experiment

because the recovery possibilities of removed file content are
already researched by Plum & Dewald [2].

After we performed these operations, we execute the ex-
periments again, but restart the system two times during the
experiment, at the same times we did during the file content
experiments.

We interpret the results using the documentation of Apple [1]
and the whitepaper of Dewald and Plum [4].



V. ETHICAL ISSUES

This research does not have any negative impact on an individ-
ual’s security or privacy nor does it expose security weaknesses
of APFS that could be exploited by attackers. Experiments took
place in an environment specifically set up for the tests themselves
(see paragraph IV) and the environment did not contain any
sensitive information.

VI. RESULTS

We divide this section into two parts: we look at the behavior
of macOS when executing various file operations and in the other
part, we look at the behavior of macOS when changing the file
system structure (i.e. creating and removing items like folders and
files).

A. File operations

In Table I, we see the results of the file operation experiments.
In this paragraph, we look into the number of file versions that
are available after performing a disk operation 65 times, without
rebooting the system during the experiment.

In the seek & write file experiment, we observe the script open-
ing a file in read-write mode (open: RW X), seeking to
a specific location and changing 41 bytes. After every operation,
we see the close syscall to close the file. When performing a low-
level data search, we find only file content blocks of the latest
version of this file.

The second file operation opens the file in write mode (open:
WC T X) and writes all blocks again. Afterward, we see

the close syscall to close the file. After parsing all the carved
Volume Superblocks, we see that changes are always written to
a new data block, which results in the availability of all versions
of the file.

The third operation opens the file in append mode (open:
WCA X), seeks to the end of the file and writes only

41 new bytes to it. Afterward, we see the close syscall to close
the file. While there are many newer versions available of this
file, not every file version is available after parsing all the carved
Volume Superblocks.

The last file operation in this category uses the Foundation
framework, which opens the file in read-write mode and seeks to
a specific location, just like the seek write experiment. Afterward,
41 bytes are changed and the file is closed. This operation writes
to the same set of blocks every time and all the checkpoints which
contain this file point to this original block.

Performing the seek & write experiment using a 48GB disk
gives 141 checkpoints and 1 file version, performing the Foun-
dation API experiment on it gives 196 checkpoints and 1 file
version. Both experiments are performed without restarts between
the operations.

After these experiments, we execute them again. This time,
we restart macOS two times during the experiment. We see a
significant difference in available file versions: the file versions
that are created before the first and second restart are overwritten
(FIGURE), only one corrupted file version could be restored.
However, all the file versions after the last (second) restart are
still available.

B. File operations

During the TextEdit experiments, we observe results that are
similar to the second operation (rewrite all file content blocks).

dtruss output shows that this application opens a new temporary
file (.sb) to save the new file version and removes it after
changing the pointer of the original file to the changed content.
Without reboots during the experiment, this method creates many
checkpoints (223) and contains all file versions. With reboots
during the experiment, this method creates 108 checkpoints and
contains 32 file versions. But, the write procedure (which is
described in section IV) is very different from the file operations
in Table I, which do not create temporary files.

C. Volume structure operations

In Table II we find the number of available volume versions and
created checkpoints when performing the folder experiments, in
Table III we find the results when performing file operations. We
see no significant change in the average amount of checkpoints
and volume versions when comparing the experiments with each
other and comparing the experiments with restarts against the
experiments without restarts.

D. Available metadata

Fig. 1. A part of the seek & write timeline, shown in mactime

Every Volume Superblock contains a reference to the volume
Object Map (OMAP), where a pointer to the root tree is located
[1]. The root tree contains inode entries, from which the MAC
times, owner, and parent inode of files and folders could be
extracted [4]. By extracting all inode entries from the existing
Volume Superblocks, we are able to create a timeline of volume
modifications.

The tool Plum & Dewald created for removed file content
recovery is also able to parse the metadata and creates a body
file for The Sleuth Kit [9].

Figure 1 shows a part of a timeline, which is created using
the body file of a seek & write experiment and the mactime tool
from The Sleuth Kit. Even though this experiment has only one
file version, the timeline shows significantly more information
about when the file is created and changed.

VII. DISCUSSION

While Plum & Dewald already created a tool that is able to
parse older versions of an APFS Volume with their metadata, they
did not look into how macOS threats file access modes different
from each other; when it is possible to recover older versions of
a file successfully. If macOS had always used the Copy-on-write
mechanism, the chance of file version recovery would have been
significantly greater, as the results of the second file experiment
(rewrite of all blocks) shows us.

To verify the results of the seek & write experiment and the
Foundation API experiment (that show that no more than one
version of the file is available from an APFS partition image)
we used low-level data searches to find all blocks which contain



Operation Checkpoints w/o restart File versions available w/o restart Checkpoints w/ restart File versions available w/ restart
Result 1 Result 2 Result 3 Result 1 Result 2 Result 3 Result 1 Result 2 Result 1 Result 2

1 Seek & write 65 127 1 1 67 163 1 1
2 File rewritten 84 285 91 65 65 65 108 67 24 (1 corrupted) 23
3 File appended 80 30 21 18 91 116 22 31
4 Foundation API 218 278 1 1 111 175 1 1

TABLE I
AMOUNT OF CHECKPOINTS AND AVAILABLE FILE VERSIONS AFTER PERFORMING CERTAIN FILE OPERATIONS 65 TIMES. W/O MEANS ”WITHOUT”, W/ MEANS

”WITH”. ONLY CHECKPOINTS THAT INCLUDE THE FILE ARE INCLUDED IN THE NUMBER OF CHECKPOINTS.

Operation Checkpoints w/o restart Versions available w/o restart Checkpoints w/ restart Versions available w/ restart
Result 1 Result 2 Result 1 Result 2 Result 1 Result 2 Result 1 Result 2

1 Folders created 35 38 19 21 85 54 37 22
2 Folders cloned 49 49 29 33 48 70 31 34
3 Folders moved 38 55 20 17 32 63 8 30
4 Folders removed 44 24 27 19 32 56 13 9

TABLE II
AMOUNT OF CHECKPOINTS AND AVAILABLE VOLUME VERSIONS AFTER PERFORMING CERTAIN FOLDER OPERATIONS 65 TIMES. W/O MEANS ”WITHOUT”, W/

MEANS ”WITH”. ONLY CHECKPOINTS THAT INCLUDE ONE OR MORE OF THE CREATED FOLDERS ARE INCLUDED IN THE NUMBER OF CHECKPOINTS.

Operation Checkpoints w/o restart Versions available w/o restart Checkpoints w/ restart Versions available w/ restart
Result 1 Result 2 Result 1 Result 2 Result 1 Result 2 Result 1 Result 2

1 Files created 39 37 19 19 20 (1 overwritten root tree) 60 10 28
2 Files cloned 37 39 17 19 38 16 11 10
3 Files moved 38 56 19 20 86 31 35 12
4 Files removed 42 57 25 16 62 57 15 15

TABLE III
AMOUNT OF CHECKPOINTS AND AVAILABLE VOLUME VERSIONS AFTER PERFORMING CERTAIN FILE OPERATIONS 65 TIMES. W/O MEANS ”WITHOUT”, W/

MEANS ”WITH”. ONLY CHECKPOINTS THAT INCLUDE ONE OR MORE OF THE CREATED FILES ARE INCLUDED IN THE NUMBER OF CHECKPOINTS.

parts of the file. We did not use this time-consuming method on
every experiment (only on the seek write and Foundation API
experiments), but used the Volume Superblock carving method to
find all available file versions. In theory, this could mean that there
is still an older version of a file block present and the associated
Volume Superblock is overwritten by other file content. But, our
method should be sufficient due to the vast amount of available
checkpoints.

In this research, we perform the experiment on a specific disk,
which is not the system partition where macOS is installed. If
macOS handles system partitions in a different way, the results
do not apply to them. Also, we did not research if the amount of
checkpoints macOS creates depends on the APFS partition size.
It could be that the checkpoint numbers are higher when using
bigger APFS partitions than the 256MB partitions we used in the
experiments.

Due to the long list of experiments and the time they take
to complete, there are not many samples per experiment. But,
because the key findings are based on both the with reboot and
without results, we consider the number of samples to be enough
for our conclusions. This does not amount to the amount of file
versions in the write mode situation, where the ”with reboot”
results differ from the ”without reboot” results. For this reason,
we performed that experiment one more time.

VIII. CONCLUSION

We revisit our research question to give a final verdict on our re-
search: When does macOS Catalina create APFS checkpoints
and which data could be retrieved from them?

macOS leaves many data traces behind when using an APFS
partition. Many checkpoints are created during our experiments,
and a vast amount of metadata could be retrieved from parsing
the root tree with the inode entries that checkpoints contain.
The inode entries contain information such as MAC times and

owner. The structure of an earlier version of a volume could be
reconstructed or a timeline could be created by parsing all the
root trees. Rebooting does not have a significant impact on the
number of checkpoints, but loss of several file versions can occur.

While some file operations leave many file version traces
behind, other file operations leave only one version behind. Our
results show that macOS writes changes to new blocks when using
the write-only access mode, while the other file access modes
do not (always) write their changes to new blocks. While some
papers might claim in their introduction sections that macOS uses
a Copy-on-write mechanism, our results show that macOS does
not always use this mechanism, which makes it not comparable to
the Copy-on-write implementation in Btrfs or the ”always cow”
configuration in XFS, which never overwrite existing blocks [10]
[11].

IX. FUTURE WORK

During our research, we researched the correlation between
different file system operations and the data traces macOS leaves
behind. For future work, we would:

• Perform the experiments a couple of times more.
• Reverse engineering the macOS APFS driver or performing

more experiments to be able to describe in more detail when
macOS creates checkpoints.

• Invent a method to find root trees and their nodes without
carving for the Volume Superblock magic bytes, because the
Volume Superblock can be overwritten.

• Research if there is a correlation between the number of
checkpoints or file versions and the size of a disk.

• Research if macOS threats a system partition differently from
other partitions.

• Find out what the impact is on checkpoints when improp-
erly unmounting a disk device since Apple mentioned that



some data is saved in-memory which should be saved to a
checkpoint [1].

REFERENCES

[1] Apple Inc. Apple file system reference, Feb 2019.
[2] Jonas Plum and Andreas Dewald. Forensic apfs file recovery. In Proceedings

of the 13th International Conference on Availability, Reliability and Security,
page 47. ACM, 2018.

[3] Kurt H Hansen and Fergus Toolan. Decoding the apfs file system. Digital
Investigation, 22:107–132, 2017.

[4] Andreas Dewald and Jonas Plum. Apfs internals for forensic analysis, Apr
2018.

[5] Apple Inc. Introducing apple file system - wwdc 2016 - videos, Jul 2016.
[6] Jong-Hwa Song, Se Ho Kim, Song Yi Hwang, Seung Gyu Kim, and Sung-

Jin Lee. A study on the apfs timestamps in macos. International Journal
of Engineering & Technology, 7(2.33):133–138, 2018.

[7] Apple Inc. Open documents in textedit on mac.
[8] Marcel den Reijer and Henk van Doorn. Artifacts in the apple file system.

OS3 student, 2018.
[9] Jonas Plum. afro (apfs file recovery), Jan 2020.

[10] Jonathan Corbet. The btrfs filesystem: An introduction, Dec 2013.
[11] Michael Larabel. Xfs copy-on-write support being improved, always cow

option, Feb 2019.


