
APFS Slack Analysis and Detection of Hidden Data
Security and Network Engineering, University of Amsterdam, The Netherlands

Sunday 9th February, 2020

Axel Koolhaas
axel.koolhaas@os3.nl

Woudt van Steenbergen
woudt.vansteenbergen@os3.nl

Supervisor: Danny Kielman
danny.kielman@fox-it.com

Abstract—
Computer systems store data on storage mediums. File systems

are utilized to manage this data. File system specifications can
enable unsollicated behaviour, such as hiding data within the
data structures or the unused data blocks (slack). In 2016 Apple
introduced the Apple File System (APFS) as a next-generation
default file system for Apple products. In this paper, we present
our findings regarding the automated detection of hidden and/or
modified data within APFS data structures and slack. We used
a Mac mini to create APFS partitions which were researched
using a modified file carving tool named AFRO. We exhaustively
analyzed previously discovered hiding techniques by Göbel et
al., i.e., the superblock slack hiding technque and also the inode
pad hiding. We discovered that there are fields containing data
patterns in the superblock slack. These offsets are undefined in
the official Apple specification at the time of writing. We speculate
that this is currently unspecified APFS functionality. We conclude
that it is feasible to detect modifications to the inode padding
fields and the slack space of APFS datastructures. Specifically,
the container superblock, volume superblock, and object map
slack.

Index Terms—APFS, Apple, Detection, filesystem slack

I. INTRODUCTION

Apple File System (APFS) was introduced on the 14th of
June in 2016 as the next-generation default file system for
Apple devices with the Apple proprietary operating systems
(OS) [1]. It replaced the Hierarchical File System Plus (HFS+)
which was in use since 1998 [2]. Apple OSs comprise about
20% of the OS market share as of December 2019 [3]. This
makes APFS a worthwhile target for digital forensics, as
systems using APFS are wide in use. APFS is a relatively
new file system which hasn’t been completely analyzed and
researched [4]. Additionally, since it is a proprietary file
system, the source code is not freely available, which obscures
the file system. However, in 2018 Apple released a partial
specification of the file system and some research has been
done on reverse engineering the architecture. More on this
in Section II. Because of the novelty and obscurity, APFS is
an interesting subject to research regarding digital forensics.
Research has been done on data hiding in APFS, but there
is no research as of yet which involves the detection of
hidden data. This paper aims to tackle a subset of this subject
by researching the possibility of automating the detection of
modified APFS data structures and slack space [5].

II. RELATED WORK

The pioneering research to understand the APFS file system
was done on a pre-release version in macOS 10.12 Sierra.
This version is incompatible with the current version, but its
primary data structures have not diverged substantially [6].
An APFS partition consists of a single container, which could
stretch across multiple partitions like logical volumes [7], and
this container has a corresponding superblock (NXSB). The
container contains multiple volumes which have their own
accompanying superblocks (APSB). Both the container and
volume superblock refer to an Object map (OMAP) which
contains references to objects. A simplified overview made by
Dewald et al. can be seen in Figure 1.

Each volume contains a directory structure for files and
folders. The container superblock is stored multiple times,
preserving the state of the container at different points in time
in the Checkpoint Area. Block zero contains a superblock
that is primarily used during mounting to find the most
recent checkpoints. The spacemanager keeps track of what is
allocated and what is free. Then comes the storage for objects
and file data. These are retained in records which are kept
track of using a B-Tree [8]. Each object in a B-Tree contains
a 64-bit Fletcher checksum for integrity [9].

According to the official Apple documentation [10], APFS
stores data little endian and it is conceptually divided into
two layers, namely the container layer and the file-system
layer. The container layer has 64-bit aligned boundaries and
stores volume metadata, snapshots and the encryption state.
The container layer has a one to many relation with the file-
system layer. This are the container and volumes in Apple
nomenclature. Each container contains multiple volumes and
only one container exists per partition. The file-system layer
is built-up using data structures for, e.g., directory, metadata,
and file content. A visual representation of the APFS structure
can be seen in Figure 1 [8].

APFS has been treated in the last release of Levin’s Apple
OS internals book series [11]. There most of the aforemen-
tioned information has been aggregated, but no new research/-
analysis is presented regarding APFS internals or slackspace.

Within file systems, sequentially ordered events are num-
bered. This is called timestamping. The timestamping mech-
anism of APFS has been explored by Song et al. [12]. They



Fig. 1. APFS composition, original from Dewald et al. [8]

documented several operations that caused the system to
update the timestamps. In their research, Song et al. observed
that APFS behaved differently depending on whether the
operations performed on files and directories originated from
the terminal or a GUI. This is interesting behavior, since this
means that APFS ends up in different states depending on
what interface is used.

The data structures in APFS also contain non-critical infor-
mation for the file system to function. Non-critical information
fields can be modified as a technique for data hiding, storing
the hidden information within the file system [4]. For example,
the inodes [13] which describe files and directories contain
four fields with timestamps that are measured in nanoseconds,
can be abused to hide small chunks of data. The superblock
slack is probably the most interesting data hiding technique
when it comes to the size of potential data to be hidden, where
the superblocks are used to store data.

Reconstructing lost or deleted files from a file system is
an important aspect in forensic computing. This is called
carving. There exist tools for carving from file systems internal
data structures, e.g., Sleuthkit [14]. Sleuthkit has incomplete
functionality for carving APFS. Plum et. Dewald researched
different approaches to identify and recover files on APFS
[15]. The result of their work has been implemented in a proof
of concept called AFRO [16], which derives its name from
APFS File RecOvery.

AFRO is a tool written in Python3 that can parse APFS
partitions and uses this to carve files. AFRO parses APFS by
searching for bytes that correspond with APFS data structures
and then creates a fletcher checksum to see if the block
is indeed valid. AFRO makes use of Kaitai Struct as a

model. Kaitai Struct is a declarative language used to describe
binary data structures. A particular format can be described
in Kaitai Struct language and can then be compiled with
kaitaistructcompiler into source files in one of the supported
programming languages, such as Python [17]. This is a clear
separation of the model and code, as opposed to working with
offsets within the binary data, allowing for cleaner code and
better extensibility.

As mentioned by Göbel et al.:
In addition to improving the framework’s ability
to hide data, there would be real added value in
identifying potentially hidden data. [4]

which brings us to our research and our research question:
Is it possible to automate the detection of informa-
tion hidden within APFS datastructures and their
slack?

We researched a subset of the hiding techniques that were
researched by Göbel et al. Namely, slack space hiding in
container superblocks, volume superblocks, and object maps,
as well as data hiding in inode pad fields.

III. METHODOLOGY

Detecting hidden data within the APFS requires an OS to
format drives with the file system, an additional machine to
perform a data dump of this unmounted drive, and a tool to
parse the image. We used a Mac mini with macOS Catalina
10.15.2. Our system had 1412.61.1 as its APFS driver version.
We fetched the APFS driver version using the following
command:



strings /sbin/fsck_apfs | grep "fsck_apfs ("

To detect modifications to APFS data structures, we first had
to establish what the data structures would look like under
normal circumstances. To do this, we used the open source
tool AFRO [16]. We verified that AFRO correctly parses
data structures by referencing the Apple APFS Reference [10]
and by manually parsing data structures in a hex editor. The
original implementation of AFRO contained a non-critical bug
which we speculate came as a result of Apple’s misleading
specification. Namely, the o_type field in the object headers
is defined as a 32-bit uint32_t o_type multipurpose field
for object_type and object_type_flags. The lower
16-bits are used to indicate which object is being described,
and the high 16-bits are used to provide information at
a higher abstraction layer [10]. However, the examples in
the documentation were given in 32-bits which lead to the
implementation comparing 16-bit values to 32-bit ones. In
addition to parsing the slack, we also implemented a simple
hexadecimal view output for AFRO with optional color coding
for ease of use.

A. Images

To create an image we formatted a USB flash drive with
an APFS partition. A data dump was made of this newly
created image before any modifications were made. Next, files
and directories were added with dumps taken between each
iteration to take a snapshot of the current state of the partition.
Dumps were created using dd on a GNU/Linux machine.
Using a different OS ensured that the APFS partition was not
mounted during the dumping process. This is due to the fact
that macOS automatically mounts APFS volumes, which may
change its internal state.

B. Slack space

Storage blocks on disk often only contain one APFS data
structure, with this datastructure not using all the space of
a block. The remainder is referred to as slack [5]. For our
research we extended the AFRO [16] open source tool to
also parse the remainder of a block. We implemented this
parsing for container superblocks, volume superblocks and
their respective object maps. With AFRO we were able to
parse and catalogue the contents of the slack space. More on
this in Section IV.

C. Inode pad fields

Node data structures of type inode contain two pad fields for
memory alignment. According to the APFS specification these
fields should be set to zero on creation, and left unmodified
when updating the inode. We modified AFRO to parse all the
nodes, and return the contents of the pad fields allowing us to
collect information about these fields’ contents.

IV. RESULTS

A. Superblock slack

1) Container superblocks: We collected information about
the contents of the container superblocks from the multiple im-

ages that were created. On analysis of these images we found
that the container superblock slack is not empty. Namely, there
are three fields which are reoccurring. The first field at offset
0x03DC from the start of the block contains values which
differed from all the other container superblocks. In all of
our images we did not observe a certain value to be present
on more than one superblock at the same time. See Table I
for an overview of all the container superblocks on a single
image. We can also see that the second observed field has a
constant value between the different superblocks. Note that
the observed value is also present on the other images that we
have analyzed. The third and last field also contains a constant
value that does not differ between the container superblocks.
All other fields besides the ones mentioned here were observed
to contain zero values only. These zero values were observed
in each container superblock present on our images.

NXSB block id XID Offset 0x03DC Offset 0x0520 Offset 0x0568
0 122 0763 08 0004 0001 050443 125DA440
11561 121 0754 08 0004 0001 050443 125DA440
11563 122 0760 08 0004 0001 050443 125DA440
11565 113 06C4 08 0004 0001 050443 125DA440
11567 114 06D6 08 0004 0001 050443 125DA440
11569 115 06E6 08 0004 0001 050443 125DA440
11571 116 06F6 08 0004 0001 050443 125DA440
11573 117 070C 08 0004 0001 050443 125DA440
11575 118 0720 08 0004 0001 050443 125DA440
11577 119 072F 08 0004 0001 050443 125DA440
11579 120 0741 08 0004 0001 050443 125DA440

TABLE I
THE CONTAINER SUPERBLOCKS FOUND ON AN IMAGE, ORDERED BY
THEIR ORDER OF OCCURRENCE ON DISK (BLOCK ID). INCLUDED ARE

THEIR VERSION (XID) AND THE UNKNOWN VALUE FIELDS PRESENT IN
THE SLACK SPACE.

2) Volume superblocks: Multiple images were used to
collect information of the contents of the volume superblocks
their respective slack. In this slack space we observed two
fields to contain non zero values. The first field, which exists
at offset 0x03D8, was observed to contain a constant value of
0x10. This value was present in all volume superblocks on the
same image, as well as those on other images. The second and
last field at offset 0x03E0 contained a value which appeared to
change between versions, but was not unique when compared
to other volume superblocks on the same image. See Table II
for an overview of the observed values. All other fields of
the volume superblock were zero, this behavior was observed
in all volume superblocks regardless of image or superblock
version.



APSB block id XID Offset 0x03D8 Offset 0x03E0
6 83 10 5200
24 93 10 5C00
37 94 10 5C00
43 95 10 5C00
49 96 10 5C00
65 97 10 5C00
79 104 10 6700
83 98 10 5C00
93 99 10 5C00
131323 53 10 3500

TABLE II
THE VOLUME SUPERBLOCKS FOUND ON AN IMAGE, ORDERED BY THEIR

ORDER OF OCCURRENCE ON DISK (BLOCK ID). INCLUDED ARE THE
VOLUME SUPERBLOCKS’ VERSION (XID), AND THE UNKNOWN VALUE

FIELDS PRESENT IN THE SLACK SPACE.

3) Object Maps: We analyzed the slack space of object
maps (OMAP). Unlike the container and volume superblock,
we observed no unspecified values in this slack space. The
slack space of OMAPs contains only zeroes. This applies to
OMAPs which were referenced by the container superblock,
as well as to the OMAPs which were referenced by the volume
superblock.

B. Inode pad fields

The inode pad fields’ contents were observed through the
use of AFRO. Of all the inode pad fields that were present, we
found none which did not have zero values on examination.
This applies to all inode pad fields that were present on our
images.

V. DISCUSSION

A. Superblock slack

1) Container superblocks: The values that were observed
in the container superblock are at an offset from the end
of the container superblock data structure, we observed this
offset to be constant. The first value was found 0x17C bytes
behind the NXSB, this value behaved as a variable of 2 bytes
with the values differing between NXSB versions. The other
two values found in the NXSB were observed to be constant,
at relative offsets 0x2C0 and 0x308. These constant values
were observed in images from different machines, which
rules out the possibility of user fingerprinting. The function
of these bytes will be left up for speculation, or if Apple
updates the APFS specification to include these unknown
values. Automating detection of data hidden in the NXSB
slack space can be defined as a result of our research: first,
parse the container superblock up to its slack. If the bytes
leading up to offset 0x17C are non zero values, flag the NXSB
as suspicious. Ignore the 2 bytes at offset 0x17C. If the values
of the bytes between offset 0x17E and 0x2C0 are non zero,
also flag the NXSB as suspicious. Compare the bytes at offsets
0x2C0 and 0x308 to the constant values, 0x08 00040001
and 0x00050443 125DA440 respectively, and if they differ
then flag the NXSB as suspicious. The remainder of the slack
should be zero values under normal circumstances, therefore
if the opposite is observed the NXSB should be flagged.

2) Volume superblocks: The values in the volume su-
perblock slack were contiguous to the end of the volume
superblock datastructure. This may imply that they are used
for new APFS functionality that has not been documented in
the public specification at the time of writing. We observed
the first value to be a constant, at relative offset 0x0 to the
APSB. The second and last value were observed to be variable.
The behavior of these fields along with their constant offsets
relative to the APSB allow us to define their location in a
storage block. Due to this, we reason it will be possible
to automate the detection of data hidden within the volume
superblock slack. The automated detection process could go
as follows: first, parse the volume superblock up to its slack.
If the byte at relative offset 0x0 is not equal to 0x10, flag
the APSB as suspicious. Ignore the contents of the byte at
relative offset 0x8. The rest of the slack space should contain
none other than zero values, if this is not the case the APSB
should be flagged as suspicious.

3) OMAP: We observed exclusively zero values in the
OMAP slack space. This is regardless of whether the OMAP
is used in conjunction with a container superblock, or volume
superblock. We can now define a method to detect modifica-
tions to the OMAP slack: if the slack space is non zero, flag
the OMAP as suspicious.

B. inode pad fields

The pad fields of the inode datastructure potentially provides
10 bytes of hiding space. However, we observed these fields
to only contain zero values which means that any data hidden
within the pad fields is easily identifiable.

C. Volatility of data structures

APFS implements versioning as a substitute for journaling.
Filesystems which implement journalling keep a journal of
operations that were performed on the filesystem and com-
mitted to the storage device. The journal is a circular log,
meaning that old entries are overwritten when the journal has
no free entries. APFS has a similar implementation, as there is
a limit on the amount of checkpoints/versions it can have. This
limit correlates with the size of the container [4]. We observed
that old versions are zeroed out instead of overwritten, and
the new checkpoint will reside on a different location on
disk. This has a direct consequence on hiding techniques
which abuse the versioned APFS data structures, among which
are the container superblock, volume superblock, OMAP, and
inodes. Data that is hidden in one of these data structures will
eventually be overwritten if the storage device is mounted as
writable on a live machine.

VI. CONCLUSION

In this paper, we presented techniques to automatically
detect hidden data within APFS data structures, namely: the
container and volume superblock slack, their accompanying
OMAP slack, and of the inode padding fields. Irregularities
are trivial to identify once data structures have been correctly



parsed. However, we encountered unspecified fields in su-
perblock slack that are being used by APFS, potentially being
new, undocumented APFS functionality. We also discovered
that when APFS partitions are mounted, old blocks are quickly
discarded, making the superblock slack hiding technique
volatile. Revisiting our research question: Is it possible to
automate the detection of information hidden within APFS
datastructures and their slack? The answer to that is yes,
when taking the unspecified fields into consideration it will
be feasible to detect modifications to APFS data structures
and their slack.

We extended AFRO, a tool to carve files from APFS. Our
modifications to AFRO will be published after our research
[16].

VII. FUTURE WORK

In the future it would be worthwhile to analyze the values in
the superblock slack and other data structures. This could be
done by attaching a debugger to Apple APFS drivers and see
when these offsets are loaded into memory. The source code
of the drivers is however, at the time of writing, not available.
This would make it difficult to see what happens since the
drivers needs to be (partially) reverse engineered.

It would also be interesting to see if it is possible to
hide files that are detached from the file systems using the
Spacemanager bitmap, e.g., block aggregation abuse for write
protection or removing inode entries from their tree, erasing
the file index.

APFS drivers of different platforms have not been com-
pared. Future work could entail the researching of potential
differences between APFS drivers of different OSs, e.g.,
macOS vs. iOS.

REFERENCES

[1] Nob Hill. Introducing apple file system, June 2016.
[2] Apple Inc. Technical note tn1121. http://developer.apple.com/technotes/

tn/tn1121.html, 1998.
[3] StatCounter. Operating system market share worldwide. https://gs.

statcounter.com/os-market-share, 2020.
[4] Thomas Göbel, Jan Türr, and Harald Baier. Revisiting data hiding

techniques for apple file system. In Proceedings of the 14th International
Conference on Availability, Reliability and Security, page 41. ACM,
2019.

[5] Ewa Huebner, Derek Bem, and Cheong Kai Wee. Data hiding in the
ntfs file system. digital investigation, 3(4):211–226, 2006.

[6] Kurt H Hansen and Fergus Toolan. Decoding the apfs file system.
Digital Investigation, 22:107–132, 2017.

[7] Leon Daniel Baranovsky, Luis Felipe Cabrera, Chiehshow Chin, and
Robert Rees. Logical volume manager and method having enhanced
update capability with dynamic allocation of storage and minimal
storage of metadata information, April 27 1999. US Patent 5,897,661.

[8] Andreas Dewald. Ernw whitepaper 65 apfs internals for foren-
sic analysis. https://static.ernw.de/whitepaper/ERNW Whitepaper65
APFS-forensics signed.pdf, 2018.

[9] John Fletcher. An arithmetic checksum for serial transmissions. IEEE
transactions on Communications, 30(1):247–252, 1982.

[10] Apple Inc. Apple file system reference. https://developer.apple.com/
support/downloads/Apple-File-System-Reference.pdf, 2019.

[11] Jonathan Levin. *OS Internals, Volume II Kernel Internals. John Wiley
& Sons, 2019.

[12] Jong-Hwa Song, Se Ho Kim, Song Yi Hwang, Seung Gyu Kim, and
Sung-Jin Lee. A study on the apfs timestamps in macos. International
Journal of Engineering & Technology, 7(2.33):133–138, 2018.

[13] Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S
Fabry. A fast file system for unix. ACM Transactions on Computer
Systems (TOCS), 2(3):181–197, 1984.

[14] Brian Carrier. The sleuth kit. TSK–sleuthkit. org, 2011.
[15] Jonas Plum and Andreas Dewald. Forensic apfs file recovery. In Pro-

ceedings of the 13th International Conference on Availability, Reliability
and Security, pages 1–10, 2018.

[16] Jonas Plum and Andreas Dewald. Afro. https://github.com/cugu/afro,
2018.

[17] Kaitai Project. Kaitai struct. http://kaitai.io/, 2020.


