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Abstract

Research projects such as ENVRI-FAIR both generate and consume large amounts of
data. The use of persistent identifiers along the vision of a Global Digital Object Cloud in
naming makes managing and locating the data much more palatable. These structured and
persistent names along with the large amounts of data they represent aligns closely with the
data model of Named Data Networking (NDN), a Future Internet architecture that makes
data objects first class citizens of the network, enabling among other things, widespread use
of caching to reduce both bandwidth and latency. While the design of NDN enables content
distribution in a more efficient manner, operating such a network is still largely a manual
process, especially in regards to scaling cope with varying demand levels. This research
explores the possible ways for NDN networks adapt to elastic demand and proposes a load
balanced configuration to efficiently scale NDN nodes.

Introduction

The internet as we know it is used for many things, but as early as 2006 it was recognized that
a significant portion of traffic is used in distributing content [11]. There are many technologies
dedicated to making content distribution more efficient, from BitTorrent to Content Distribution
Networks (CDN). Along with the problem of moving data is the problem of identifying a specific
piece of data to be retrieved. URLs may appear to solve the problem but the content they point
to is often mutable. Link rot is also a serious problem. As such, projects such as the Internet
Archive use a combined URL and timestamp to uniquely identify data.

Within research communities such as ENVironmental Research Infrastructures (ENVRI) [3],
the data distribution problem is exacerbated by the large amounts of data generated by various
projects and the need to combine data from multiple sources in interdisciplinary research. Identi-
fying the data is also a problem, especially with the expectation that names can always be resolved
to a unique instance of data to aid in the reproducibility of research. Within the more tightly
knit research community (compared to the wider internet) it is possible to more or less enforce
the use of Persistent Identifiers (PID), globally unique names per instance of data, to solve the
naming problem. To achieve the vision of a Global Digital Object Cloud (DOC) [9], requires both
the adoption of a shared naming scheme and a way to resolve the names back to data. Current
implementations use centralized resolvers to redirect users to the various institutions responsible
for hosting and distributing the data.

Information Centric Networking (ICN) [1] is the broader concept of making information (data)
first class citizens of the network. The idea is to abstract away the end hosts and route directly
to data. Of the active projects under the ICN umbrella, Named Data Networking (NDN) [16] is
one implementation. It utilizes persistent, hierarchical names and cryptographically signed data
to enable efficient forwarding and in network caching in all of its routers. With a matching data
model, NDN is an ideal candidate in implementing a decentralised version of the DOC, remov-
ing the need for centralized resolvers and redirects by routing requests directly across connected
networks and returning the data directly, all while taking advantage of the in network cache.

Trial deployments of the various ICN technologies [10], including NDN [7], have identified
several concerns[15] [17]. Some, such as dynamic naming are less relevant for the research use
case due to the use of PIDs. Others, such as routing and cache placement and sharing are more
relevant. Overall, scaling has been identified as an issue as testbeds have been limited to less than
1000 users and typically with a fixed infrastructure.
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ENVRI-FAIR is the project to connect the ENVRI community to the wider European Open
Science Cloud (EOSC) [2]. In using cloud technologies, resources are typically dynamically allo-
cated, this brings with it advantages such as more efficient use of resources but also challenges as
the resources are no longer static. While manually managing such resources is certainly possible,
it is both tedious and error prone, and even more challenging if coordination is required between
multiple operators as in ENVRI-FAIR. Of the many problems users may face in operating a NDN
network in a situation such as ENVRI-FAIR, this research will specifically look at:

• Scaling the caching capacity of an individual node

• Scaling the number of nodes within a network

• Establishing connections to the network

• Routing over the established network

within cloud environments in a semi automatic manner. The remainder of this report will
consist of related work, a look into NDN design and implementation, the proposed load balancing
solution, a proof of concept implementation, validation tests, and a discussion on both the efficiency
and problems of the proposed solution.

Related Work

The ICN Research Group (ICNRG) has an Internet Draft on deployment guidelines [10], which
lists the different possible configurations and known trial deployments. Amongst the common
concerns were scalability [15] [17], as trials have been limited to less than 1000 users. Based on
NDN development progress, the reality check [8] on wide scale NDN deployment still appears to
hold true,

Multiple routing strategies have been proposed, OSPFN [13] is a modification of OSPF to
distribute NDN names over IP networks, NLSR [5] is a NDN native implementation of link state
routing, DCR [4] implements distance based routing, and CRoS-NDN [12] uses a centralised
controller to distribute routes based on global state. While they implement different routing
protocols, they all require some form of existing topology.

Named Data Networking

As the name suggests, names play a big part in NDN. They are hierarchical and human selected,
as opposed to the flat, hash based naming schemes used in other content addressed protocols.
Each request (Interest) returns a single piece of data. The data used to satisfy the request is au-
thenticated through the use of a hierarchical public key infrastructure and namespace delegations,
being valid if it is signed by an appropriate key. The other major design decision made by the
NDN project is the use of a stateful forwarding plane. All requests are held in memory until they
are resolved or time out.

NDN Forwarding Daemon (NFD) is the NDN project’s reference router. At the time of writing
this report, it was the only well documented, running router that conformed to the latest version
of the NDN specification. Written in C++14, it uses a single-threaded event-driven architec-
ture.The stateful forwarding plane is internally represented as a NameTree, a combined hashmap
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and tree data structure. It only has an in-memory implementation of its cache.Based on prelimi-
nary testing, it had issues scaling beyond 50000 concurrent in-flight requests.No further tests were
made to determine the cause of the slowdown, though other research shows it may have to do
with decoding names [14] or decoding packets [6]. While NFD supports using Ethernet, TCP,
UDP, and WebSockets as it’s underlying transport, only TCP and UDP are practical in the cloud
environment this research is interested in.

Proposed Solution

The problems considered in this research can be split into scaling a single node and scaling the
entire network. Scaling the network can itself be split into establishing the connections over which
the NDN protocol will run and propagating the available routes across the network.

Single Node Scaling

This problem has two major drivers, first is the fact that NFD’s performance degrades with a large
amount of cache entries. The second is the fact that NFD’s cache is in-memory only, which means
it is almost impossible to grow beyond the initially configured available RAM space. While it is
possible to configure the host operating system to use hard disk space as swap, thereby extending
the available memory for the cache to grow, it is clearly a suboptimal solution as it severely impacts
both cache performance and the operation of other applications, such as controller or monitoring
systems.

There are several potential solutions to this problem. The first is to simply create a new node
of the appropriate size and destroy the old node. This is problematic since it both disrupts client
connections and loses the contents of the cache. The first problem can be solved through the use
of a traffic redirector that allows for the graceful shutdown of the old node but it doesn’t solve
the cache contents problem. To solve the cache problem, the new node could be placed in front
of the old node, copying cache contents as they are requested by clients. This is however still
limited by NFD’s performance, effectively placing a low upper limit on cache size. Another idea
is to place new nodes behind the existing node(s), forming a chain, though this will suffer from
inefficient caches as content is duplicated across nodes while also increasing latency as requests
have to traverse multiple nodes. Instead the proposed solution is to place new nodes behind the
existing node side by side, all directly connected to the existing node. The existing node will
act as a load balancer distributing requests between the different nodes. This requires a stable
partitioning of requests between the nodes to ensure no duplicated content, to which one solution
is to partition the routes.

Establishing Connections

This is largely an unsolved problem for NDN running in overlay mode over IP networks. For
physical deployments of IP, it is largely a non problem as neighbouring nodes are connected to the
same broadcast domain (Ethernet). For protocols running over IP, the options are to configure IP
subnets to allow broadcast to continue to work, use an environment where multicast is supported,
use a bootstrap list and allow nodes to gossip about each other, or use a central discovery server
(which can be seen as a special case of the bootstrap list).
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Using a bootstrap list with some form of gossiping is what most fully developed decentralised
protocols use (examples: BitTorrent and IPFS). However, such algorithms are more difficult to
write and get right, compounded by the fact that they are almost always only eventually consistent.
The development of a (or modification of an existing) protocol is left for future work, instead, the
proposed solution will use a central discovery server, limiting the information shared to the presence
of a node to make a future migration to a decentralised protocol easier. Nodes will directly (or
through their cache servers) connect to all other nodes within the network, essentially forming a
fully connected mesh. This has the advantage that all requests will pass through at most 3 caches
(local load balance, local cache server, remote load balancer) before reaching a data host, this
provides a balance between the number of caches visited and the latency introduced by multiple
hops.

Route Propagation

NFD’s modular design does not enshrine any particular routing protocol, instead the intention
is for it to be able to take advantage of the latest developments in routing technology. While in
theory any routing protocol could be used here, the operation of of multiple NFD routers together
as a load balancing group presents its own challenges. First is the need to enforce a one way
data flow between load balancers, caches, and their upstream servers. Violation of this data flow
severely decrease the efficiency of the caching servers. The other major challenge is the need to
represent the load balancing group as a single node during network wide routing but have the
available route be partitioned and applied across several caching servers.

Due to time constraints, the proposed solution is have caching servers connect directly to
their upstreams to request the available routes. These routes are not further propogated back to
the local load balancer, instead relying on NFD’s Access Router strategy (Access) to probe the
caches and learn the optimal routes. Access is designed to both learn optimal routes but also
adapt to producer mobility, which is important when routes are reassigned to different caching
servers due to the addition or removal of caches. The use of Access also reduces the need for
route updates on the load balancer. For the connections between caches and their upstreams,
simplistic fully connected topology means there is no simple way of assigning route costs. Instead,
caching servers use Adaptive Smoothed RTT-based Forwarding Strategy (ASF) to forward to their
upstreams. Instead of selecting by route cost, all upstreams are periodically probed for reachability
and response times and the fastest s selected.

Prototype

Architecture

To implement the proposed solution above requires 3 components: a discovery server, a load
balancer, and a caching server. The discovery server will be a standalone piece of software.
The load balancer and caching server will be implemented as controller software to be run in
conjunction with NFD, they will communicate with other components to gather the required
information to send control signals to NFD. Figure 1 shows the flow of information between the
different components. Data takes a different path, only flowing through the different instances of
NFD as shown in Figure 2.
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Figure 1: Control Flow

Figure 2: Data Flow, responses/data flows along the reverse path of requests

Technical Choices

The prototype to implement the proposed solution and the architecture outlined above was devel-
oped against NFD version 0.7.0, the latest release at the time of writing this report. An attempt
was made to have the controller components communicate over the NDN protocol, though this
was dropped after discovering that only the C++ client libraries were either updated to use the
latest specification or implemented the nonstandard name component format used by NFD. In-
stead the controller components were implemented in Go, due to the language’s general suitability
to writing networked applications and simple deployment model, as well as the author’s famil-
iarity with the language, enabling a fast development cycle. Communication between controller
components happen over gRPC, selected for its well defined message format and support for bidi-
rectional streaming. Controller components interact with NFD through NFD’s provided command
line interface (CLI), mainly out of necessity.

Final results are packaged as Docker containers, which enjoy wide cross platform support
including native deployment options in the cloud, but also due to the need of ensuring both NFD
and the controller run together. The controller takes a single configuration option through an
environment variable (WATCHER for load balancers to specify the discovery server, and PRIMARY for
cache servers to specify the load balancer to connect to) and NFD configuration can be overriden
by mounting to the /usr/local/etc/ndn directory.

Validation Testing

As validation, a test recording request latencies during cache scaling events was run. 4 load balanc-
ing groups with attached data sources were placed in separate locations (Google Cloud Platform
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Figure 3: Roundtrip time during cache scaling events

datacenter locations: us-east1-b, us-west1-b, asia-east1-b, australia-southeast1-b). A
fifth load balancing group with a data consumer was placed in europe-west4-a. The consumer
made requests to all 4 sources with an even distribution. Starting with 0 caching servers, after
every 2000 requests a scaling event was performed: (2000, 4000: add a caching server, 6000, 8000:
remove a caching server). The load balancers were configured with a minimal cache capacity and
the caching servers each had a capacity equal to half of all unique requests.

From Figure 3 we can observe the consumer load balancing cache as the line just above 0.
The effects of the caching server are clearly visible as line between 2000 and 8000 requests at just
under a millisecond. All other requests are hitting their respective origins. This shows that the
partitioning of requests between the caching servers works, as only a non overlapping partition
would allow the combined caches to cover all requests.

Discussion

In the load balancing configuration shown above, the partitioning is not particularly efficient,
dividing entire upstream load balancing groups between the caching servers. This leads to the
possibility of hot caches, where all requests go to a single cache leaving the others unused. Finer
grained partitioning is hindered by the lack of observability on per object cache statistics, currently
to obtain that information would require implementing a caching strategy or tailing NFD’s debug
log.

The proposed solution to discovering and connecting new nodes relies on a central discovery
server. This was an unfortunate but practical choice. The design is intentionally simple to reduce
the possibility of failure but it is still a single point of failure, though an existing network should
continue to operate, its just that new nodes cannot join.

In automating the discovery and distribution of routes, the implementation sacrifices config-
urability of the network architecture, opting to simply connect everything together. A minor
modification of the current implementation should allow load balancers to talk to multiple dis-
cover servers, effectively forming multiple zones that can be joined together. While the goal is to
allow direct communications between any 2 nodes, should a connections fail, requests could still
in theory be forwarded through other nodes if an appropriate prefix is installed. One way would
be to install the root prefix / on all nodes and lean on the ASF strategy to probe and find the
fastest path.
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The proposed solution is introduces multiple components and therefore fault points. The
discovery server could fail or become unreachable, but the design is simple enough that a restart
should allow all nodes to reconnect and continue functioning. A failure of a load balancer would
effectively equal removing a node from the network, and be handled accordingly. A failure of a
caching server would also be seen as a regular removal, triggering a rebalancing of routes between
the remaining caches. With both the load balancer and the caching server there is the possibility
of the internal states between NFD and the controller component going out of sync, in this case
a restart is probably the simplest solution.

There were several issues in implementing the proof of concept. NDN is a research project
used to further refine the protocol specification. This results in updates to the protocol and
the C++ reference implementation, but not necessarily the client libraries. Additionally, despite
standardisation efforts, different libraries still have different implementations of the same concept
such as data segmentation, leading to incompatible libraries.

Conclusion

As the above has shown, running multiple instances of NFD in a load balanced configuration
can provide users with greater control over scaling while working round some of the limitations
of NFD’s implementation. While the centralised solution for discovering and connecting network
nodes certainly works, the fact that it is a centralised component is definitely a weak point. The
NDN project is primarily research focused and evolves rapidly, its implementations are modular
but not very efficient, a lot of work would be necessary to either modify or reimplement it to be
production grade and ready for widespread use in research clouds.

Future Work

Designing or adapting a decentralised gossip protocol for discovering potential neighbours and
establishing the connections between them is left as future work. So are the application of ad-
vanced routing protocols and smarter partitioning of routes between caches. Finally, it would be
interesting to see coordinated caching without an explicit load balancer, doing so would likely
require deeper integration with NFD’s caching and forwarding policies.
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