
Tunneling data over a Citrix virtual
channel

February 9, 2020

Students:
W. Bakker
12246336

N. den Otter
12911283

Assessor:
Cees de Laat

Course:
RP1

Supervisors:
Cedric van Bockhaven
Marat Nigmatullin

Abstract

Citrix is a popular brand that offers the Virtual Apps and Desktops suite. This
suite allows an organization to set up a Virtual Desktop Infrastructure (VDI). This
VDI gives users remote access to an organization’s applications. In the past Citrix
servers have proven to be a stepping stone used by attackers to enter an organization’s
network[1]. However, the toolset that an attacker could use within the VDI was limited
due to hardening of the Citrix environment.

Citrix uses virtual channels to extend a Virtual Apps and Desktop session’s capa-
bilities. This research investigates the potential of tunneling through an established
Citrix session using virtual channels, in order to bypass e.g. firewall limitations.

Tunneling through an established Citrix session is very useful for moving laterally
through a network. By moving laterally through a network it is possible to connect to
systems that are not directly connected to the internet. This means it is possible to
access the company’s internal network through an externally facing system. Because
the tunneling would happen within an established connection, security measures like
firewalls would not block these connections.

During our research, we created a custom virtual channel which was capable of exe-
cuting commands and receiving the output of these commands. By testing this virtual
channel within a Proof of Concept environment, we demonstrated that it is possible to
set up bidirectional communication through virtual channels. We also demonstrated
that it is possible to move laterally through an organization’s internal network.

page 1 of 14



Report

1 Introduction

Within a business environment, Citrix Virtual Apps and Desktops (also known as XenApp
and XenDesktop) can be used to offer employees remote access to applications or virtual
desktops. The server does the necessary computations to process user input and data, and
display the application/desktop on the client’s device.

Citrix Virtual Apps and Desktops uses ICA as protocol stack for the delivery of remote
applications and desktops. ICA is a proprietary protocol developed by Citrix.

Citrix Virtual Apps and Desktops uses virtual channels. Virtual channels are communi-
cation paths within a session and serve a single purpose like:

• Allowing a server to communicate with a client’s locally connected device through
USB or COM ports,

• Streaming audio or high quality graphics from the server to the client,

• Having bidirectional clipboard support (which makes copying and pasting text/data
from/to either side possible).

Virtual channels are still used to this day. Citrix has added the ability to use custom
channels within their software. Anyone can create a custom virtual channel and implement
it for use with a Citrix session.

In the past similar research (as described in section 2.2) has proven that it is possible
to tunnel TCP connections through protocols similar to ICA. This has shown that it is
possible to turn existing sessions from these protocols into pivot points. These pivot points
can be used to move laterally through a server’s network. This allows clients from external
networks to reach systems which are not reachable from the internet. Since connections are
initiated from a server instead of a client on an external network, firewalls would not block
these connections.

Because ICA uses virtual channels and previous research has shown that these channels
could be used to tunnel through in similar protocols, we investigate the ability to use a
virtual channel within a Citrix Virtual Apps and Desktops session to move laterally through
the network and bypass firewalls.

Our report is structured as follows: section 2 discusses related work relevant for our
research. Section 3 presents our research question. Section 4 gives background information
on the ICA protocol and virtual channels. Section 5 outlines the methodology used to answer
the research question. Section 6 presents the results. Section 7 contains our conclusion which
answers our research question. Section 8 contains a discussion. The paper concludes with
section 9 which discusses possible future work.

W. Bakker, N. den Otter page 2 of 14



Report

2 Related work

During our research we have not found previous research which targeted tunneling over the
ICA protocol stack. However, the possibility of tunneling through other (similar) protocols
has been researched. This chapter will elaborate on some of these possibilities.

2.1 Bypass restrictions

Amirante et. al [2] discussed how HTTP tunneling can circumvent restrictive firewalls,
proxies and Network Address Translation. His insight presents the importance of tunneling.
Reardon et. al [3] discussed their solution to reduce latency within Tor, in which they
propose to multiplex each TCP stream onto a single Datagram Transport Layer Security
(DTLS) connection. This allows them to use an existing DTLS connection to tunnel data
through. The proposed solution is similar to what Citrix does with it’s virtual channels. By
re-using an already established connection, security measures like Citrix NetScaler will not
interrupt the connection.

2.2 Practical implementation rdp2tcp

A practical approach is the rdp2tcp project. This project has made it possible to tunnel
TCP connections through the Remote Desktop Protocol (RDP), offered by Microsoft. RDP
allows users to access applications or virtual desktops and makes use of virtual channels,
similarly to ICA. Tunneling TCP connections through RDP is done by using the virtual
channels of the RDP protocol and using port forwarding over an existing RDP connection[4].
Tunneling over RDP makes it possible for a client outside the network to reach systems that
are otherwise not accessible from the public network. This idea of tunneling is used as a
basis for our research towards tunneling over the ICA protocol.

Note that while RDP and ICA share similarities, e.g. virtual channels, they are different
protocols. While rdp2tcp has shown that it is possible to tunnel through RDP, it does not
inherently mean that the same is possible through ICA as ICA works in a different way.

3 Research Question

With the previous research in mind, we want to investigate the possibility to tunnel over
a Citrix Virtual Apps and Desktops session using virtual channels. Furthermore, we want
to be able to bypass basic security measures like a firewall. We have defined the following
research question:

How can virtual channels, used within the Citrix Virtual Apps and Desktops suite, be
used to move laterally through a private network from an external connection?

W. Bakker, N. den Otter page 3 of 14



Report

4 Background

4.1 Independent Computing Architecture

Independent Computing Architecture (ICA) is a Citrix proprietary protocol stack, designed
for the reliable transport of data related to a Citrix environment. This protocol stack is
comprised of two transport protocols which in turn have Virtual Channels (VCs) that use
these protocols. The transport protocols are Enlightened Data Transport (EDT) and TCP,
while the VCs enable interaction with a virtual desktop environment [5]. ICA is designed
to reduce bandwidth requirements while simultaneously ensuring session reliability[6].

4.1.1 ICA transport protocol

Key functionality of TCP is it’s reliability. However, this reliability introduces extra latency.
To reduce this latency Citrix introduced EDT. EDT is a proprietary transport protocol with
the reliability property of TCP and the low latency property of UDP. This is achieved by
adding a reliability layer on top of UDP, as illustrated in figure 1. Both transport protocols
can be used to send data via VCs. At the application layer the overarching Adaptive
Transport mechanism detects if it is possible to use EDT. If an EDT based connection is
not possible the connection will fallback to TCP [7].

Figure 1: Adaptive transport contains Enlightened Data Transport and TCP [5]

4.2 Virtual Channels

4.2.1 Functionality

VCs are communication paths within an established ICA session. For a session to be usable,
Citrix loads a number of default VCs. Other VCs can be added to allow for more func-
tionality. For example, graphics are handled by the Thinwire virtual channel (VC) while
clipboard support is handled by the Clipboard VC. To support the usage of VCs the client
requires a virtual driver to be loaded and the server an application to be started. The
client-side virtual driver is usually a .DLL file which is loaded by the Citrix Receiver when
it is launched[8]. Citrix Receiver is the application used to connect to the virtual desktop.

When a client connects to a Virtual Apps and Desktops server it sends information about
the VCs it supports. The server then starts the supporting applications for each VC and
obtains the handles for each channel[9]. Figure 2 shows that each VC has one purpose. This
means that, for example, one VC takes care of visualization while another takes care of user
input.

A maximum of 32 VCs can be used within a Citrix session. Seventeen of these channels
are reserved by Citrix, which enables organizations to load fifteen custom channels. While
Citrix has seventeen VCs available for use, only four channels are mandatory to set up
a session. These are the Thinwire, LicenseHandler, ICACTL and TWI channels [9]. A
description of all VCs from Citrix can be found in Appendix A on page 14.

W. Bakker, N. den Otter page 4 of 14



Report

Figure 2: Image describing how virtual channels are managed using WinStation [9]

4.2.2 Disabling channels

It is possible for the VCs included with the Citrix software to be administratively disabled.
An administrator can decide for each VC whether a client is allowed to use that channel. It
is among other things possible to allow or deny usage of a channel based on the attributes
of the user, the location the user connects from, the client used to connect with and the
desktop that the user connects to. It is not possible to disable the VCs required for the
session to successfully set up.

We cannot confirm nor deny that the usage of custom VCs can be restricted. Citrix does
not appear to have any documentation on this and we could not find any related settings
within our Citrix environment. It would be possible to limit the usage of custom VCs by
restricting the user’s ability to load these client-side and disallowing the uploading and/or
launching of unauthorized applications on the server. Restricting the user’s ability to load
custom channels client-side could prove difficult as often an employee’s own device can be
used (which is usually not managed by the company) to connect to a Citrix environment.

4.3 Virtual Channel SDK

Citrix offers a Virtual Channel SDK (VCSDK). This SDK makes it easier to develop a
custom VC. The SDK provides the Citrix Virtual Driver Application Programming Interface
(VDAPI) which is used in conjunction with the Citrix Server API SDK (WFAPI SDK) to
create new VCs.

Bundled with this SDK are example channels which, after compiling, are ready for use
by loading them on both the server and client. These example channels are[10]:

• Ping: Records the round-trip delay time for a test packet sent over a virtual channel,

• Mix: Demonstrates a mechanism to call functions (for example, to get the time of day)
on a remote client,

• Over: Simple asynchronous application where the server must receive a response from
the client asynchronously and responds with a different packet than the one received.

W. Bakker, N. den Otter page 5 of 14



Report

When compiling a VC, two files are delivered. One file is the client-side driver in the
form of a .DLL file. This file is used by the Citrix Receiver and is loaded when the Receiver
is launched. The other file is an executable which is used by the server. This executable
takes care of opening the VC and transmitting data through the channel.

5 Method

5.1 Virtual channel implementation

To be able to tunnel data through a VC it is necessary to either manipulate the transmitted
data from a VC, alter the way an existing VC operates or create a new VC designed for
tunneling data. We decided to create a new VC for our research.

We decided to modify the Over example channel from the VCSDK. This example chan-
nel already has mechanisms in place to have the client and server respond to each other.
We would have to expand this functionality to allow us to execute commands we defined
ourselves. These commands should interact with network devices (e.g. pinging a device
or tracing the route to an IP). The server would also have to send back output from the
executed command to the client. The data that would be sent back and forth would be
transmitted only over this channel, which would demonstrate the ability to send and receive
data through a VC.

For this research we will be focusing on Windows as Operating System (OS) for both
the client- and server-side. While it is possible to create and compile VCs for Linux-based
clients, this is out of scope for this research.

5.2 Test environment

Our research is solely focused on tunneling through a Virtual Apps and Desktops session.
To test this tunneling, we set up our own test environment. Note that for the remainder of
this document we refer to Virtual Apps and Desktops as XenDesktop; this is the old name
of the Desktop part of the Virtual Apps and Desktops suite. We use this name due to the
used versions of software within the test environment (explained in section 5.2.2).

5.2.1 Environment setup

The test environment was set up on a single physical machine. The machine contained an
Intel(R) Core(TM) i7-8700 CPU @ 3.20Ghz, 16GB DDR4 memory and a 240GB SSD. The
operating system (OS) used is Windows 10, using VMware Workstation 15.5.1 as hypervisor.
Figure 3 demonstrates the test environment.

Five virtual machines (VM) are used of which two are based on Windows 2008 R2 and one
on XenServer 5.6. One Windows Server contained the Active Directory Domain Controller
role while the other contained a Citrix Controller. The XenServer VM hosts the remaining
two VMs which are Windows 7 machines. These machines functioned as a XenDesktop
server.

W. Bakker, N. den Otter page 6 of 14



Report

Figure 3: Test environment

The Active Directory Domain Controller is required for the Citrix suite to function. Cit-
rix uses Active Directory for multiple purposes, e.g. centralized authentication, computer
management and the application of policies.
The Citrix Controller allows users to log in to the virtual environment, does session manage-
ment, applies policies and does management of VM’s within the Citrix environment. Note
that the controller only assists with setting up a session; sessions within our environment
take place directly between a VM and Citrix client.
The XenServer VM contains a hypervisor which hosts the two Windows 7 VMs. These VMs
contain the Citrix Virtual Desktop Agent (VDA). These VDAs are used by Citrix to offer
users access to a desktop. The Windows 7 VMs are referenced to as a XenDesktop server
within this document.

The Citrix environment was set up using the Quick Deploy feature within XenDesktop.
This feature makes it easy to quickly set up a Proof of Concept (PoC) environment by
simplifying the installation and configuration of the Citrix environment.

A Windows 10 client was used to connect to the Citrix environment. We had adminis-
trative privileges on this client.

5.2.2 Used software

For this research we used version 5.6 of XenDesktop, which received End of Life (EOL)
status as of 17 June 2015. The reason for using this version is due to Citrix having changed
their licensing policy since November 2019. This resulted in users not being able to request
a trial license for Citrix software by themselves.

Because we could not obtain a license for newer versions of the required software, we
were forced to use XenDesktop version 5.6. To legitimately use this version we used the
built-in 30-day trial option. Since we were forced to use an old version of XenDesktop, we
were also required to use older versions of Windows as newer versions were not supported
by XenDesktop. The highest supported Windows versions are Windows Server 2008 R2 as
server OS and Windows 7 as client OS.

W. Bakker, N. den Otter page 7 of 14



Report

6 Results

6.1 Modifying provided virtual channel

We created a custom VC by modifying the example Over channel from the VCSDK. This
channel is included with the VCSDK and uses C as programming language.

The basic function of the Over channel is to have the server receive a response to a
packet from the client. When the VC is opened by launching the executable on the server,
the executable starts sending sequence numbers to the client. The client inspects these
sequence numbers, increases the sequence number by 7 whenever the received sequence
number is divisible by 10 and returns the sequence number.

6.2 Expanding the example channel Over

We modified the Over channel in the following ways to expand the existing functionality:

1. A console attached and opened when Citrix Receiver is launched,

2. The console accepts commands and arguments from the user and sends these to the
XenDesktop server,

3. The server keeps the connection alive by repeatedly polling the client for a command
to execute,

4. The server executes commands through the Windows command processor,

5. The server sends output from executed commands back to the client.

These items are explained in more detail in the following subsections.

6.2.1 Allocating and attaching a console

When launching the Citrix Receiver, our channel allocates and attaches a console. This
console is shown together with the display of the XenDesktop server. This console is used
to display output from the VC and takes input from users (see subsection 6.2.2).

6.2.2 Sending commands and arguments to the server

The client-side console accepts input from a user. Users can execute a number of predefined
commands by inputting an integer. Table 1 displays the available commands. Commands
containing brackets indicate that the user also needs to input an argument, usually an IP
or hostname.

Integer Command Description
3 pause Waits for the user to press enter to continue
4 exit Exits the application on the server
11 route print Print available IPv4 and IPv6 routes on the server
12 netstat -a Lists all currently opened IPv4 sockets
13 ping [IP] Ping an IP
14 nslookup [IP] Look up an IP using DNS
15 tracert [IP] Trace the route used to reach specified IP
16 ipconfig /registerdns Register this computer with the DNS server

Table 1: Commands available with the custom virtual channel

W. Bakker, N. den Otter page 8 of 14



Report

6.2.3 Server-client polling

The XenDesktop server polls the client every 500ms for a command to execute. This is done
by sending a sequence number of 1 to the client. This is repeated until the client returns a
different sequence number indicating a command to execute. The command is executed and
the server starts sending a sequence number of 1 again every 500ms. A sequence number
that does not match a command is ignored.

6.2.4 Executing commands through the Windows command processor

Commands can be executed through the command processor. The command processor
is comparable to the Run dialog within Windows which allows users to directly execute
commands without having to open a terminal. The program that is requested by a command
is launched directly instead of through a terminal.

6.2.5 Returning command output to the client

After having executed a command, the server will return a sequence number of 1 to the
client together with the output of the previously executed command. This output will be
shown on the client’s console.

6.3 Compiling and launching the channel

After modifying the code we compiled it which resulted in a .DLL and .EXE file. To reiterate:
the .DLL file is used client-side by the Citrix Receiver while the .EXE is launched on the
server to establish and use the VC.

We copied the .DLL file to the installation folder of Citrix Receiver and added it
to the appropriate place within the Windows registry. This placement within the reg-
istry indicates that this VC should be loaded by the Citrix Receiver. The registry key
we modified is HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Citrix\ICAClient\Engine

\Configuration\Advanced\Modules\ICA 3.0\VirtualDriverEx. We added the value
VDOVER to this key. This value is the name of the .DLL file placed in the application’s
directory.

We logged in to the Citrix environment as an unprivileged user and initiated a session.
The Citrix Receiver launched together with a console window. The console window displayed
text indicating it successfully opened the VC.

We uploaded the .EXE file to the server and launched it through the Windows terminal.
The terminal indicated it sent a sequence number of 1 and waited to receive data from the
client.

By inputting the number thirteen into the console on the client-side, we were asked for
an IP. After inputting an IP address the server started pinging the IP-address and returned
output of the command back to the client. Figure 4 shows the VC being opened on both
the client- and server-side, the ping command being executed and the output being returned
from the server.

W. Bakker, N. den Otter page 9 of 14



Report

Figure 4: Demonstrating client (left) and server (right) communication

After the server completed the ping command we were again requested to input an integer
in the client’s console. We entered number sixteen which launched the ipconfig /registerdns
command. The server executed this command and received an error with the message
’The requested operation requires elevation’. This indicates our user was not authorised to
execute this command.

7 Conclusion

Our research investigated the possibility to tunnel data over a Citrix Virtual Apps and Desk-
tops session using VCs. By researching the ICA protocol stack, we were able to successfully
set up and use a custom VC within our test environment.

We were able to successfully launch commands through the custom VC and retrieve
output from these commands. By doing this, we have shown that it is possible to reuse an
existing Citrix connection to send and receive data through. This in turn shows that it is
possible to use VCs within Citrix applications as a pivot point into a company’s internal
network.

While the VC we compiled was limited in what it could do, it has shown that it is possible
to create a custom VC that allows bi-directional communication between a Citrix server,
the server’s internal network and a client outside this network.

W. Bakker, N. den Otter page 10 of 14



Report

8 Discussion

With our results we have shown that it is possible to use an established XenDesktop version
5.6 session to tunnel data through. By creating a new VC and loading it on both the
client- and server-side, we were able to get bidirectional communication working. This in
turn allowed us to gather information from the target system and network while bypassing
security mechanisms like firewalls. This means the XenDesktop server was being used as a
stepping stone to pivot into the server’s internal network.

8.1 Modifying Windows registry

We were able to set up the VC on the server as an unprivileged user. No administrative
privileges were required to launch the executable that sets up and connects to the VC. To
set up the VC on the Windows client we were required to make registry edits in the Local
Machine hive. Modification of this hive is restricted to administrators. Depending on the
situation, setting up a custom VC might be an issue if the Citrix client can only be used
on a computer which has been hardened or when a user account with no administrative
privileges is used. In most cases it is possible to use an own device to connect remotely to
the Citrix environment; this would negate these concerns.

8.2 Network traffic from a virtual channel

Communication from the custom VC is encapsulated within the session together with all
other VCs[11], meaning the execution of commands together with returning output is done
through an established TCP connection. This makes it so the network traffic that is gen-
erated by the VC looks like legitimate network traffic from the Citrix session. This is an
interesting perspective for both a red and blue team.

Because the traffic of the custom VC appears legitimate, it will be hard to detect. If
a red team were to infect the Citrix server with Command and Control (C&C) malware,
the connection initiated by this malware would usually be blocked since it would require
opening a new TCP connection. Opening this connection would be blocked by the firewall.
By using a VC, the C&C software can make use of the existing TCP connection from the
Citrix session to communicate through.

This means that a blue team would have to use different measures to identify the traffic
originating from a Citrix server. While sniffing traffic to the Citrix server might no longer
be interesting, sniffing traffic from the Citrix server could show any suspicious behavior. An
example of suspicious behavior is the Citrix server scanning the private network for other
(potentially vulnerable) systems. This would certainly raise concerns within a blue team. A
blue team would also have to check for newly created VCs. To completely block the usage
of custom VCs, a blue team could decide to deny launching non-whitelisted executables on
the Citrix server. Since custom VCs are opened by launching an executable, completely
blocking the possibility to launch these would prevent the usage of custom VCs. The red
team would have to use a different technique to establish the virtual channel.

8.3 Execution of commands

We observed that commands are executed as the currently logged in user, meaning com-
mands requiring administrative privileges gave an access denied error. This means that any
compromised Citrix account can be used to execute commands with the custom VC; it does
not have to be an administrator.

W. Bakker, N. den Otter page 11 of 14



Report

8.4 Tunneling data

The concept of tunneling data through a Citrix session has been shown working within a
PoC. Since Citrix environments can be customized to be suited for a certain organization,
limitations and restrictions will vary for each environment. This means that custom VCs (like
the one we have demonstrated) might need adjustments to provide the same functionality
as shown in this report.

Based on our results, we have successfully demonstrated that it is possible to use VCs
as a tunnel to communicate with other network devices.

Please note that we have gathered our results from a PoC environment using old software
which is no longer supported. Our tests have been executed using direct connections without
any sort of intrusion detection- or intrusion prevention systems. While the used software
is old, the concept and implementation of VCs has remained largely the same during the
years.

9 Future work

By answering our research question, we have demonstrated a new method of communicating
with a target (network) using a VC. While we have tried to make our research as extensive
as possible, there are some areas that could be improved:

• Server-side binary injection,

• Expand code for usage of custom applications,

• Reverse engineering the ICA protocol,

• Test performance of the custom VC.

While our VC worked by executing a file which was placed on the hard drive of the
Citrix server, further research can determine whether the channel can be used through other
methods like binary injection. With binary injection the executable gets loaded directly into
memory without needing to be saved to the disk. This reduces the chances of being detected
by an anti-virus program while circumventing the restriction of launching executables.

While the VC we developed shows that it’s possible to tunnel through VCs, it by no means
is finished. While it is possible to execute commands by inputting an integer, it would be
more interesting to have the VC act as a passthrough channel or proxy for network traffic.
This would make it possible to tunnel traffic to the internal network of the Citrix server
from an own device, using the Citrix server as a gateway into the network.

So far, the ICA protocol has not yet been reverse engineered. This makes it tougher
to understand how the protocol functions and how data from VCs is treated. Reverse
engineering the protocol could give more insight into other methods to achieve the same
goal as described in this paper.

We would have liked to examine the performance that a VC can bring but were not able
to. By investigating the throughput of VCs, the usability of such channels can be shown
from both red and blue teaming perspectives. If it turns out that VCs are quite performant,
they could allow the usage of scanning tools like nmap. On the other hand, if it turns out
that VCs are only capable of providing limited throughput (e.g. barely enough for text
transfer as shown with our custom channel), the usefulness of these channels from a red
teaming perspective would be limited. Meanwhile, a blue team would have to take extra
measures to make sure VCs cannot be abused to execute malicious tasks like scanning the
network or the extraction of data.

W. Bakker, N. den Otter page 12 of 14



Report

References

[1] “Attacks on adc ramp up as citrix releases remaining patches — securityweek.com.”

[2] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano, “Ntrulo: A tunneling ar-
chitecture for multimedia conferencing over ip,” in Smart Spaces and Next Generation
Wired/Wireless Networking, pp. 460–472, Springer, 2010.

[3] J. Reardon and I. Goldberg, “Improving tor using a tcp-over-dtls tunnel.,” in USENIX
Security Symposium, pp. 119–134, 2009.

[4] V. V.E.O, “Rdp2tcp,” 2019.

[5] F. Klurfan, “Enlightened data transport,” 2017.

[6] P. Serwan, “Dive into citrix ica protocol – part1,” 2014.

[7] Citrix, “Adaptive transport,” 2019.

[8] Citrix, “Citrix ica virtual channels overview.” https://support.citrix.com/

article/CTX116890.

[9] Citrix, “Citrix ica virtual channels.” https://docs.citrix.com/en-us/

citrix-virtual-apps-desktops/technical-overview/virtual-channels.html.

[10] “Using example programs - citrix virtual channel sdk for citrix receiver for windows.”

[11] “Architecture - citrix virtual channel sdk for citrix receiver for linux 13.5.”

W. Bakker, N. den Otter page 13 of 14

https://support.citrix.com/article/CTX116890
https://support.citrix.com/article/CTX116890
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/technical-overview/virtual-channels.html
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/technical-overview/virtual-channels.html


Report

Appendices

A List of Virtual Channels

Table 2 contains a list of all Virtual Channels Citrix makes available within their Virtual
Apps and Desktops software, together with a description of their functionality:

Channel name Description
Thinwire3.0 (Required) Handles all graphics
ClientDrive Allows the server to access a local device’s disks
ClientPrinterQueue Allows the server to access a local device’s printers
ClientPrinterPort Tells the server what port a local device’s printer uses
Clipboard Supports copying/pasting of data/text to/from the server
ClientComm Allows the server to access a local device’s COM ports
ClientAudio Plays audio from the server on the local device’s speakers
LicenseHandler (Required) Manages the licensing of desktops
TWI (Required) Supports seamless configuration, making Virtual Apps

appear as if they are run locally
SmartCard Adds smartcard authentication functionality
Multimedia Allows client to render multimedia

features (audio/video) requested on the server
ICACTL (Required) Manages miscellaneous client communication
SSPI Allows the usage of security providers (for example, Kerberos)
TwainRdr Redirects TWAIN requests, used for scanners
UserExperience Records metrics from a Citrix session
Vd3d Used for desktop composition redirection (deprecated)

Table 2: Virtual Channel names and descriptions

The ’Required’ tag indicates that this Virtual Channel is necessary to set up a Citrix
session[2].

W. Bakker, N. den Otter page 14 of 14


	Introduction
	Related work
	Bypass restrictions
	Practical implementation rdp2tcp

	Research Question
	Background
	Independent Computing Architecture
	ICA transport protocol

	Virtual Channels
	Functionality
	Disabling channels

	Virtual Channel SDK

	Method
	Virtual channel implementation
	Test environment
	Environment setup
	Used software


	Results
	Modifying provided virtual channel
	Expanding the example channel Over
	Allocating and attaching a console
	Sending commands and arguments to the server
	Server-client polling
	Executing commands through the Windows command processor
	Returning command output to the client

	Compiling and launching the channel

	Conclusion
	Discussion
	Modifying Windows registry
	Network traffic from a virtual channel
	Execution of commands
	Tunneling data

	Future work
	List of Virtual Channels

