Deloitte.

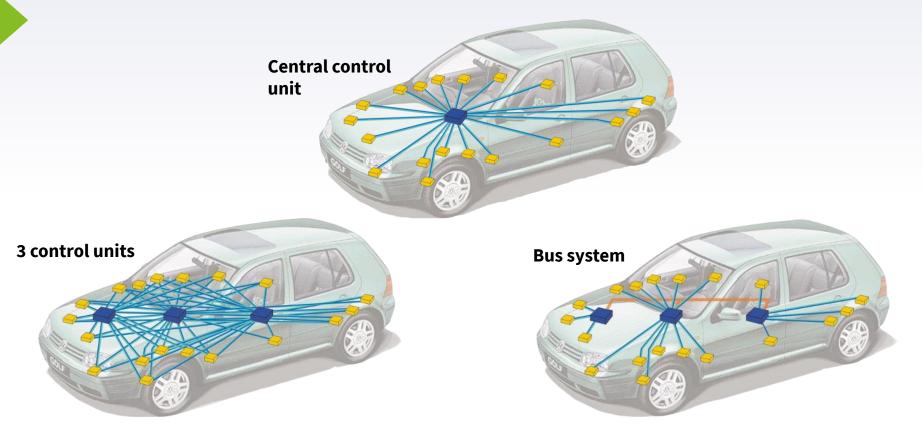
Evaluating a frequency-based anomaly detection algorithm on large-scale vehicular CAN data

Vincent Kieberl & Silke Knossen

Supervisor: Colin Schappin, Deloitte

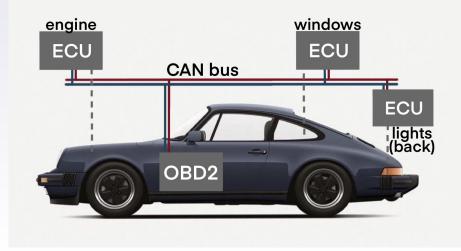
Cars then vs. cars now

Source: abroadintheyard.com



Source: slashgear.com

(Some of) a car's sensors, actuators and control modules


Transmission fluid pressure	Spark knock	0xygen sensor	r	Engine RPM	
	ne speed		Vehicle speed	d Gear	shift control module
Emergency brake assist		Fuel temperatu	re Se	eat belt tensior	ner
Mass	s air flow	(Camshaft positior	Electro	onic stability program
Rain sensor	Maniford absol			Transmission f	riction sensor
Outside air temperature			Coolant tempe	rature	
	emperature	Coolant fan			Collision sensor
Rear view camera	Airbag igniter	400	Intake a:	ir temperature	
		ABS	Trans	mission fluid t	emperature
Parking aid NOX sensor	Battery	v voltage P	arking brake mot	or hall sensor	Transmission control valve
Tire pressure monitoring	Fuel pump control	module Powe	er steering	AC refrigeran	t pressure sensor
	take manifold tun	ing valve	Cylinder glow p	lug control modu	Jle
Diesel particulate filter pressure	sensor Coolan	t circulation pu	mp Adap	tive lighting	NH3 sensor
	Exhaust gas t	emperature	Ozone rec	duction catalyst	temperature

The need for automotive networking

Context The CAN bus

- Controller Area Network (CAN)
- Interconnects Electronic Control Units (ECUs)
- Bus system, broadcast
- CAN IDs for identification
- Read out through OBD-2 port (On-Board Diagnostics)
- Only standardized in OSI layers 1 & 2

Source: Silke

Context

Hacking a car using CAN

- Miller & Valasek's Jeep hack
- Inserting, modifying, or deleting frames
- Every ECU has one specific frequency
- Frequency changes when adding/removing frames

Related work Taylor et al. 2015

- Frequency-based anomaly detection
- Inter-packet time (interval) best feature
- Only used insertion attacks

time	id	dat	ta						
56770795432	44A	63	04	FE	A3	57	01	00	6C
56770797480	440	00	51	D8	FE	7F	05	A0	0D
 56770797723	540	40	00	FF	00	FF	00	00	2F
56770799178	280	01	26	E0	0 B	26	00	19	26
56770799415	44A	63	04	00	A6	A6	00	00	F4

 $\rightarrow \Delta t = 3983 \ \mu s$

Related work

Schappin 2017

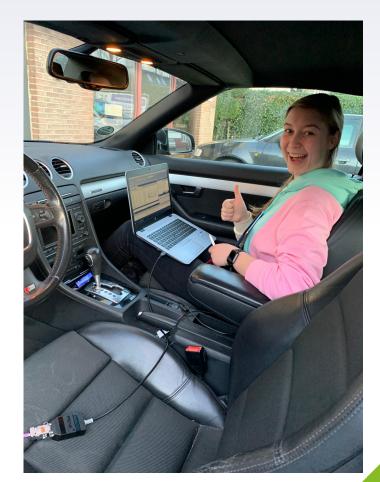
- Different types of attacks:
 - Fabrication attack: adding CAN messages
 - Suspension attack: deleting CAN messages
 - Masquerade attack: modifying CAN messages by adding them with ID and frequency of another ECU

Related work Schappin 2017

- Robust Covariance Estimator (RCE)
- Split CAN IDs into 3 groups with 3 separate classifiers: fast/medium/slow
- Data from 2011 Dodge Ram, 4.5 minutes in total, of which 30 seconds test data
- Data may not resemble real-world situations

Research question

To what extent does the amount of training data influence the performance of the model based on the Robust **Covariance Estimator (RCE) as proposed** by [1]?


[1] Schappin, 2017.

Subquestions

- How can we collect a dataset from a real vehicle that contains over 40 minutes of CAN data with microsecond accuracy?
- What are the differences in data characteristics in data from an Audi and a Ford vehicle?
- What is the influence of
 the amount of training
 data on the performance
 of the RCE on fabrication,
 suspension, and
 masquerade attacks?

Approach Data acquisition

- PCAN USB FD connected to OBD2 port
- Tried on six cars of which two were successful
 - Audi A4 2006
 - ▷ Ford Fiesta 2017
- Min. 70 minutes of data

Approach The data

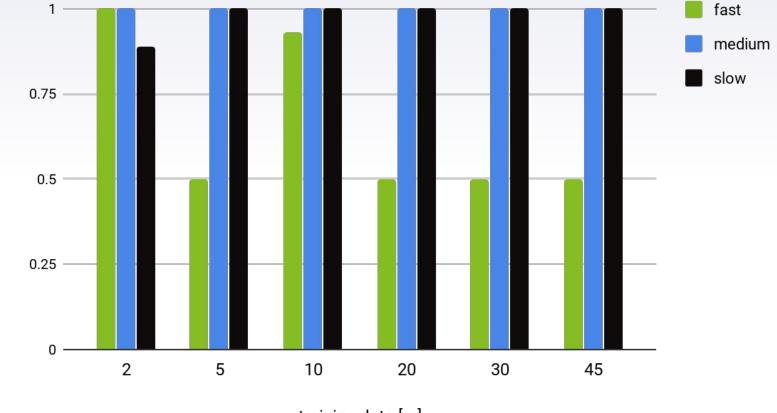
- Audi A4 (2006)
 - 31 different CAN IDs
 - Interval range 10ms 1s
 - All IDs throughout whole
 dataset

- Ford Fiesta (2017)
 - 51 different CAN IDs
 - Interval range 10ms 10s
 - Two IDs only present in the first 5 minutes

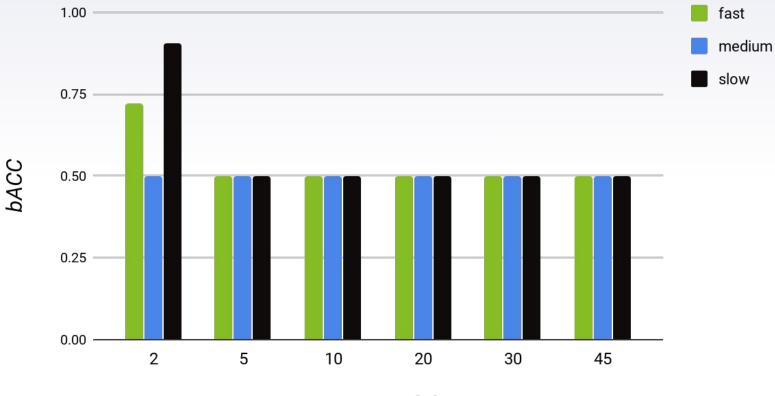
Approach The RCE algorithm

- One-class classification algorithm
- Three classifiers for different interval ranges
- Preprocessed data
 - Three matrices for the interval ranges
- Classify data per window

Data matrix for specific interval range

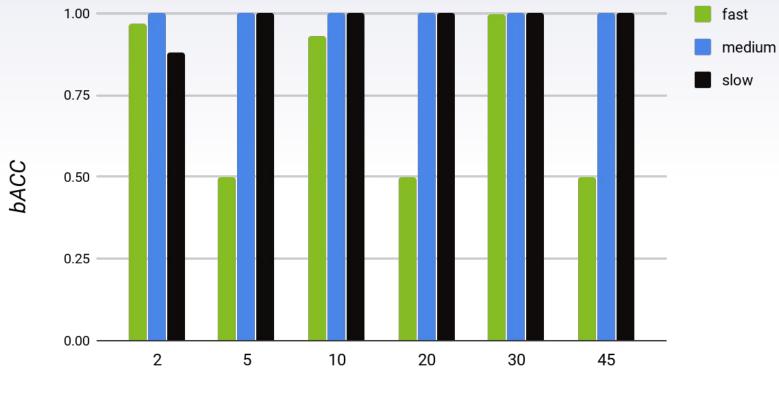

	ID 1		ID n
Window 1	mean interval	•••	mean interval
	•••	•••	•••
Window n	mean interval	•••	mean interval

Approach Experiments


- Different sizes of training sets
 - 2; 5; 10; 20; 30; 45 minutes
- Simulating attacks by altering the testsets
 - Fabrication, suspension, masquerade
- Different attack sizes per attack
 - Small, medium, and large attacks
 - ▶ 1 frame; 25 frames; ¹⁄₃ of all frames

Fabrication attack - 1 message

bACC


Masquerade attack (LS) - 1 message

Suspension attack - 1 message

Suspension attack - 2500/500/50

Conclusion

- Able to obtain CAN traffic with microseconds timestamps
- Different data for different vehicle models
- Amount of training data does not have significant influence
 - Depends on attack and CAN ID

Discussion Limitations & future work

- Not all CAN IDs tested
- Only attack information is a time frame
- Non-recurring CAN frames
- Vehicle model specific
- Algorithm does not utilize CAN data field
- Proof of concept needs to work on input stream of data