
The influence of the training set size on the performance of the
Robust Covariance Estimator as an anomaly detection algorithm on

automotive CAN data
Vincent Kieberl

University of Amsterdam
vincent.kieberl@os3.nl

Silke Knossen
University of Amsterdam

silke.knossen@os3.nl

Master Security and Network Engineering
Research Project 1

Assessor: Cees de Laat
Supervisor: Colin Schappin

Abstract—Automotive anomaly detection algorithms often rely on
CAN frame frequency analysis to determine whether frames on
the CAN bus are malicious or not. Related research has found
that the Robust Covariance Estimator has potential for use in
real-life applications for automotive anomaly detection. This and
other related research uses fairly small datasets to conduct their
research on. Since datasets collected within seconds or a few
minutes may be unable to reflect all different driving situations,
this research provides insight into the influence of the amount of
training data on the performance of a classification model based
on the Robust Covariance Estimator algorithm. Using the PCAN-
USB FD adapter, we have collected over 64 minutes of CAN data
from a 2006 Audi A4. With this data, tests were performed in
which fabrication attacks, suspension attacks and masquerade
attacks were simulated. We conclude that, with a few exceptions,
the general performance of the Robust Covariance Estimator
does not differ significantly when training on more than 5 minutes
of CAN data.

I. INTRODUCTION

It has been predicted that by 2030, 50% of the total cost
of a car will consist of costs related to electronics systems
[1]. As more and more components of vehicles are controlled
electronically, the security and potential vulnerabilities of
these systems are becoming more important. Most modern
automobiles feature an internal network called the Controller
Area Network (CAN), which is used to interconnect control
systems that are called Electronic Control Units (ECUs). These
ECUs manage subsystems such as engine, drivetrain and
transmission but also less-critical systems such as Heating,
Ventilation, and Air Conditioning (HVAC) and tire pressure
monitoring. As CAN was designed in the 1980’s by Robert
Bosch GmbH, it was meant for closed systems and therefore
lacks security features such as encryption and authentication
[2]. CAN is a bus system in which nodes are interconnected
by a twisted wire pair that makes up a shared backbone,
which makes CAN both cost-effective and easy to install and
maintain. CAN frames do not contain a field for the destination
of a frame. Instead, all frames are broadcast, and CAN nodes
use frame filtering to discard frames that are not of use to them
by checking a header field called the CAN ID. The CAN ID
uniquely identifies a frame type on the network, and also acts

as a priority number for that type of frame. A CAN frame
sent with a lower CAN ID therefore has higher priority on
the network, and another node will stop transmitting on the
bus when it senses that another node wishes to send a frame
with a lower ID [2] [3]. This is, for example, very useful
when prioritizing frames that contain information about the
engine or brakes over frames that contain information about
the indicator lights.
Newer protocols such as FlexRay, Local Interconnect Network
(LIN), Media Oriented Systems Transport (MOST) and Eth-
ernet networks are nowadays sometimes used for subsystems,
but their widespread use throughout vehicles is limited due
to higher manufacturing costs, insufficient bandwidth and
robustness, and complexity [4, 5, 6, 7, 8, 9].
Related research has focused on mitigating potential hazards
that occur from attacks performed on ECUs through the CAN
bus, for example using Intrusion Detection Systems (IDSs)
(see [10, 11, 12]). Research has also shown that for most
CAN IDs, the CAN frames occur with a certain frequency
(i.e., they occur regularly with roughly the same interval time
between frames of that ID throughout the entire dataset) [13,
14, 15]. If an attacker attempts to alter the operation of an
ECU by sending forged CAN frames or by prohibiting an ECU
to send CAN frames, the frame frequency changes. For this
reason, automotive IDSs often rely on CAN frame frequency
analysis and therefore on CAN frame timestamps as their
primary source of information to determine whether frames
on the CAN bus are malicious or not [13].
Schappin [4] has researched the performance of three
frequency-based anomaly detection algorithms on automotive
CAN data. The performance of these algorithms was measured
using 185 seconds of real automotive CAN data in total.
The Robust Covariance Estimator (RCE) provided the most
promising results on this data. Other research on frequency-
based anomaly detection algorithms for the CAN bus also
only uses fairly small datasets ranging from 43 seconds to
40 minutes ([16, 13, 11, 17, 10], see Section III-B). Large-
scale automotive CAN data acquisition to evaluate anomaly
detection algorithms comes with its challenges. Considering
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that frequency-based anomaly detection algorithms for au-
tomotive CAN data use the CAN frame frequency as their
main feature, they require timestamps to have a resolution
that reaches into microseconds accuracy [4]. Most generic
hardware that can be used to read out the CAN bus (e.g.
Arduino devices with CAN shields or generic serial interfaces)
buffers frames before sending them to the processing device,
where they are timestamped by software. This causes skewed
timestamps because the contents of the buffer may be stored in
the read-out hardware for a short period of time before being
sent to the processing device. In addition, the interval time
between frames from the read-out hardware to the processing
device may be different than the actual interval time between
two CAN frames when they were sent onto the CAN bus.
As newer vehicles contain up to 200 separate ECUs [18], the
number of CAN frames that are sent over the bus per second
can reach into the hundreds. Datasets that are collected within
seconds or a few minutes may therefore be unable to reflect
all different driving situations. This is the reason we feel it
is necessary to verify these algorithms on other and larger
amounts of data.
The question we aim to answer with this research is the
following:

To what extent does the amount of training data influence
the performance of a classification model based on the
Robust Covariance Estimator (RCE) as proposed by [4]?

To answer this main question we define the following sub-
questions:

1) How can we collect a dataset from a real car that con-
tains over 40 minutes of CAN data with microseconds
accuracy?

2) What are the characteristics of the collected CAN
datasets from different vehicles?

3) What is the influence of the amount of training data
on the performance of a classification model based on
the RCE on fabrication, suspension, and masquerade
attacks?

II. ETHICAL CONSIDERATIONS

This research involves no personal information. The CAN data
used in this research consists of ECU data which is standard
vehicle information that does not contain any personal user
information. We have only used CAN data collected from cars
for which we had permission. Our research has no impact on
the security of the cars used as no CAN data is transmitted by
us and attacks on the CAN data were simulated offline (see
Section V).

III. RELATED WORK

A. CAN anomaly detection

Taylor et al. [13] performed research on using a One-Class
Support Vector Machine (OCSVM) to detect anomalies in au-
tomotive CAN data. They collected approximately 25 minutes
of data from a Ford Explorer and used part of this data as

the training set for the OCSVM. The training set was then
divided into overlapping time windows of 1 second each,
with 0.5 seconds increments. This is because some features,
such as the mean interval time, can only be computed over a
certain range. The overlap was used to take into account slight
feature changes over time. Taylor et al. [13] concluded that the
mean interval time between two CAN frames was the only
reliable feature for detecting inserted frames. The researchers
also concluded that the optimal window size was 0.2 seconds
with 0.1 second increments. The research did not include non-
recurring frames and only evaluated the performance of the
algorithm on attacks during which frames were inserted.

B. Robust Covariance Estimator

As briefly noted in Section I, the research conducted by [4]
evaluated the performance of three different machine learn-
ing algorithms for anomaly detection: a One-Class Support
Vector Machine, Isolation Forest and the Robust Covariance
Estimator (RCE). The algorithms were tested on three different
types of attacks: fabrication attacks, suspension attacks and
masquerade attacks. These attacks are further described in
Section V. Furthermore, instead of using one time window
for all recurring CAN IDs, Schappin [4] split the CAN IDs
into three different groups (fast, medium, slow) based on the
interval time of the first two occurrences of CAN frames with
a specific ID. Research has shown that this frequency does not
change drastically over time [13, 14, 15]. This is of particular
importance because the RCE uses this frequency to detect
anomalies. The paper shows that out of the three evaluated
algorithms, the Robust Covariance Estimator produces the
most promising results. The algorithms were tested on a
real CAN dataset that is available from the University of
Tulsa (see [19]), which contains approximately two and a half
minutes of CAN data from a 2010 Dodge Ram. The algorithms
were also tested on a dataset consisting of five minutes of
data that was generated from a CAN simulator, however the
Robust Covariance Estimator was unable to produce results
on this dataset due to errors which may have been caused
by the values in this dataset being too similar. Schappin
also attempted to obtain his own dataset using a tool called
CANBus Triple, an Arduino-based device, and a tool called
CAN Badger. This was however unsuccessful due to the fact
that the tools used were unable to log CAN frames with a
timestamp resolution in microseconds. Considering that this
paper shows promising results of the RCE algorithm, we have
used this algorithm in our research to evaluate RCE-based
models trained on various amounts of training data.

C. CAN dataset sizes

Markovitz et al. [16] collected their dataset from a 2012 Ford
Focus by connecting a CAN to USB interface (Peak System
PCAN-USB) to the On-Board Diagnostics version 2 (OBD-
2) port of the vehicle, using a D-sub to OBD-2 cable. The
OBD-2 system for vehicles provides access to the status of
the various vehicle sub-systems and is mostly used for vehicle
diagnostics. It has been mandatory in the European Union
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since 2001 for all gasoline cars and since 2003 for diesel
cars [20]. The OBD-2 connector also contains two pins for
CAN access, which theoretically makes it possible to listen
in on CAN data traffic. However, it is at the manufacturer’s
discretion to decide whether to directly connect the internal
CAN bus to the OBD-2 connector in the vehicle or not.
Some car models feature a CAN gateway or firewall that is
located between the ODB-2 CAN pins and the internal CAN
network [21]. Using Peak System’s PCAN-USB interface, [16]
obtained 19 datasets, each consisting of 43 seconds of CAN
data. The different datasets used consist of a total of eight
different scenarios, such as turning the engine on and off and
the operation of lights. In [11], short datasets in the range
from 50 to 100 seconds are used. This data was collected by
connecting an Arduino board to the OBD-2 port. Olufowobi
et al. [17] obtained approximately 18 minutes of CAN data
from a real vehicle, of which 40% was used to train their
algorithm, and 60% was used as the test set. The largest dataset
found is the dataset of around 40 minutes used by [10]. This
was collected using an Arduino and Respberry Pi connected
to the OBD-2 port of an anonymous vehicle. None of the
publicly available CAN datasets that we found contained over
40 minutes of data, as well as timestamps for each CAN frame
in microseconds accuracy. A publicly available dataset with
these two requirements could be an addition for this field of
research. To obtain such a dataset and use it in our research
we inspected the previously described methods for collecting
CAN data.

IV. METHODOLOGY

A. Data acquisition

In this research we have used Peak System’s PCAN-USB
FD interface [22] to collect CAN data. According to the
manufacturer, the device is able to log CAN timestamps with 1
µs accuracy. A similar device used by [16] showed to deliver
usable results, which led us to believe that the PCAN-USB
FD had the most potential for successful large-scale CAN
data acquisition with microseconds timestamp resolution. We
connected this interface to the OBD-2 port of a vehicle using
a D-sub to OBD-2 cable. To log the data we used the PCAN-
Explorer software [22] running on a laptop connected to the
PCAN-USB FD. Using this setup we tested six vehicle models
to check whether it was possible to log CAN frames: a 2006
Volkswagen Lupo, a 1998 Audi A3, a 2006 Audi A4, a 2017
Volkswagen Golf, a 2018 Volkswagen Golf, and a 2017 Ford
Fiesta. The 2006 Volkswagen Lupo and the 1998 Audi A3
did not show any data when the PCAN-USB FD interface
was connected to the OBD-2 port. This may imply that the
CAN bus is not accessible over the OBD-2 port in these
vehicles. For the 2017 and 2018 Volkswagen Golf, the data
logs only contained one CAN frame with ID 0x17F00010
repeating every 500 ms. It may be that these vehicles feature
a CAN gateway that is connected to the CAN pins of the
OBD-2 port, which may transmit useful information when a
request frame is sent. This is known as an OBD-2 Parameter
ID, standardized in Society of Automotive Engineers (SAE)

standard J1979 [23] [24]. We did not, however, verify this as
our research requires raw CAN data from the internal CAN bus
itself, and because we did not want to affect the operation of
the vehicle by transmitting frames on the CAN bus ourselves.
We therefore concluded that these cars were not usable for our
research. From the 2006 Audi A4 and 2017 Ford Fiesta we
were able to log meaningful CAN frames. For both models,
we logged CAN datasets of approximately 70 minutes. The
characteristics of these datasets are outlined in the next section.

B. Data characteristics

The Audi dataset that we logged ourselves contained
4,705,115 CAN frames in total from 31 unique CAN IDs
from a log duration of 3887.01592 seconds (approximately
64.7 minutes). The mean CAN frames per second therefore
amounts to 1210.470 CAN frames per second. The mean
frequency of the CAN IDs throughout the dataset ranged from
10.063 milliseconds (CAN ID 0x540) to 1.009 second (CAN
ID 0x580). All CAN IDs occurred regularly throughout the
entire dataset.
The Ford dataset contained 8,935,169 CAN frames in total
from 54 unique CAN IDs from a log duration of 4342.73331
seconds (approximately 72.4 minutes). The mean CAN frames
per second for this dataset is therefore approximately 70%
higher than the Audi with 2057.499 CAN frames per second. A
reason for this could be that the Ford Fiesta is a newer vehicle
and therefore contains more ECUs that are connected to the
CAN bus. These ECUs may send a larger variety information
over the bus and will therefore require more CAN IDs to
distinguish between various types of information.
The dataset contained two CAN IDs (0x728, 0x720) that both
occurred 257 times throughout the dataset in an irregular
pattern. Two CAN IDs (0x72F, 0x727) occurred regularly but
had a mean interval time between frames of 433.366 seconds.
Two other CAN IDs (0x72F, 0x727) also occurred regularly
but both had a mean interval time of 205.308 seconds. The
mean frequency of the other CAN IDs (the ones that occurred
regularly and had a higher frequency than the previously
mentioned CAN IDs) had a mean frequency range of 9.561
milliseconds (CAN ID 0x240) to 16.702 seconds (CAN ID
0x728).
Both datasets were recorded while driving in city and mo-
torway settings at various speeds applicable to those driving
conditions (max. 135 km/h). All car features were used as
they would be used under normal circumstances (e.g. electric
windows, indicators, etc.).
Upon inspection of the Ford dataset, we decided not to use
the Ford dataset for our experiments. This is because our
algorithm requires CAN frames to be sent out regularly, i.e. at
approximately the same interval time throughout the dataset.

C. Robust Covariance Estimator (RCE)

The RCE algorithm evaluated by [4] is an one-class classi-
fication algorithm. With this type of algorithm, a classifier
constructs a model describing the behavior in the environment
where the data is obtained from. In our research, the classifier
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is trained on real, collected CAN data from a 2006 Audi A4.
We are unable to guarantee the car is not hacked before or
during the data collection. However, since the probability of
this specific vehicle being hacked at that particular time is
very small, we assume that the data is collected in a non-
attack environment. We assume training a classifier on this
data results in a model for the classification of CAN data
in a non-attack environment. If the model decides that the
monitored data does not belong to this class, it is an anomaly
which means an attack on the car would be occurring at that
time.
Rousseeuw and Driessen [25] devised the Robust Covariance
Estimator which works by fitting a robust covariance estimate
to the training data, which can be seen as an estimation of the
data distribution. When monitoring new data, it calculates the
Mahalanobis distance to decide if the data is normal behavior,
or an anomaly. Given the estimation of the data shape, the
Mahalanobis distance is the distance between an observation
x and the mean of the training data. The higher the distance,
the greater the chance an observation is an anomaly. It can be
calculated using the following formula:

DM (x) =
√
(x− µ)′S−1(x− µ)

In this formula the µ is the mean and S is the covariance
matrix of the distribution.

D. Data preprocessing

Our approach concerning the division of CAN IDs into three
categories has been the same as used by [4]. We divided the
CAN IDs into three different bins based on their mean interval
time computed over the first two occurrences. CAN IDs with
a mean interval time µt ≤ 50 ms were categorized as fast IDs.
Similarly, CAN IDs with 50 < µt ≤ 250 ms were grouped
as medium IDs. Lastly, CAN IDs with µt > 250 ms were
classed as slow IDs. As proposed by [4], the window sizes
and window offsets were different for each ID type. We have
used a window size of 0.2 seconds for fast IDs, 0.5 seconds
for medium IDs, and a window size of 8 seconds for slow
IDs. The window offset was defined as half the window size
in all cases.
The RCE algorithm used by [4] only analyses the mean
interval time per CAN ID and window. Considering that our
algorithm requires a feature matrix as input, the data we have
acquired needed preprocessing before it could be used by the
algorithm. The input for the algorithm is a matrix containing
one feature vector for each window in the data set. Each
feature in the vector is the mean interval time for frames with
the same CAN ID. A window containing three different CAN
IDs would have a feature vector as shown below.

FVwindown
=

µID1

µID2

µID3



V. EXPERIMENTS

To train the model we divided the 2006 Audi A4 CAN dataset
we acquired into train and test sets. To be able the measure the
influence of the amount of training data, we tested classifiers
trained on different training set sizes: 2, 5, 10, 20, 30, and
45 minutes of CAN data. For each model three classifiers
were trained, one for each ID type. Considering that the
algorithm proposed by [4] used classifiers that were trained
on approximately two minutes of CAN data, we have also
chosen to start testing on this amount of training data to see
if the increase has influence on the performance of the RCE.

A. Simulating Attacks

To measure the performance of the RCE we have simulated
twelve different attacks by altering the test set. Each attack
was performed with one CAN ID from the fast, medium,
and slow ID types. For each attack, the same three CAN IDs
were used, which were chosen at random before simulating the
attacks. Considering an adversary wishes to manipulate vehicle
functions, this can be achieved by either injecting a frame with
a spoofed ID from a compromised ECU, or suspending a frame
transmission of a compromised ECU.
From this perspective, [14] created the so-called adversary
model containing three types of attacks: fabrication, sus-
pension and masquerade attacks. Using Python scripts, we
simulated these attacks based on this adversary model. In all
attacks, we assume an adversary has already compromised an
ECU and we assume that there are no other ECUs in the
system that send out frames with the CAN ID that we use
to simulate our attacks. For each type of attack we created
different attack sizes: one frame, 25 frames, and depending
on the CAN ID type 2500 (fast), 500 (medium), or 50 (slow)
frames. The number of frames of the largest attacks is roughly
a third of all the frames for the specific ID type in the test
set. Logically, attacks on one frame will have a significantly
lower impact on the mean interval time than attacks on more
frames. We deem attacks on more frames to be more realistic.
For example, let us assume that an attacker wishes to execute
an attack in which frames with ID 0x540 are altered. As noted
in Section IV-A, the frequency of CAN ID 0x540 is around 10
ms. If the attack has a duration of one second, this suggests
that around 100 frames are tampered with.
1) Fabrication attack: In a fabrication attack, the objective
is to override a legitimate frame by fabricating a new CAN
frame with a spoofed ID and forged data and insert this frame
onto the CAN bus [14]. This attack frame would either occur
before or after a legitimate CAN frame with the same ID in a
CAN data log. We have chosen to only simulate a fabrication
attack in which a frame is inserted before a legitimate frame
with the same ID. To simulate this type of attack on one frame,
we inserted a frame 200 µs before the frame with the same
CAN ID. In [4], the value of 200 µs was also used for this
attack, and the algorithm was able to detect it. Therefore, we
have chosen to also use this value. In a fabrication attack,
the attack frame is usually sent with a higher frequency than
the legitimate frames containing this ID [14]. To simulate a
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fabrication attack of larger size, we added multiple frames with
a frequency that is ten times higher than the frequency of the
original frame.
2) Suspension attack: The objective of a suspension attack is,
for example, preventing the delivery of information to other
ECUs [14]. To simulate this type of attack on one frame, we
simply removed one frame from the test set. For the larger
attack sizes, we removed the specific amount of frames in
sequence.
3) Masquerade attack: In a masquerade attack, two ECUs
are compromised. However, the objective is that one ECU is
used to mask the fact that the other ECU is compromised.
To perform an attack on a CAN frame with ID x that is sent
from ECU A during normal operation, ECU B first observes
the frames with CAN ID x sent by ECU A to determine the
frame frequency. After a certain time t, the attacker stops ECU
A from sending frames and starts sending frames from ECU
B with ID x at the same frequency that ECU A would send
frames with ID x [14]. It might seem that the frame frequency
does not change in this attack, but one specific factor has to
be taken into consideration. All ECUs have an internal clock
that accumulates a clock skew over time as CAN does not
enforce any clock synchronization between nodes [14]. This
effectively means that when a CAN frame is sent from a
legitimate ECU periodically, the frame frequency will slowly
change in a manner that is characteristic for that particular
ECU [14]. When a frame is suddenly sent from another ECU
(in this case, ECU B instead of ECU A), that other ECU
has a different clock skew and thus a frame frequency that,
in time, will slightly vary from the frame frequency of the
original ECU. [14] has concluded that it is possible to detect
this, and with that, to detect masquerade attacks effectively,
whereas traditional automotive IDSs are unable to. To simulate
masquerade attacks, we divided the masquerade attack into
two type of attacks for which the clock skew is different. Since
[14] found that the clock skew is a value between 30 µs s−1

and 460 µs s−1, we used the maximum and minimum clock
skew value as the relative clock skew for our two masquerade
attack types. When both attacks are detected correctly, we
assume the clock skew values in between the maximum and
minimum will also be detected correctly. To simulate the
masquerade attacks of one frame, we changed the timestamps
of one frame by adding the relative clock skew value. For
the larger attack sizes, we added the relative clock skew value
accumulatively to the original timestamp of the frame. In other
words, for the second frame we add the relative clock skew
value twice, for the third frame thrice, and so on.

B. Algorithm Evaluation

To evalute the models in our research, we have used the
balanced accuracy (bACC) as the main metric. The balanced
accuracy is defined as

bACC = (
TP

P
+
TN

N
)÷ 2

where TP is the number of true positives returned, P is the
total number of true positives, TN is the number of true
negatives returned, and N is the total number of true negatives
in the dataset. Thus, the balanced accuracy is a weighted
value of the average accuracy obtained on either class [26].
This means that if a classifier has equal performance on both
classes, the balanced accuracy will effectively reduce to the
conventional accuracy. However, if the conventional accuracy
on one class is only high because the classifier classifies every
sample as belonging to that class, the balanced accuracy will
even this out with the misclassification of all samples that do
not belong to the class, evening out to a random guess. Note
that this metric also takes into account the False Negative Rate
(FNR) and the False Positive Rate (FPR), seeing that these are
complements:

FPR = 1− TNR

and

FNR = 1− TPR

VI. RESULTS

The results of the experiments described in Section V are
shown in Figure 1. These diagrams contain the balanced
accuracy as metric for each attack type and size performed
on three CAN ID types. For an overview of all results,
including the true positives and negatives and false positives
and negatives, see table I in the Appendix.

A. Medium ID type

During all attacks, the amount of training data did not have
any influence on the balanced accuracy for the medium ID
type (see fig. 1).

B. Slow ID type

For the slow ID type, the results show the following. For all
sizes of the fabrication attacks (figs. 1a to 1c) the balanced
accuracy is optimal when the classifiers are trained on five
or more minutes of data. The increase in balanced accuracy
for the fabrication attack on one frame is significant and
results in perfect classification (i.e., bACC = 1). However,
the increase on larger attacks is negligible and still produces
poor classification.
For all sizes of suspension attacks (figs. 1d to 1f), the balanced
accuracy is also highest when the classifiers are trained on five
or more minutes of data, with one exception. In the suspension
attack with 25 frames (fig. 1e), the balanced accuracy is lower
when training on 45 minutes of data than training on 5, 10, 20,
or 30 minutes. This may be the result of overfitting. Overfitting
is the phenomenon in which a model corresponds too closely
to training data and is therefore unable to generalize accurately
to new observations [27]. In all situations except for this one,
the models that are trained on 5 or more minutes of data are
able to classify all data perfectly.
For the masquerade attacks with a large relative clock skew,
the balanced accuracy is decreased when training on more
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Results of our experiments for the different attacks.
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(g) (h)

(i) (j)

(k) (l)

Fig. 1: Results of our experiments for the different attacks (continued).
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than 2 minutes of data for an attack of one frame (fig. 1j).
For the attacks on more frames (figs. 1k and 1l), the results
are inconclusive. The optimal amount of training data for the
attack on 25 frames is 5 or 45 minutes. The optimal amount
of training data for the attack on 50 frames is 2 minutes. In
both cases the balanced accuracy is approximately 0.5, which
means the algorithm performs just as well as a random guess
(see Section V-A3).
Finally, for the masquerade attack with a small relative clock
skew, the balanced accuracy is at best when training on 2
minutes of data for both an attack of one and 25 frames
(figs. 1g and 1h). For the attack on 50 frames (fig. 1i) the
performance is at best when training on equal or more than 5
minutes of data, however the increase is negligible.

C. Fast ID type

For the fast ID type, we see the following results. For a fabrica-
tion attack on one frame (fig. 1a) the results are inconclusive,
with the balanced accuracy at best when training on 2 minutes
of data. For an attack on 25 frames (fig. 1b), the results are
also inconclusive with the best performance on 30 minutes of
training data. The attack of 2500 frames (fig. 1c) result in a
balanced accuracy of approximately 0.5 for all different sizes
of training data. Only the performance of the model trained
on 2 minutes of data classifies all data when the attack of 1
frame is tested perfectly.
For the suspension attacks, the classifier trained on 5 minutes
of data produces the highest balanced accuracy for the attack
on one frame (fig. 1d). For the attacks of 25 and 2500 frames
(figs. 1e and 1f), we see inconclusive results with 30 minutes
as optimal training data.
Finally, for both the masquerade attacks with a large and small
relative clock skew on one frame (figs. 1g and 1j), the balanced
accuracy is decreased the models have been trained on more
than 5 minutes of data. For both attack types on 25 and 2500
frames (figs. 1h, 1i, 1k and 1l), the performance is increased
when training on more than 5 minutes of data. All results of
the masquerade attacks show a balanced accuracy around 0.5
which is considered poor classification since it is as poor as
gambling.

VII. DISCUSSION

By evaluating our results we see the amount of training data
does not have any effect on any attacks using CAN ID 0x572,
which is a medium ID type. For attacks using a different CAN
ID type, it depends on the attack type and CAN ID used to
determine whether the influence is beneficial or not. When
evaluating the performance of various amounts of training data
for the fast ID type, we occasionally see inconclusive results.
We have seen that some attacks can be perfectly classified
(i.e., the bACC = 1 for some experiments). Assuming that this
accuracy remains identical when datasets from other vehicles
are used, these classifiers could prove valuable to detect these
attacks in real-life applications. However, it is to be noted
that for other tests with the same classifiers, the balanced
accuracy is high (e.g., 0.888), and in these tests all positives

(i.e., attack windows) are detected correctly, but there are
also negatives that are being detected as positives (i.e., false
positives). In a real-life application, the false positives may
trigger a warning frame to the driver of a vehicle. Intrusion
detection systems require an extremely low false alarm rate,
i.e. the number of false positives must be close to zero.
For example, let us assume that in some system, one false
positive window is classified as an attack window for every
10,000 windows, and the window size is 0.2 seconds. This
means that one false positive is classified roughly every 33
minutes. Users of the system will then quickly learn to ignore
the warning frames generated by the system, even though
the false positive rate is 1 out of 10,000. Hence, a high
balanced accuracy does not directly result in a viable real-life
application.

There are some limitations to the methodology used in this
research. First of all, in this research only three CAN IDs
(one fast, one medium, and one slow ID) are used to simulate
different attacks. This was done to ensure that the results
for the different attacks could be compared as the CAN ID
used would not be a variable in the experiments. However, a
practical implementation of the RCE algorithm should be able
to detect attacks on all possible CAN IDs. Our research can
not evaluate this explicitly.
Secondly, this algorithm cannot provide any more information
about the attack other than a time frame in which the attack is
happening, since the output is a window and its classification.
It could be useful to have more information about the attack,
for example the CAN ID of the attack frame, or the type of
attack. More specific information may be valuable in deter-
mining the extent and severity of an attack, and appropriate
countermeasures that may be taken to limit the damage caused
by an attack. This may be achieved by training a multi-class
machine learning algorithm on specific types of attacks, that
is then able to output an attack classification.
Furthermore, our algorithm is not able to detect attacks on non-
recurring CAN frames because a mean interval time cannot
be computed for these frames. This may be solved by using a
separate, different classifier for frames that are non-recurring.
Features for that classifier may include the CAN data field.
Since the algorithm divides the CAN IDs into three separate
categories, boundaries for these categories need to be defined
beforehand. Since we have discovered that the interval time
ranges for CAN data in an 2006 Audi A4 and 2017 Ford
Fiesta are different, this implies that the categories must be
determined for each model of vehicle individually. A practical
implementation of the algorithm may adopt an approach in
which an exploration phase is used in which vehicle-specific
data such as the number of CAN IDs, their recurrence and their
mean time intervals is collected before selecting appropriate
bounds for the categories.
Finally, this algorithm does not utilize the data field inside
a CAN frame when classifying a frame as an anomaly. This
means attacks will not be detected if an attacker is able to
compromise an ECU and send out frames without altering the
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frequency of those frames. To successfully execute such an
attack, the attacker must also take the different clock skews
into account.

VIII. CONCLUSION

As modern cars feature more interconnected, electronically
controlled systems, the potential safety hazards that arise
from automotive attacks have become more important as well.
Automotive intrusion detection systems can play a significant
part in limiting the damage and harm that is caused by attacks
on cars if they are able to accurate detect attacks in an early
stage.
Our research aimed to evaluate the influence of the amount
of training data on the performance of the RCE algorithm
when used for automotive CAN anomaly detection. We have
researched the possibility of collecting real automotive CAN
data with timestamps in microsecond accuracy using the
PCAN-USB FD connector, which has proven to be successful
for a 2006 Audi A4 and a 2017 Ford Fiesta. Analysis of
the characteristics of these collected datasets showed that
the data characteristics between both models differ in the
number of distinct CAN IDs and the mean time intervals
of frames with those IDs. We have performed tests in which
fabrication attacks, suspension attacks and masquerade attacks
were simulated using the dataset collected from the Audi
vehicle. The results show that for medium type IDs, the
amount of training data ranging from 2 to 45 minutes of
CAN data has no effect on the balanced accuracy of the
RCE. For attacks on other ID types, the performance differs
between types of attacks. With a few exceptions, the general
performance of the RCE does not differ significantly when
training on more than 5 minutes of training data.

IX. FUTURE WORK

For this algorithm to be suitable for real-life applications, it
requires more research to improve the detection of different
attack types. Further research could look into the possibilities
to improve the algorithm by training more classifiers. This
could help each classifier focus more on a smaller interval
range between frames with the same CAN ID, and therefore
detecting anomalies with an higher accuracy. Turning this
algorithm into a proof-of-concept, it needs to accept an input
stream of data from the CAN bus instead of reading it from a
file. Future research could investigate in possible methods to
do so.
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APPENDIX

TABLE I: The raw results of our experiments.

ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

2 fabrication 1 fast 1193 1199 2 2 1197 0 0 1.00000

5 fabrication 1 fast 2981 1199 2 0 1197 0 2 0.50000

10 fabrication 1 fast 5961 1199 2 2 1030 167 0 0.93024

20 fabrication 1 fast 11922 1199 2 0 1197 0 2 0.50000

30 fabrication 1 fast 17882 1199 2 0 1197 0 2 0.50000

45 fabrication 1 fast 26823 1199 2 0 1197 0 2 0.50000

2 fabrication 1 medium 238 239 2 2 237 0 0 1.00000

5 fabrication 1 medium 596 239 2 2 237 0 0 1.00000

10 fabrication 1 medium 1192 239 2 2 237 0 0 1.00000

20 fabrication 1 medium 2384 239 2 2 237 0 0 1.00000

30 fabrication 1 medium 3576 239 2 2 237 0 0 1.00000

45 fabrication 1 medium 5364 239 2 2 237 0 0 1.00000

2 fabrication 1 slow 29 29 2 2 21 6 0 0.88889

5 fabrication 1 slow 74 29 2 2 27 0 0 1.00000

10 fabrication 1 slow 149 29 2 2 27 0 0 1.00000

20 fabrication 1 slow 298 29 2 2 27 0 0 1.00000

30 fabrication 1 slow 447 29 2 2 27 0 0 1.00000

45 fabrication 1 slow 670 29 2 2 27 0 0 1.00000

2 fabrication 25 fast 1193 1199 4 1 1108 87 3 0.58860

5 fabrication 25 fast 2981 1199 4 0 1195 0 4 0.50000

10 fabrication 25 fast 5961 1199 4 1 904 291 3 0.50324

20 fabrication 25 fast 11922 1199 4 0 1195 0 4 0.50000

30 fabrication 25 fast 17882 1199 4 1 1195 0 3 0.62500

45 fabrication 25 fast 26823 1199 4 0 1195 0 4 0.50000

2 fabrication 25 medium 238 239 4 1 234 1 3 0.62287

5 fabrication 25 medium 596 239 4 1 234 1 3 0.62287

10 fabrication 25 medium 1192 239 4 1 234 1 3 0.62287

20 fabrication 25 medium 2384 239 4 1 234 1 3 0.62287

30 fabrication 25 medium 3576 239 4 1 234 1 3 0.62287

45 fabrication 25 medium 5364 239 4 1 234 1 3 0.62287

2 fabrication 25 slow 29 29 5 1 17 7 4 0.45417

5 fabrication 25 slow 74 29 5 0 22 2 5 0.45833

10 fabrication 25 slow 149 29 5 0 22 2 5 0.45833

20 fabrication 25 slow 298 29 5 0 22 2 5 0.45833

30 fabrication 25 slow 447 29 5 0 22 2 5 0.45833
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Table I continued from previous page
ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

45 fabrication 25 slow 670 29 5 0 22 2 5 0.45833

2 fabrication 2500 fast 1193 1199 501 1 695 3 500 0.49885

5 fabrication 2500 fast 2981 1199 500 0 698 0 500 0.50000

10 fabrication 2500 fast 5961 1199 501 501 0 698 0 0.50000

20 fabrication 2500 fast 11922 1199 501 0 698 0 501 0.50000

30 fabrication 2500 fast 17882 1199 500 1 698 0 500 0.50100

45 fabrication 2500 fast 26823 1199 500 0 699 0 500 0.50000

2 fabrication 500 medium 238 239 99 1 139 1 98 0.50148

5 fabrication 500 medium 596 239 99 1 139 1 98 0.50148

10 fabrication 500 medium 1192 239 99 1 139 1 98 0.50148

20 fabrication 500 medium 2384 239 99 1 139 1 98 0.50148

30 fabrication 500 medium 3576 239 99 1 139 1 98 0.50148

45 fabrication 500 medium 5364 239 99 1 139 1 98 0.50148

2 fabrication 50 slow 29 29 11 2 12 6 9 0.42424

5 fabrication 50 slow 74 29 11 0 16 2 11 0.44444

10 fabrication 50 slow 149 29 11 0 16 2 11 0.44444

20 fabrication 50 slow 298 29 11 0 16 2 11 0.44444

30 fabrication 50 slow 447 29 11 0 16 2 11 0.44444

45 fabrication 50 slow 670 29 11 0 16 2 11 0.44444

2 suspension 1 fast 1193 1199 2 1 1192 5 1 0.74791

5 suspension 1 fast 2981 1199 2 1 1197 0 1 0.75000

10 suspension 1 fast 5961 1199 2 2 0 1197 0 0.50000

20 suspension 1 fast 11922 1199 2 0 1197 0 2 0.50000

30 suspension 1 fast 17882 1199 2 0 1197 0 2 0.50000

45 suspension 1 fast 26823 1199 2 0 1197 0 2 0.50000

2 suspension 1 medium 238 239 2 0 237 0 2 0.50000

5 suspension 1 medium 596 239 2 0 237 0 2 0.50000

10 suspension 1 medium 1192 239 2 0 237 0 2 0.50000

20 suspension 1 medium 2384 239 2 0 237 0 2 0.50000

30 suspension 1 medium 3576 239 2 0 237 0 2 0.50000

45 suspension 1 medium 5364 239 2 0 237 0 2 0.50000

2 suspension 1 slow 29 29 2 2 21 6 0 0.88889

5 suspension 1 slow 74 29 2 2 27 0 0 1.00000

10 suspension 1 slow 149 29 2 2 27 0 0 1.00000

20 suspension 1 slow 298 29 2 2 27 0 0 1.00000

30 suspension 1 slow 447 29 2 2 27 0 0 1.00000

45 suspension 1 slow 670 29 2 2 27 0 0 1.00000
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Table I continued from previous page
ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

2 suspension 25 fast 1193 1199 4 4 1168 27 0 0.98870

5 suspension 25 fast 2981 1199 4 0 1195 0 4 0.50000

10 suspension 25 fast 5961 1199 4 4 918 277 0 0.88410

20 suspension 25 fast 11922 1199 4 0 1195 0 4 0.50000

30 suspension 25 fast 17882 1199 4 4 1195 0 0 1.00000

45 suspension 25 fast 26823 1199 4 0 1195 0 4 0.50000

2 suspension 25 medium 238 239 4 4 235 0 0 1.00000

5 suspension 25 medium 596 239 4 4 235 0 0 1.00000

10 suspension 25 medium 1192 239 4 4 235 0 0 1.00000

20 suspension 25 medium 2384 239 4 4 235 0 0 1.00000

30 suspension 25 medium 3576 239 4 4 235 0 0 1.00000

45 suspension 25 medium 5364 239 4 4 235 0 0 1.00000

2 suspension 25 slow 29 29 5 5 18 6 0 0.87500

5 suspension 25 slow 74 29 5 5 24 0 0 1.00000

10 suspension 25 slow 149 29 5 5 24 0 0 1.00000

20 suspension 25 slow 298 29 5 5 24 0 0 1.00000

30 suspension 25 slow 447 29 5 5 24 0 0 1.00000

45 suspension 25 slow 670 29 5 5 23 1 0 0.97917

2 suspension 2500 fast 1193 1199 501 500 653 45 1 0.96677

5 suspension 2500 fast 2981 1199 501 0 698 0 501 0.50000

10 suspension 2500 fast 5961 1199 500 500 600 99 0 0.92918

20 suspension 2500 fast 11922 1199 500 0 699 0 500 0.50000

30 suspension 2500 fast 17882 1199 501 500 698 0 1 0.99900

45 suspension 2500 fast 26823 1199 500 0 699 0 500 0.50000

2 suspension 500 medium 238 239 99 99 140 0 0 1.00000

5 suspension 500 medium 596 239 99 99 140 0 0 1.00000

10 suspension 500 medium 1192 239 99 99 140 0 0 1.00000

20 suspension 500 medium 2384 239 99 99 140 0 0 1.00000

30 suspension 500 medium 3576 239 99 99 140 0 0 1.00000

45 suspension 500 medium 5364 239 99 99 140 0 0 1.00000

2 suspension 50 slow 29 29 12 12 13 4 0 0.88235

5 suspension 50 slow 74 29 12 12 17 0 0 1.00000

10 suspension 50 slow 149 29 12 12 17 0 0 1.00000

20 suspension 50 slow 298 29 12 12 17 0 0 1.00000

30 suspension 50 slow 447 29 12 12 17 0 0 1.00000

45 suspension 50 slow 670 29 12 12 17 0 0 1.00000
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Table I continued from previous page
ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

2 masq - ss1 1 fast 1193 1199 2 1 1155 42 1 0.73246

5 masq - ss 1 fast 2981 1199 2 0 1197 0 2 0.50000

10 masq - ss 1 fast 5961 1199 2 2 0 1197 0 0.50000

20 masq - ss 1 fast 11922 1199 2 0 1197 0 2 0.50000

30 masq - ss 1 fast 17882 1199 2 0 1197 0 2 0.50000

45 masq - ss 1 fast 26823 1199 2 0 1197 0 2 0.50000

2 masq - ss 1 medium 238 239 2 0 237 0 2 0.50000

5 masq - ss 1 medium 596 239 2 0 237 0 2 0.50000

10 masq - ss 1 medium 1192 239 2 0 237 0 2 0.50000

20 masq - ss 1 medium 2384 239 2 0 237 0 2 0.50000

30 masq - ss 1 medium 3576 239 2 0 237 0 2 0.50000

45 masq - ss 1 medium 5364 239 2 0 237 0 2 0.50000

2 masq - ss 1 slow 29 29 2 2 21 6 0 0.88889

5 masq - ss 1 slow 74 29 2 0 27 0 2 0.50000

10 masq - ss 1 slow 149 29 2 0 27 0 2 0.50000

20 masq - ss 1 slow 298 29 2 0 27 0 2 0.50000

30 masq - ss 1 slow 447 29 2 0 27 0 2 0.50000

45 masq - ss 1 slow 670 29 2 0 27 0 2 0.50000

2 masq - ss 25 fast 1193 1199 4 0 1193 2 4 0.49916

5 masq - ss 25 fast 2981 1199 4 0 1195 0 4 0.50000

10 masq - ss 25 fast 5961 1199 4 4 0 1195 0 0.50000

20 masq - ss 25 fast 11922 1199 4 0 1195 0 4 0.50000

30 masq - ss 25 fast 17882 1199 4 0 1195 0 4 0.50000

45 masq - ss 25 fast 26823 1199 4 0 1195 0 4 0.50000

2 masq - ss 25 medium 238 239 4 0 235 0 4 0.50000

5 masq - ss 25 medium 596 239 4 0 235 0 4 0.50000

10 masq - ss 25 medium 1192 239 4 0 235 0 4 0.50000

20 masq - ss 25 medium 2384 239 4 0 235 0 4 0.50000

30 masq - ss 25 medium 3576 239 4 0 235 0 4 0.50000

45 masq - ss 25 medium 5364 239 4 0 235 0 4 0.50000

2 masq - ss 25 slow 29 29 5 2 17 7 3 0.55417

5 masq - ss 25 slow 74 29 5 0 24 0 5 0.50000

10 masq - ss 25 slow 149 29 5 0 24 0 5 0.50000

20 masq - ss 25 slow 298 29 5 0 24 0 5 0.50000

30 masq - ss 25 slow 447 29 5 0 24 0 5 0.50000

45 masq - ss 25 slow 670 29 5 0 24 0 5 0.50000

1masq - ss refers to the masquerade attack that uses a small clock skew as defined in Section V-A2.
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Table I continued from previous page
ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

2 masq - ss 2500 fast 1193 1199 501 1 696 2 500 0.49957

5 masq - ss 2500 fast 2981 1199 501 0 698 0 501 0.50000

10 masq - ss 2500 fast 5961 1199 500 500 0 699 0 0.50000

20 masq - ss 2500 fast 11922 1199 501 0 698 0 501 0.50000

30 masq - ss 2500 fast 17882 1199 501 0 698 0 501 0.50000

45 masq - ss 2500 fast 26823 1199 500 0 698 0 500 0.50000

2 masq - ss 500 medium 238 239 99 0 140 0 99 0.50000

5 masq - ss 500 medium 596 239 99 0 140 0 99 0.50000

10 masq - ss 500 medium 1192 239 99 0 140 0 99 0.50000

20 masq - ss 500 medium 2384 239 99 0 140 0 99 0.50000

30 masq - ss 500 medium 3576 239 99 0 140 0 99 0.50000

45 masq - ss 500 medium 5364 239 99 0 140 0 99 0.50000

2 masq - ss 50 slow 29 29 11 3 12 6 8 0.46970

5 masq - ss 50 slow 74 29 11 0 18 0 11 0.50000

10 masq - ss 50 slow 149 29 11 0 18 0 11 0.50000

20 masq - ss 50 slow 298 29 11 0 18 0 11 0.50000

30 masq - ss 50 slow 447 29 11 0 18 0 11 0.50000

45 masq - ss 50 slow 670 29 11 0 18 0 11 0.50000

2 masq - ls2 1 fast 1193 1199 2 1 1131 66 1 0.72243

5 masq - ls 1 fast 2981 1199 2 0 1197 0 2 0.50000

10 masq - ls 1 fast 5961 1199 2 2 0 1197 0 0.50000

20 masq - ls 1 fast 11922 1199 2 0 1197 0 2 0.50000

30 masq - ls 1 fast 17882 1199 2 0 1197 0 2 0.50000

45 masq - ls 1 fast 26823 1199 2 0 1197 0 2 0.50000

2 masq - ls 1 medium 238 239 2 0 237 0 2 0.50000

5 masq - ls 1 medium 596 239 2 0 237 0 2 0.50000

10 masq - ls 1 medium 1192 239 2 0 237 0 2 0.50000

20 masq - ls 1 medium 2384 239 2 0 237 0 2 0.50000

30 masq - ls 1 medium 3576 239 2 0 237 0 2 0.50000

45 masq - ls 1 medium 5364 239 2 0 237 0 2 0.50000

2 masq - ls 1 slow 29 29 2 2 26 6 0 0.90625

5 masq - ls 1 slow 74 29 2 0 27 0 2 0.50000

10 masq - ls 1 slow 149 29 2 0 27 0 2 0.50000

20 masq - ls 1 slow 298 29 2 0 27 0 2 0.50000

30 masq - ls 1 slow 447 29 2 0 27 0 2 0.50000

45 masq - ls 1 slow 670 29 2 0 27 0 2 0.50000

2masq - ls refers to the masquerade attack that uses a large clock skew as defined in Section V-A2.
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Table I continued from previous page
ttrain Attack Freq ID type ntrain ntest noutlier TP TN FP FN bACC

2 masq - ls 25 fast 1193 1199 4 0 1152 43 4 0.48201

5 masq - ls 25 fast 2981 1199 4 0 1195 0 4 0.50000

10 masq - ls 25 fast 5961 1199 4 4 0 1195 0 0.50000

20 masq - ls 25 fast 11922 1199 4 0 1195 0 4 0.50000

30 masq - ls 25 fast 17882 1199 4 0 1195 0 4 0.50000

45 masq - ls 25 fast 26823 1199 4 0 1195 0 4 0.50000

2 masq - ls 25 medium 238 239 4 0 235 0 4 0.50000

5 masq - ls 25 medium 596 239 4 0 235 0 4 0.50000

10 masq - ls 25 medium 1192 239 4 0 235 0 4 0.50000

20 masq - ls 25 medium 2384 239 4 0 235 0 4 0.50000

30 masq - ls 25 medium 3576 239 4 0 235 0 4 0.50000

45 masq - ls 25 medium 5364 239 4 0 235 0 4 0.50000

2 masq - ls 25 slow 29 29 5 2 18 6 3 0.57500

5 masq - ls 25 slow 74 29 5 1 23 1 4 0.57917

10 masq - ls 25 slow 149 29 5 1 23 1 4 0.57917

20 masq - ls 25 slow 298 29 5 0 23 1 5 0.47917

30 masq - ls 25 slow 447 29 5 0 23 1 5 0.47917

45 masq - ls 25 slow 670 29 5 1 23 1 4 0.57917

2 masq - ls 2500 fast 1193 1199 501 1 694 4 500 0.49813

5 masq - ls 2500 fast 2981 1199 501 0 698 0 501 0.50000

10 masq - ls 2500 fast 5961 1199 500 500 0 699 0 0.50000

20 masq - ls 2500 fast 11922 1199 501 0 698 0 501 0.50000

30 masq - ls 2500 fast 17882 1199 501 0 698 0 501 0.50000

45 masq - ls 2500 fast 26823 1199 500 0 699 0 500 0.50000

2 masq - ls 500 medium 238 239 99 0 140 0 99 0.50000

5 masq - ls 500 medium 596 239 99 0 140 0 99 0.50000

10 masq - ls 500 medium 1192 239 99 0 140 0 99 0.50000

20 masq - ls 500 medium 2384 239 99 0 140 0 99 0.50000

30 masq - ls 500 medium 3576 239 99 0 140 0 99 0.50000

45 masq - ls 500 medium 5364 239 99 0 140 0 99 0.50000

2 masq - ls 50 slow 29 29 11 3 14 4 8 0.52525

5 masq - ls 50 slow 74 29 11 0 17 1 11 0.47222

10 masq - ls 50 slow 149 29 11 0 17 1 11 0.47222

20 masq - ls 50 slow 298 29 11 0 16 2 11 0.44444

30 masq - ls 50 slow 447 29 11 0 16 2 11 0.44444

45 masq - ls 50 slow 670 29 11 0 17 1 11 0.47222
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