
Project Paper

Cybersecurity in Automotive Networks

February 9, 2020

ing. Arnold Buntsma
arnold.buntsma@os3.nl
UvA ID: 12818674

ing. Sebastian Wilczek
sebastian.wilczek@os3.nl
UvA ID: 12837067

Assessor:
Prof. dr. ir. Cees de Laat

delaat@uva.nl
University of Amsterdam

Supervisor:
ir. Colin Schappin

cschappin@deloitte.nl
Deloitte

Course:
Research Project 1



Cybersecurity in Automotive Networks
Project Paper

Abstract

Until recently, vehicles were a stand-alone domain. They were not connected to anything other than themselves.
However, new vehicles have a connection to the Internet, often to some service of the manufacturer. This introduces
a new attack vector. It has already been proven that this can be used to gain access to the automotive network.
This network contains Electronic Control Units (ECUs) that realize almost all functions in a vehicle e.g. engine
control, airbags, windows, etc. Most of the network protocols for vehicles have been designed when the vehicles
were not connected and therefore do not have any security features implemented. Even recently developed protocols
did not take the network security into account. This paper is focused on investigating the measures to secure these
protocols with extensions and how they address the CIA triad. We looked at the Controller Area Network (CAN)
and FlexRay protocol. There are many CAN extensions proposed in previous literature and most of them behave
similarly, by adding authentication to messages. We looked closely at CaCAN and a hashing-based authentication
scheme and found one of them to be practically secure. For FlexRay, no extensions were found to improve security.
We ported the later extension to FlexRay and deemed it to be practically secure. Even though these extensions
improve the security of the network, they might reduce the security of the vehicle because of the added processing
time to authenticate messages. Results of our experiments showed an added processing time of 46ms.

Keywords— CAN, FlexRay, Automotive Networks, Electronic Control Units, Car Security

1 Introduction

Automotive vehicles are comprised of multiple Electronic Con-
trol Units (ECUs), each controlling a subsystem of the vehicle.
These include, but are not limited to, engine controls, brakes,
locks, climate control, and multimedia systems [10]. To reduce
the number of interconnections required between these ECUs,
Bosch developed the Controller Area Network (CAN) protocol,
first released in 1986 [5].

CAN allows multiple microcontrollers to communicate on
a single bus using the same protocol. CAN has been stan-
dardized in ISO 11898 and is used in almost every car on the
market, and in other vehicles, machinery and even prosthet-
ics [2]. With the constant evolution of technology, the amount
of ECUs in a vehicle has increased and reached a level where
management of the network has become complex [22]. Systems
like Adaptive Cruise Control (ACC) are part of these develop-
ments. ACC requires real-time data from cameras and multi-
ple sensors which demands more bandwidth than CAN offers.
Therefore, some automotive companies teamed up to create a
new bus that meets those requirements, called FlexRay [19],
first introduced in 2006 [26].

A vehicle nowadays consists of multiple function domains
[20]. The powertrain and chassis domains are concerned with
control (gas, brake, suspension, transmission) of the vehicle.
The third function domain is the body domain which entails,
among others, the dashboard, wipers, lights, windows and cli-
mate control. The telematics, multimedia and Human-Machine
Interface (HMI) domains are for human interaction, media and
communication like hands-free phones, radio and navigation.
The last but not the least important domain is the (active and
passive) safety domain. This entails safety systems like ACC,
belt pretensioners, airbags and impact sensors. These domains
have different requirements and do not use the same bus as
other domains. For example: opening and closing a window or
changing the ventilation and heating are less important than
braking or steering.

Modern vehicles are more likely to be connected to the In-
ternet or services of the manufacturer [27], and some cars have
an Internet connection by default [8]. The connectivity of a
vehicle increases the possible attack surface [27]. Whereas pre-
viously you had to have physical access to a car to get to the
connection bus of the network, you can now get to the bus via
the Internet [6, 27]. If one has control over the different busses
in a vehicle, they might control all the features that are con-
nected to the bus. This could be as invasive as full control over

the vehicle with powertrain, steering, braking, multimedia and
comfort controls [20].

Car manufacturers offer services that allow the car to be
located, turned on or off, and/or control the heating from your
phone. Hacking the servers of a manufacturer is another attack
vector, and also the most exploited one [27]. If hackers gain
access to the servers that realize these functions, they can do
the same things to the cars as the original owners and perhaps
more. [8] states that fleet attacks can be very devastating. ”If
only one model year is affected by the hack, we can still expect
about 3,000 deaths—about the same as 9/11.”.

It is also possible to write a worm that spreads easily
through cars on the road. To cite [6]: ”Since a vehicle can scan
for other vulnerable vehicles and the exploit doesn’t require any
user interaction, it would be possible to write a worm. This
worm would scan for vulnerable vehicles, exploit them with
their payload which would scan for other vulnerable vehicles,
etc.”

This indicates the danger of cyberattacks on vehicles and
automotive networks not being secure. We look at the net-
works, what security features they have by default and what
extensions are available to secure the networks. We will advise
on the security measures that can be taken. In this research
project, we look at the security of the automotive networks
themselves. We consider if there are measures taken to protect
them against malicious messages and, if not, if there are ex-
tensions that do and how those affect the performance of the
bus.

This project is done as a research project for the master
program Security & Network Engineering of the University of
Amsterdam. It was executed under guidance from Deloitte.
The subject was also proposed by Deloitte.

The rest of the paper is structured as follows: The research
questions are defined in section 2. Section 3 gives an overview
of related work. In section 4 the methodology and our approach
are explained. Section 5 explains the automotive networks cov-
ered in this research. Section 6 explains the security features
and proposed extensions of those protocols. In section 7 the
performed experiments are explained. Section 8 gives the re-
sults of the experiments. In section 9 we conclude the research
while discussing the research in section 10. And finally, in sec-
tion 11, suggestions for future work are given.

ing. Arnold Buntsma, ing. Sebastian Wilczek page 2 of 10



Cybersecurity in Automotive Networks
Project Paper

2 Research Questions

To define the topic to be researched, the following research
questions have been defined. These are answered within this
research paper.

1. Which automotive communication protocols
are used in production, forming the state of
practice?

2. What features are built into the protocols
utilised in the automotive industry to provide
security?

3. What extensions can introduce security to the
protocols?

4. How do these extensions compare in terms of
security, according to the CIA triad?

3 Related Work

Since the CAN bus was introduced back in 1986, the protocol
has matured for a long time. Because of this, the security and
performance of the bus have been researched many times, both
on its own and compared to alternatives.

CAN itself has been researched to not be secure on its own.
According to [7, 10, 14, 22], it is vulnerable since it does not
provide authentication or encryption to any sent message, while
every connected ECU can receive all messages. The low band-
width of CAN inhibits well-performing security protocols and
methods.

In [21] they researched the security of FlexRay and exe-
cuted an attack in a simulation environment. This also suc-
ceeded and points out flaws in the protocol. However, there is
only limited research regarding attacks on the FlexRay proto-
col. This could be because of its only recent adoption in the
automotive industry [12].

Various approaches exist to improve the security of CAN.
Some of these include CANAuth [11], CANGuard [16], LeiA
[23], SafeCAN [13], an approach by Bosch [17], and some un-
named solutions [3, 25]. The solutions of CaCAN [15] and
a hashing-based authentication scheme [9] are considered in-
depth in this research.

There has been research on the state of practice of auto-
motive communication protocols in the past but this was done
in 2005 and 2006 [20, 22]. We considered if this research still
holds or if the state has changed.

4 Approach and Methodology

In this research, we made use of literature and experiments.
The literature research was concerned with uncovering what
automotive network protocols are in use in the automotive in-
dustry and how they are defined or standardised. Specifications
and previous research on different protocols and their security
extensions were taken into account.

To conduct experiments to research the security of proto-
cols and extensions, we defined attacks that aim to introduce
malicious messages onto the bus in question, to trigger unde-
sired behaviour of a target ECU. These experiments were ex-
ecuted on multiple setups, each involving a different protocol
or security extension of the network.

The setup itself involved multiple ECUs and one proto-
col. The experiments themselves were fully simulated using

bus simulation software or ran on dedicated hardware. The
software used for that purpose is CANoe [28]. In the case of
hardware, we used low-cost hardware, namely Arduino micro-
controllers, to create ECUs and a network.

The measurements conducted during the experiments in-
volved both the success of the defined attacks and the delays
introduced because of the calculations required by the security
extensions tested. Other values, such as available bandwidth
and payload sizes of sent messages were acquired through lit-
erature research.

5 Automotive Networks

In this paper, we focus on the automotive networks that con-
nect and control the most important functions of a vehicle. We
limited our research to CAN and FlexRay since they are the
most widely used in the industry [20]. This section describes
the requirements and constraints of automotive networks and
its protocols in more detail.

5.1 Communication requirements

In [22] communication requirements are set to which an auto-
motive network should comply. These have been set up in 2005
but are still relevant. The requirements are:

• Fault tolerance Tolerating faults by using for example
redundancy, error checking and correction (CRC).

• Determinism Determine which message should be used
in case of multiple messages and if the message is still
’new’ enough to use. In vehicles, it is important to use
the latest data possible because the situation can change
anytime. Determinism makes sure that the used data is
significant.

• Bandwidth High bandwidth is needed for new systems
like ACC but high bandwidth is costly to implement in
automotive networks. Therefore, there is a trade-off for
which ECUs need this. The less bandwidth requiring
ECUs are connected to a low-bandwidth network to save
costs.

• Flexibility Networks need to be flexible because they
need to handle a variety of messages like event-driven
and time-triggered events. The network also needs to
be flexible in the load that it can handle because at one
moment when a vehicle is idling and standing still there
are fewer messages on the bus than when it is driving
through a city and moving a lot.

• Security The communication on the network should be
non-malicious only. Hackers should not be able to alter
a message without being noticed. Unauthorized access
should not be possible.

5.2 Constraints

[24] summarizes specific hard- and software constraints of auto-
motive networks. Automotive networks differ from other com-
puter networks and have some specific constraints. These are:

• Hardware limitations The ECUs in vehicles are em-
bedded systems with limited resources. Often they only
have very limited memory and computing power. This
makes it hard to implement computationally expensive

ing. Arnold Buntsma, ing. Sebastian Wilczek page 3 of 10



Cybersecurity in Automotive Networks
Project Paper

operations like cryptography, especially when the crypto-
graphic operations should not have a significant impact
on data transmission. The ECUs are also exposed to
conditions most other systems are not exposed to, like
vibrations, temperature differences, shocks, etc.

• Timing Some ECUs perform tasks such as applying the
brakes and the Anti-lock Braking System (ABS). These
are time-sensitive and must be executed as soon as pos-
sible, ideally immediately. Security measures should not
add a significant delay to this, otherwise, it could mean
the difference between life or death.

• Autonomy Everything the vehicle does must be as au-
tonomous as possible to have the driver focusing on their
driving.

• Life-cycle A car usually has a longer life-cycle than
many other consumer electronics. A laptop gets replaced
after roughly 3 years, but a vehicle that is 3 years old is
still considered very young. So the hard- and software
must be durable and possibly (easily) updatable.

• Supplier Integration Suppliers of vehicles defend their
intellectual property by providing components without
releasing the source code. Modifications, to improve se-
curity or increase performance, can be difficult to imple-
ment. Components originating from different suppliers
might have to be able to communicate with each other.

5.3 Network protocols

Vehicles nowadays use a combination of different network
types. The connected ECUs are based on the characteristics
of the network. For example, modifying your mirror setting
does not need much bandwidth and is a low priority operation.
Therefore this is often realized via a CAN bus because it has
a lower bandwidth and is less expensive than a FlexRay bus.
However, systems like autonomous driving need a high band-
width, low latency network for fast delivery of unprocessed
video and sensor information, therefore needing a FlexRay or
Ethernet network [22].

CAN - The (to this day) most implemented protocol is the
CAN standard [20]. It resides in almost all vehicles, ranging
from cheap to expensive and old to new. The reason for this
is that it is a relatively cheap network with moderate perfor-
mance. There are different standards for CAN used in Europe
and the US, however, these all work in a similar way [22] and
thus the difference between those will not be considered in this
paper. As aforementioned, there are a lot of attacks possible
on the CAN bus. This is because when CAN was designed,
security was not a requirement. This was not needed because,
in the eighties, the only way to get access to the bus was to
have physical access. There are two types of CAN busses: CAN
Low Speed & CAN High Speed. The low speed has a maximum
bandwidth of 125Kb/s, and the high speed has a bandwidth up
to 1Mb/s [24]. The low speed is usually used in the body do-
main and the high speed in the powertrain and chassis domain.
The network topology is a bus-type network. This means it is
a broadcast-only network and the ECUs ’subscribe’ or listen
only to messages they are programmed to listen to. This, how-
ever, makes the network susceptible to Denial of Service (DoS)
attacks by design [3]. Using a prioritization feature based on
message IDs does not help this case. CAN messages use a mes-
sage ID for identification, routing and prioritization [24]. A
malicious intended person could abuse this by creating a DoS

attack with the ID of 0 and thus being the highest priority on
the bus, rendering the CAN bus unusable.

FlexRay - FlexRay is a newer automotive network pro-
tocol. This is already adopted by many European car man-
ufacturers, either as a backbone and/or for ECUs that need
more bandwidth for advanced functions. FlexRay has a maxi-
mum data rate of 10 Mb/s, is deterministic, and fault-tolerant
by design [20]. This makes it suitable for real-time use cases,
like ACC and autopilot. It is deterministic by using a time-
triggered communication model and the fault tolerance is re-
alized by communication channel redundancy [18]. The data
rate can be increased to 20 Mb/s by using two channels for
simultaneous data transmission, but this comes in at the cost
of losing the redundancy [18]. Even though FlexRay is a newer
protocol and focused on being the next big protocol, security
has been neglected, as the authors of [21] proof in a simulation.
Even after those results were published, no additional security
has been added to FlexRay. In a later paper [18] DoS attacks
have been proven to be possible using the protocol.

In this paper, we will focus on these two network protocols
because they are the most used protocols in the global market
[20].

6 Security and Extensions

Automotive networks only have features implemented for avail-
ability and integrity via redundant channels and CRCs. By de-
fault, the CAN and FlexRay protocol do not have any authen-
tication or confidentiality measures in place. Confidentiality is
not very important in these networks because if, and only if,
authentication and integrity are guaranteed, then one should
be able to see the messages and still not be able to (re)create
a legitimate message.

To address this incompleteness, extensions for the CAN
protocol have been proposed [9, 11, 13, 15]. These extensions
use a hash to authenticate messages on the networks. Most of
these extensions use similar approaches to secure the network.
They use (pre-shared) keys and freshness to make sure that
the hashes are not susceptible to replay attacks. They use a
cryptographically strong hashing algorithm like SHA256. The
freshness will be updated every time the vehicle does an ac-
tion on an ECU, and the keys can be periodically changed to
withstand a brute force attack.

CaCAN [15] uses an 8-bit hash. The hash is calculated by
the transmitting ECU and 8 bits of it are transmitted as part of
the CAN message payload. Since CAN messages have a maxi-
mum size of 64 bits, that leaves 56 bits for the actual payload.
The extension furthermore includes a counter which increases
with every usage of a specific message, for example, every time
the brake is pressed. Both ECUs maintain this counter indi-
vidually. This counter ensures that the next required hash is
always different from a previous one. The paper furthermore
proposes the usage of a monitor ECU. Instead of having each
ECU validate received hashes themselves, the monitor node
shares a key with any ECU that is authenticated to send cer-
tain types of messages. If the monitor ECU receives a message
with an unfitting hash, it sends out an error frame, causing
a collision. This removes the malicious message. Please note
that we could not implement such a monitor ECU in the scope
of our experiment setup. This part of the proposed extension
is therefore discarded, with each receiving ECU validating the
received hashes instead.

ing. Arnold Buntsma, ing. Sebastian Wilczek page 4 of 10



Cybersecurity in Automotive Networks
Project Paper

The extension of [9], however, uses a 24-bit hash. In prin-
ciple, the extensions are otherwise very similar. Again, a pre-
shared key is required, which is, together with a counter, incor-
porated into a hash that is part of the payload. The increase
of the size of the hash results in a maximum message size of 40
bits. Furthermore, a key renewal solution is part of the exten-
sion. One specific node may send out a request to renew the
keys in all other related ECUs. Please note that this renewal
uses the pre-shared key as a seed. On startup of the bus com-
munication, a random value is transmitted by the mentioned
node, which can be intercepted. Therefore, if the pre-shared
key is ever compromised, an attacker may also renew the key
of a compromised ECU. Otherwise, the extension operates by
sending out an authenticated message with a hash, with the re-
ceiving ECUs calculating the hash, dropping unauthenticated
messages.

For this research, we focused on these two extensions for
the CAN protocol. We did not find any security extensions
proposed for the FlexRay protocol.

7 Experiments

To answer our research questions, we set up two experiment
environments. The first environment consisted of a vehicle net-
work simulated in software. The software used for this purpose
was CANoe [28]. It enabled us to create ECUs, and the ability
to program them. These ECUs were connected to a virtual
bus, without the need for any hardware. The busses simulated
were both of a CAN and a FlexRay variant, depending on the
experiment. An example of the simulation interface can be
seen in Appendix A, Figure 3.

The programming of the ECUs was done in CAPL, a ded-
icated programming language for CANoe simulation environ-
ments. We defined the various messages that can be transmit-
ted on the busses in a database connected to the simulations.
These messages contain information regarding the various func-
tionalities of any ECU and additional definitions required for
the different authentication extensions. The configuration cre-
ated for these experiments can be found on GitHub [29].

We created another setup using CAN hardware. In this
setup, we used two Arduino microcontrollers to act as ECUs,
connected through a CAN shield, creating a CAN bus with
two ECUs. This setup can be seen in Figure 1. A FlexRay
setup was not created due to time and budget constraints. The
scripts developed for this setup can be found on GitHub [4].

Figure 1: CAN Setup with Arduino Microcontrollers

In both cases, the goal of the experiment was to introduce
malicious behaviour using the CAN or FlexRay bus. In our
setup, this meant turning on the brake lights without pressing
the brakes. Please note that the lights represent functionality
that may be exploited or activated by an attacker. We assumed
that if we could turn on a light, we could also perform other
malicious actions on other ECUs, as long as they perform in
a similar pattern and are connected to the same bus. In our
setups, we programmed some ECUs to perform as expected, as
in, for example, a brake ECU to send a brake signal, while oth-
ers we were free to program as we wish, as long as these ECUs
remain unaware of the source code of the normal ones. These
ECUs represent any component that may be compromised by
an attacker. Depending on the experiment, the ECUs were
programmed to make use of the aforementioned extensions.

The experiments measured whether the proposed authenti-
cation scheme or the busses by themselves can perform tasks as
expected, if they are susceptible to replay or exhaustive search
attacks and how the performance and bandwidth of the trans-
mission are affected. Due to the software simulation nature
of CANoe, performance evaluations are only performed on the
hardware setup.

8 Results

During the experiments, we observed that ECU that are con-
nected to either CAN and FlexRay are susceptible to replay
attacks. A compromised ECU could read messages sent to
the bus since these messages are receivable by any connected
ECU. Retransmitting the same message resulted in the receiv-
ing ECU to repeat the same behaviour, in our case turning on
a brake light. This happened whether or not the brake ECU
had any brake pressure applied.

Making use of CaCAN prevented the use of replay attacks.
The hash calculated was transmitted with every message, and
since there is freshness in the form of a counter, a replayed
message resulted in the CaCAN-aware ECUs to recognize the
replayed message as invalid. However, the transmitted hash
consists of only 8 bits. The malicious ECU could transmit ran-
dom hashes, eventually turning on the brake lights, after at
most 256 attempts.

The hashing-based authentication scheme also prevented
replay attacks successfully. We also could not break the au-
thentication within any reasonable time frame. We propose
that a reasonable time is the time between brake state changes,
as in how often brake pressure may be applied in an actual car.
We implemented a version which could trigger a key renewal
once a dedicated ECU observed an unauthenticated message.
This renewal further prevented exhaustive search attacks. The
authentication took up 24 bits of the message, leaving only 40
bits for the rest of the payload. This did not impact the func-
tionality of our test setup since the only other information sent
is a single bit indicating the to-be-state of the brake light. How-
ever, other implementations would need to limit themselves to
a message size of at most 40 bits.

An attacker would have to crack 24 bits in the average pe-
riod of about 60 seconds, which is not feasible: if we assume
that an attacker uses the full capacity of the network to brute
force the hash, that would be 500 Kb/s for CAN. It will take
at most 224/(500000/64) = 2147.48 seconds or 35.79 minutes.

Since we could not find any security extensions for FlexRay,
we instead attempted to port the aforementioned hashing-
based authentication scheme to FlexRay. We left the ba-

ing. Arnold Buntsma, ing. Sebastian Wilczek page 5 of 10



Cybersecurity in Automotive Networks
Project Paper

Figure 2: CAN Hash Calculation Time per extension, rounded to microseconds

sic functionality unchanged. The extension calculates a hash
based on the information being sent and a key that is generated
from pre-installed information. The receiving ECU then calcu-
lates the same hash based on the message it receives. In case
of success, a counter is changed for freshness. The message
is only processed if the hash matches at the receiving ECU.
When considering that FlexRay has a capacity of 10 Mb/s it
will take a most 224/(10000000/256) = 429.50 seconds or 7.16
minutes. To increase that time, we modified the hash size to
28 bits, increasing the required time to a maximum of 6871.95
seconds or 114.53 minutes.

Given that FlexRay has a maximum message payload size
of 256 bits, the size of the hash sent is less of a problem com-
pared to CAN. The remaining bits still offer enough space for
larger messages. However, CaCAN, the hashing-based authen-
tication scheme and various other extensions that we briefly
considered for evaluation [3, 11, 13, 16, 23, 25] come back to
the same issue. They either are not secure enough because only
a few bits are allocated for authenticity or they compromise the
bandwidth of the bus.

Aside from the reduced capabilities of the bus itself, we
also observed an introduced delay due to the hash calculations
required for the extensions. A delay comparison can be seen in
Figure 2.

CAN messages take 224 microseconds on average to be both
sent by one ECU and to be processed by another, as measured
on the Arduinos in the hardware experiment setup. The trans-
mission time is not taken into account here since it remains
unchanged between different extensions and only depends on
the physical relay speed of the bus. However, if the ECUs have
to calculate a hash whenever they send or receive a message, the
processing time increases drastically. In both the case of Ca-
CAN and the hashing-based authentication proposal, the time
to complete computation increases to an average of 45,924 and
45,934 microseconds, respectively, with a standard deviation of
fewer than 9 microseconds over a set of 1000 measurements.

Given that a car might drive at 100 kilometres per hour,
224 microseconds amount to 6.2 millimetres of distance trav-
elled before the brakes engage. With almost 46 milliseconds

calculating hashes, that distance increases to 1.28 metres.
The receiving ECU has to calculate a hash every time it

receives a message that is supposedly authenticated. Even if
a compromised ECU sends random bit strings, the receiver is
forced to perform cost-intensive calculations to compare the
two values. We could prove that these messages, when sent
in quick succession, can easily drown out authenticated mes-
sages, causing unpredictable behaviour on the receiving ECU.
Since we only had one receiving and one sending ECU in our
hardware setup, we could not execute such a DoS attack on
CAN hardware. With only one Arduino sending messages and
one receiving, one single Arduino would have to both send le-
gitimate messages as well as perform the DoS attack. The
scheduling and the performance of the sending Arduino would
have massively influenced our results.

9 Conclusion

This research has shown that the most commonly used stan-
dard for automotive networks used in the industry is CAN,
with FlexRay gaining ground. A CAN bus is used by almost
every current vehicle manufacturer and in other machinery.

Our experiments have shown that CAN and FlexRay are
not secure in terms of confidentiality, integrity and availabil-
ity. Confidentiality is a negligible issue since all messages have
an observable effect on receiving ECUs and do not share se-
cret information. Integrity, however, especially authenticity, is
a major issue in automotive networks. Using a compromised
ECU, we could perform replay attacks, changing the state of
a simulated vehicle in an undesired way. It is also possible to
perform DoS attacks by inserting colliding messages.

The CaCAN security extension showed a similar integrity
issue. Since it operates by sending an 8-bit hash, it is very
susceptible to an exhaustive search attack. The 8 bits reserved
for an authentication code are not enough to provide authen-
ticity in an automotive network. CaCAN is therefore easily
breakable and should not be used in practice.

The tested hashing-based authentication scheme did not
have an issue with integrity and provided sufficient security in

ing. Arnold Buntsma, ing. Sebastian Wilczek page 6 of 10



Cybersecurity in Automotive Networks
Project Paper

that regard. However, the number of bits reserved for authen-
tication reduced the maximum payload size drastically. If this
is sufficient must be decided by manufacturers, possibly on a
case-by-case base. We found other proposals that theoretically
provide better integrity of messages but similarly impact the
bandwidth. The version of the authentication scheme ported to
FlexRay showed similar integrity protection, with bandwidth
being less of an issue because of the larger maximum size of
FlexRay messages. We could not find any publications regard-
ing proposed security extensions for FlexRay.

We observed that the hash calculations used by the secu-
rity extensions introduce a drastic delay to the operation of
sending and processing CAN messages. Making use of the pro-
posed security scheme improves the integrity of the messages
sent on the network, but makes the usage of the network less
performant. It further compromises the availability of ECUs
since they are now susceptible to DoS attacks, whereas before
only the messages themselves could be drowned out. Whether
this is usable in a real vehicle depends on the processing power
of the individual ECUs.

Since it is up to the manufacturers to implement security
in their vehicles, they would have to consider where and how
it should be implemented. Different components, specifically
different domains in a car might have different requirements
regarding security. If integrity is more important than avail-
ability, we propose to them to implement such a hashing-based
authentication scheme. If the performance of an ECU is more
important, not making use of such authentication is perhaps a
valid alternative.

10 Discussion

The found results of the experiments may not be translatable
to a real-world environment because we did not use a real ECU,
but simulated those with either an Arduino or a software sim-
ulation. Therefore, the results of implementing the extensions
in a vehicle could differ from what was found in this research.
Relating to this is also the time it takes to create the (brake)
message and the processing. This was done using Arduino mi-
crocontrollers and not with actual ECU hardware. This could
affect the time it takes to create and process these messages
leading to a different added brake distance. However, if similar
behaviour is observed using real ECUs, it would be possible to
extrapolate our results to real vehicles.

We did not have access to FlexRay hardware to set up a
hardware experiment. Therefore, it was not possible to per-
form FlexRay experiments in a more realistic environment.

Only two extensions to CAN have been reviewed in this
project. There are more extensions available which perform
similarly in slightly different ways. They may perform better
or worse than CaCAN and the hashing-based solution.

The performed experiments were executed in a controlled
environment with self-programmed ECUs. In a real-world en-
vironment, the IDs of CAN messages have to be found first to
perform a replay attack on the CAN bus. These are known for
several vehicles, but a lot of manufacturers keep this informa-
tion proprietary.

We have used SHA256 as a hashing algorithm in the ex-
periments. We calculated the full hash of the data and then

concatenated the last bits (depending on how many were re-
quired) and used that as the hash of the message. This is not as
secure as using the full hash or using other hashing algorithms
that result in a hash length of the required bits.

11 Future Work

This research has shown that the different automotive networks
tested are not secure on their own. The extensions tested either
provide too little security or compromise the bandwidth of the
bus in question. To further specify, similar experiments should
be conducted on other networks and extensions. Especially au-
tomotive Ethernet, which is emerging in the industry, should
be considered for a security evaluation. Given that CAN is still
the most widespread standard, more extensions for it should
be tested in the same way.

The ported hashing-based authentication scheme for
FlexRay proposed in this paper should be improved upon.
More security proposals for FlexRay are required to keep the
protocol secure and future-proof. Once these proposals are
defined, a security evaluation should be conducted on them,
to consider whether they provide sufficient security and if they
still leave automotive vehicles to be performant enough for pub-
lic operation.

The delay measurements conducted as part of this research
should be repeated using actual ECUs that are being used in
the industry, within current vehicle models. Only such mea-
surements can give a definitive answer whether the introduced
delay is to be considered an issue in securing vehicle networks.
These experiments should also consider dedicated components
built-in for security, such as controllers calculating hashes only.
Should these experiments prove that ECUs also show perfor-
mance problems, it should be researched how optimization can
be done to the security extensions to make the issue less dras-
tic.

Given that the security of vehicle networks might impact
the performance, the security of the car also becomes an eth-
ical question. If, for instance, the integrity is improved, the
brakes of the car might engage a few milliseconds later. The
Massachusetts Institute of Technology proposed the question of
autonomous cars deciding about life and death [1], and secur-
ing a vehicle network presents a similar issue: Is it more ethical
to secure the driver by securing the car or is it better to engage
the brakes quicker, potentially saving pedestrians or even the
driver in a different situation? However, as for this research,
answering or discussing this question was out of scope.

Since the decision between securing a vehicle and making
critical functions well performant can be considered of ethical
nature, we also propose for this issue to be discussed publicly.
If a consensus is reached on a case-by-case base, that consensus
should be evaluated for regulations to be adhered to by auto-
motive manufacturers. Perhaps this issue should even take the
form of government regulations, of which many already exist.
Currently, security of the automotive networks is not obligatory
by law. However, the potential impact on the general public, if
a car model is hacked, is huge. This paper does not discuss the
impact of requiring security in automotive networks in terms
of laws and regulations.

ing. Arnold Buntsma, ing. Sebastian Wilczek page 7 of 10



Cybersecurity in Automotive Networks
Project Paper

References

[1] Awad, E. et al. The Moral Machine experiment. Cambridge, Massachusetts, United States of America: Springer
Nature Limited., 2018. doi: 10.1038/s41586-018-0637-6.

[2] Bochem, A. et al. FPGA Design for Monitoring CANbus Traffic in a Prosthetic Limb Sensor Network. Freder-
icton, Canada: University of New Brunswsick, 2011. doi: 10.1109/RSP.2011.5929972.

[3] Bruton, J. A. Securing CAN Bus Communication: An Analysis of Cryptographic Approaches. Galway, Ireland:
National University of Ireland, 2014. doi: 10.13140/RG.2.2.22154.93127.

[4] Buntsma, A. and Wilczek, S. ArduinoCAN: C scripts for Arduino to run CAN simulations.
Available at: https://github.com/sebastianwilczek/CANoe-Configurations [Accessed 28 Jan. 2020]. 2020.

[5] CAN in Automation. CAN in Automation (CiA).
Available at: https://www.can-cia.org/can-knowledge/can/can-history/ [Accessed 07 Jan. 2020]. 2020.

[6] Charlie Miller, C. V. Remote Exploitation of an Unaltered Passenger Vehicle.
Available at: http://illmatics.com/Remote%20Car%20Hacking.pdf [Accessed 12 Jan. 2020]. 2015.

[7] Checkoway, S. et al. “Comprehensive Experimental Analyses of Automotive Attack Surfaces”. In: 2010 IEEE
Symposium on Security and Privacy.
Available at: http://www.autosec.org/pubs/cars-oakland2010.pdf [Accessed 16 Jan. 2020]. 2011.

[8] Consumer Watchdog. Why Connected Cars Can Be Killing Machines and How to Turn Them Off.
Available at: https://www.consumerwatchdog.org/sites/default/files/2019-07/KILL%20SWITCH%20%
207-29-19.pdf [Accessed 15 Jan. 2020]. 2019.

[9] Cros, O. and Chênevert, G. “Hashing-based authentication for CAN bus and application to Denial-of-Service
protection”. In: (2019).
Available at: https://www.researchgate.net/publication/336749708_Hashing-based_authentication_
for_CAN_bus_and_application_to_Denial-of-Service_protection [Accessed 30 Jan. 2020].

[10] Hartzell, S. and Stubel, C. Automobile CAN Bus Network Security and Vulnerabilities.
Available at: https://canvas.uw.edu/files/47669787/download [Accessed 30 Jan. 2020]. Seattle, Washing-
ton, United States of America: University of Washington, 2017.

[11] Herrewege, A. V., Singelee, D., and Verbauwhede, I. CANAuth - A Simple, Backward Compatible Broadcast
Authentication Protocol for CAN bus.
Available at: https://pdfs.semanticscholar.org/007e/e2559d4a2a8c661f4f5182899f03736682a7.pdf

[Accessed 07 Jan. 2020]. 2011.

[12] Road vehicles — FlexRay communications system — Part 1: General information and use case definition. Stan-
dard. International Organization for Standardization, 2013.

[13] Karamba Security. SafeCAN R©: A New Model for In-Vehicle Network Security.
Available at: https://karambasecurity.com/products/safecan [Accessed 07 Jan. 2020]. 2019.

[14] Koscher, K. et al. “Experimental Security Analysis of a Modern Automobile”. In: 2010 IEEE Symposium on
Security and Privacy. 2010, pp. 447–462. doi: 10.1109/SP.2010.34.

[15] Kurachi, R. et al. CaCAN - Centralized Authentication System in CAN (Controller Area Network).
Available at: https://www.researchgate.net/publication/320083914_CaCAN_-_Centralized_Authentication_
System_in_CAN [Accessed 30 Jan. 2020]. Nagoya: Nagoya University, 2014.

[16] Mercury Systems. CANGuardTM - Defending automotive vehicle data networks against malicious vehicle intru-
sion.
Available at: https://www.mrcy.com/resourcehub/document/canguard-defending-automotive-vehicle-
data-networks-against-malicious-vehicle-intrusion [Accessed 07 Jan. 2020]. 2017.

[17] Mueller, A. and Lothspeich, T. Plug-and-Secure Communication for CAN.
Available at: https://pdfs.semanticscholar.org/2bb1/bc642612048465a42b1c3286451a3dfd5014.pdf

[Accessed 07 Jan. 2020]. Gerlingen, Germany, 2015.

[18] Murvay, P.-S. and Groza, B. “Practical Security Exploits of the FlexRay In-Vehicle Communication Protocol”.
In: Risks and Security of Internet and Systems. Ed. by Zemmari, A. et al. Cham, Germany: Springer International
Publishing, 2019, pp. 172–187. isbn: 978-3-030-12143-3.

ing. Arnold Buntsma, ing. Sebastian Wilczek page 8 of 10

https://doi.org/10.1038/s41586-018-0637-6
https://doi.org/10.1109/RSP.2011.5929972
https://doi.org/10.13140/RG.2.2.22154.93127
https://github.com/sebastianwilczek/CANoe-Configurations
https://www.can-cia.org/can-knowledge/can/can-history/
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
https://www.consumerwatchdog.org/sites/default/files/2019-07/KILL%20SWITCH%20%207-29-19.pdf
https://www.consumerwatchdog.org/sites/default/files/2019-07/KILL%20SWITCH%20%207-29-19.pdf
https://www.researchgate.net/publication/336749708_Hashing-based_authentication_for_CAN_bus_and_application_to_Denial-of-Service_protection
https://www.researchgate.net/publication/336749708_Hashing-based_authentication_for_CAN_bus_and_application_to_Denial-of-Service_protection
https://canvas.uw.edu/files/47669787/download
https://pdfs.semanticscholar.org/007e/e2559d4a2a8c661f4f5182899f03736682a7.pdf
https://karambasecurity.com/products/safecan
https://doi.org/10.1109/SP.2010.34
https://www.researchgate.net/publication/320083914_CaCAN_-_Centralized_Authentication_System_in_CAN
https://www.researchgate.net/publication/320083914_CaCAN_-_Centralized_Authentication_System_in_CAN
https://www.mrcy.com/resourcehub/document/canguard-defending-automotive-vehicle-data-networks-against-malicious-vehicle-intrusion
https://www.mrcy.com/resourcehub/document/canguard-defending-automotive-vehicle-data-networks-against-malicious-vehicle-intrusion
https://pdfs.semanticscholar.org/2bb1/bc642612048465a42b1c3286451a3dfd5014.pdf


Cybersecurity in Automotive Networks
Project Paper

[19] National Instruments. FlexRay Automotive Communication Bus Overview.
Available at: https : / / www . ni . com / nl - nl / innovations / white - papers / 06 / flexray - automotive -

communication-bus-overview.html [Accessed 30 Jan. 2020]. Austin, Texas, United States of America, 2019.

[20] Navet, N. et al. “Trends in Automotive Communication Systems”. eng. In: Proceedings of the IEEE 93.6 (2006),
pp. 1204, 1223. issn: 0018-9219.

[21] Nilsson, D. K. et al. “A First Simulation of Attacks in the Automotive Network Communications Protocol
FlexRay”. In: Proceedings of the International Workshop on Computational Intelligence in Security for Informa-
tion Systems CISIS’08. Ed. by Corchado, E. et al. Berlin, Germany: Springer Berlin Heidelberg, 2009, pp. 84–91.
isbn: 978-3-540-88181-0.

[22] Nolte, T., Hansson, H., and Bello, L. L. Automotive Communications - Past, Current and Future. Väster̊as,
Sweden: Mälardalen University, 2005. doi: 10.1109/ETFA.2005.1612631.

[23] Radu, A.-I. and Garcia, F. D. LeiA: A Lightweight Authentication Protocol for CAN.
Available at: https://www.cs.bham.ac.uk/~garciaf/publications/leia.pdf [Accessed 30 Jan. 2020].
Birmingham, United Kingdom: University of Birmingham, 2016.

[24] Scalas, M. and Giacinto, G. “Automotive Cybersecurity: Foundations for Next-Generation Vehicles”. In: 2019
2nd International Conference on new Trends in Computing Sciences (ICTCS). 2019, pp. 1–6. doi: 10.1109/
ICTCS.2019.8923077.

[25] Siddiqui, A. S., Plusquellic, Y. G. J., and Saqib, F. Secure Communication over CANBus. Charlotte, United
States of America: University of North Carolina, 2017. doi: 10.1109/MWSCAS.2017.8053160.

[26] Strobel, O. Communication in Transportation Systems. Esslingen, Germany: Esslingen University of Applied
Sciences, 2013. isbn: 9781466629776.

[27] Upstream Security Ltd. Global Automotive Cybersecurity Report 2020.
Available at: https://www.upstream.auto/upstream- security- global- automotive- cybersecurity-

report-2020/ [Accessed 15 Jan. 2020]. 2020.

[28] Vector Informatik GmbH. CANoe — ECU & Network Testing on Highest Level — Vector.
Available at: https://www.vector.com/int/en/products/products-a-z/software/canoe/ [Accessed 08
Jan. 2020]. 2020.

[29] Wilczek, S. CANoe-Configurations.
Available at: https://github.com/sebastianwilczek/CANoe-Configurations [Accessed 28 Jan. 2020]. 2020.

ing. Arnold Buntsma, ing. Sebastian Wilczek page 9 of 10

https://www.ni.com/nl-nl/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html
https://www.ni.com/nl-nl/innovations/white-papers/06/flexray-automotive-communication-bus-overview.html
https://doi.org/10.1109/ETFA.2005.1612631
https://www.cs.bham.ac.uk/~garciaf/publications/leia.pdf
https://doi.org/10.1109/ICTCS.2019.8923077
https://doi.org/10.1109/ICTCS.2019.8923077
https://doi.org/10.1109/MWSCAS.2017.8053160
https://www.upstream.auto/upstream-security-global-automotive-cybersecurity-report-2020/
https://www.upstream.auto/upstream-security-global-automotive-cybersecurity-report-2020/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://github.com/sebastianwilczek/CANoe-Configurations


Cybersecurity in Automotive Networks
Project Paper

Appendices

A CANoe Bus Simulation

Figure 3: CANoe Bus Simulation Screenshot

ing. Arnold Buntsma, ing. Sebastian Wilczek page 10 of 10


	Introduction
	Research Questions
	Related Work
	Approach and Methodology
	Automotive Networks
	Communication requirements
	Constraints
	Network protocols

	Security and Extensions
	Experiments
	Results
	Conclusion
	Discussion
	Future Work
	CANoe Bus Simulation

