Using BGP Flow-Spec for distributed
micro-segmentation

February, 2020

Davide Pucci
M.Sc. Security and Network Engineering
University of Amsterdam
Amsterdam, The Netherlands
davide.pucci@os3.nl

Abstract—Data Centers need proper security constraints im-
plementation, proper ways of hardening internal services, isolat-
ing multiple tenants and filtering hosted applications: this leads to
the segmentation sphere, with particular attention to the micro-
segmentation methodology. The advent large-scale applications
led to a huge shift of traffic from outside Data Centers, the
so-called north-south traffic, to within them, hence called east-
west. Such change imposed a rethinking of the traditional way
to build Data Centers. Among such changes, one of the most
successful has been the adoption of Border Gateway Protocol
(BGP) as internal routing protocol. Furthermore, at the end of
the last decade, a new BGP Subsequent Address Family Identifier
(SAFI) has been defined, the Flow Specification extension, with
the purpose of propagating traffic filtering information, mainly
as a countermeasure to Distributed Denial-of-Service (DDoS)
attacks. This research shows how distribution of policies with
regards to micro-segmentation in modern Data Centers can be
achieved with the adoption of BGP Flow Specification protocol.

Index Terms—bgp, routing, data center, micro-segmentation

I. INTRODUCTION

Border Gateway Protocol (BGP) is an infer-Autonomous
System (AS) routing protocol, originally intended to work as
an Exterior Gateway Protocol (EGP), first defined almost thirty
years ago [1]. It makes use of Network Level Reachability
Information (NLRI) to exchange data between BGP routers,
the so-called Speakers. The NLRIs are used to build a virtual
graph that coherently apply to the physical architecture, that
links Speakers with each others. The EGP relies on this
mechanism to both drop loops and enforce possible poli-
cies. BGP runs over Transmission Control Protocol (TCP),
which basically removes the need to implement reliability
mechanisms, as already guaranteed by the transport level,
such as fragmentation, re-transmission, acknowledgement and
sequencing.

If BGP was originally — and still is — meant to regulate
the highest hierarchy layer of routing in the Internet, in the last
half a decade the situation has evolved in a specific direction.
Given the relatively simple architecture of the routing protocol
and its hierarchical distribution in two sub-layers, Internal
BGP (iBGP) and External BGP (eBGP), it has been proven
to be a good protocol not only for its original purpose of
routing the Internet. More specifically, the use of reserved AS

numbers [2]], along with the adoption of iBGP capabilities like
AS Confederations [3]] and Route Reflection [4], all brought
the routing protocol, to be able to scale better and more
elastically. Also, last decade has been very crucial in the sense
that it reported a huge growth of third-wave applications,
which heavily rely on distributed and large infrastructures.
Differently from the first two waves, which were both mono-
lithic single-machine applications, third-wave ones brought
a massive increase of traffic within a single Data Center.
This highly affected the conception and implementation of
modern Data Centers, which needed to handle higher amounts
of internal traffic, to better scale to support up to hundred
thousands servers in single physical location, to constraint the
“blast radius” of a failure to limit its impact on the whole
infrastructure and to support multi-tenancy with flawless and
automated deployments and tear-downs of virtual networks.
To meet these requirements, BGP revealed to be a good
option to handle routing inside a single and private Data
Center, as described in Request for Comments (RFC) 7938
[S]]. With virtualization, the way to build elastic and extensible
Data Centers has been massively revised, due to the need to
hold large-scale systems. Such environments present specific
network requirements, with emphasis on security, operational
simplicity and network stability, and BGP has been reported
to be usable as the only routing protocol, doing its job stably,
according to RFC 7938.

Furthermore, BGP has been designed to allow extensibility,
thanks to the use of combination of specific Address Family
Identifier (AFI), Subsequent Address Family Identifier (SAFI)
and specific NLRI encoding formats. Relying on this approach,
BGP Flow Specification [6] protocol has been defined with the
intent to isolate Distributed Denial-of-Service (DDoS) attacks
at a BGP level. With its specific NLRI format, it aims to
associate specific actions, e.g., reduce traffic rate (down to
discard it, possibly), mark it, redirect it or a combination of
each one, to specific traffic flows, identified by a collection
of filters, starting from the simple destination and/or source
prefix, ending with more complex settings like fragmentation
status or TCP flags inspection.

II. PROBLEM

BGP is worth the use in Data Center for internal routing,
but it is not necessarily applicable, nor capable, to cover all the
roles needed in such environments: choices like virtualization
solutions, hardware capabilities, customer requirements, ...,
are not obviously inherently depending on the routing protocol.
But it is not necessarily true for security requirements and,
more specifically, to the micro-segmentation sphere. In last
decade, network traffic has been indirectly and gradually redis-
tributing: originally, the greatest portion was north-south, i.e.,
traffic between servers and clients, between a Data Center and
someone else outside it. With the rise of big and large-scale
systems, the largest amount of traffic has been redistributing
in a east-west variant, i.e., traffic inside a single Data Center,
making the communication intra-Data Center much higher
than the one between the client and the large-scale system.
This gives the idea of the size of a single Data Center and how
it is crucial to guarantee proper network isolation inside these
environments: if an attacker is able to compromise and force an
entry point to a node inside the Data Center and the hardening
has not been well thought, the intruder would be free to move
inside the Data Center, just thanks to a single hole in the
infrastructure. Technologies like Virtual Local Area Network
(VLAN), Virtual Routing and Forwarding (VRF) and roles like
firewalls are of great help to accomplish such a purpose, but,
as one of the most important advantages of the adoption of
BGP as Data Centers local routing protocol is flexibility and
simplicity in the management, delegate the control plane to the
same protocol would be a profit to network operators, making
the environment even simpler. Also, BGP Flow Specification
seems to be the most suitable open source candidate to cover
this kind of role. In order to accomplish this aim, though, it
is critical to understand which are the requirements of Data
Centers, in terms of networks and components isolation, and
which are the bounds of BGP Flow Specification official spec-
ification, to check if the first ones fit into the latter. Being BGP
Flow Specification a protocol invented to counteract DDoS
attacks, influencing specific traffic flows, it could theoretically
fit into the generic firewall scope. This research aims to deepen
this topic, trying to give a definitive answer to the feasibility
of the purpose.

III. RESEARCH QUESTION

This section presents the main research question and sub-
questions that follow from it.

Is the BGP Flow Specification applicable for Data
Center micro-segmentation?

This question can be divided into these sub-questions:

1) What are the requirements for Data Center micro-
segmentation, with regards to the security aspect of
component isolation?

2) Is the current specification of BGP Flow Specification
capable to cover these requirements?

3) Is it feasible to build such a scenario with the actual open
source implementations of the protocol?

IV. LITERATURE

T. Arnold et al., in Beating BGP is Harder than we Thought
[7]l, demonstrated how the relatively old age of BGP does
not impact on its performance. Even if it is a protocol which
has not been thought to be performance-oriented, but policy,
instead, it is evidently hard to replace it to achieve better speed.
This enables it to be considered thanks to its flexibility, without
representing a trade-off with performance.

V. Giotsas et al., in Inferring BGP Blackholing Activity
in the Internet [8|], showed how BGP is, still more and
more, adopted to directly apply traffic filtering using black-
holing. One of the most important limitations of this approach,
differently from the use of BGP Flow Specification, is that the
prefix to be filtered out is limited to a certain maximum amount
(typically, /24): this makes the filtering too wide, discarding
legitimate traffic, e.g., when in the need to filter out specific
/32 prefixes. This research, though, shows the evidence of
the need of a solution to apply filtering at a BGP level which
has to be more flexible.

D. Bakker, in Impact-based optimisation of BGP Flowspec
rules for DDoS attack mitigation [9]], showed how BGP Flow
Specification is indeed allowing that flexibility, whilst needing
on the other hand a proper handling of rules specification, pos-
sibly reducing the amount of filters making coherent prefixes
aggregation.

D. Thaler, in RFC 7288 [10], deepened the advantages of
using host-based firewalls, instead of conventional network-
based ones. Host-based firewalls represent the base idea behind
a distributed firewall, as shown by S. Ioannidis et al. in
Implementing a Distributed Firewall [11]]: a central firewall is
still used to generate rules and they get spread into the network
accordingly and coherently. The advantage is that each host
is aware of the rules it needs to apply for what is concerned
to itself, without the need to make traffic always flow through
the central firewall to be possibly filtered and/or manipulated
in any way.

To conclude, there is no specific research on whether is
possible and how to join the idea behind distributed firewalls
and the approach used by BGP Flow Specification, with
regards to Data Centers micro-segmentation.

V. RESEARCH CONSIDERATIONS

With regards to Data Centers segmentation, two main mech-
anisms naturally come up: level 2 and level 3 segmentation.
Level 2 segmentation is virtual network isolation made relying
on VLAN [[12]], while level 3 one on VRF. But when it
comes to micro-segmentation, a further separation has to be
done. This kind of isolation is within both the same VRF
and VLAN: network architects want to assure that, if needed,
even nodes within the same segment cannot speak to each
other. One of the leaders in this sphere is VMware NSX [13]],
which allows to achieve Zero-Trust security by defining and
enforcing policies consistently on a single management pane.
With Zero-Trust security, every single “visitor”, regardless of
whether it is part of the internal network, is treated as foreign
entity. Therefore, it has to prove to be capable and authorised

for each specific request is doing towards a service. The added
value of the micro-segmentation is that it comes along with
the attempt of moving policies application as down and close
to the servers as possible.

Data Center

security
[
v v
| Threats RN Architectural
management ; security
_____ ’ Impact _: Multiple o«
i reduction Tenancy -
- Attack le-- Application &
” bouncing i filtering h
Traffic P
analysis

Fig. 1. Data Center security can be divided into two main groups, threats
management and architectural security. The first one is mainly wrapping all
the security requirements oriented to neutralise an inbound attack. The latter
contains all the requirements needed to provide multiple-tenancy, application
filtering and traffic analysis.

It is important as well to understand what kind of policies
get usually applied in such contexts. On that regard, fig. [I]
shows an overall distinction of rules that are generally applied.
The two main spheres into which policies can be split are the
architectural security and the threats management.

For what is concerning the latter, it wraps all the require-
ments which are defined ad-hoc to mitigate an in-going attack:
the network operators have to guarantee a doable and quick
way to make the threat be bounced and isolated as fast as
possible. Isolating an attack means blocking any option that
the attacker has to make any lateral movement in the network.
Hence, this point highly relies on the architectural setup of the
network. On the other hand, bouncing an attack means forcing
it to stop, injecting rules that make the attacker be kicked out
from the attack surface itself.

Speaking of architectural security, coherent segmentation
is needed to make the network components separation. With
micro-segmentation, the network architects can achieve a fine-
grained level of security constraints. These constraints can be
further split into three groups:

1) Multiple-tenancy. Network is shared between multiple
parties (e.g., internal departments, or external customers)
where the services should not at all or only communicate

limited. This kind of isolation is typically applied using
different VRFs.

2) Application filtering. Even within a single tenant, multiple
application could be hosted and exposed. On such level,
it often happens that filtering is made on a application-
role basis, e.g., the front-end can reach the back-end, but
not the storage, while the back-end can reach the storage.

3) Traffic analysis. Part of this group are all the counter-
measures or requirements, not strictly related to security,
which are needed to manipulate or forward traffic for
analysis purposes, e.g., to be confidently aware of whether
an attack is in action.

With regards to the effective policies implementation, what
all these requirements have in common is need of being able to
filter traffic in or out. A common distinction that it is usually
done at this regard, is to roll a default policy for which all the
filters represent an exception. There can be either one of the
following cases:

1) Drop by default.

In this case, if no exception is given, traffic between two
nodes is completely forbidden. This represents the option
used in most cases.

2) Accept by default.

In this case, instead, all the traffic which is not explicitly
forbidden, is allowed.

What is usually related to the traffic analysis capability,
is to make traffic be routed to some other nodes for further
investigation.

Furthermore, what is very likely present in a Data Center
is the role of load-balancers: in this case, traffic redirection
is done to achieve high availability or better performance of
a specific application, making the load be distributed over
several nodes. Anyway, in order to let load-balancers do their
job good, they usually need Deep Packet Inspection (DPI)
capabilities. Though this is a very common feature, as of the
size of this topic, it needs a proper and standalone research, to
look deeply at what is needed to be extended to enable such
functionalities, and it has been thus excluded by this research.

A. Using BGP Flow Specification

Based on BGP Flow Specification RFC 5575 [6]], the proto-
col relies on well-known extended community values to act in
a certain way against the traffic flow. The first value defined,
the traffic-rate extended community (type 0x8006), is
composed by a 2-bytes AS number and a 4-bytes float. The
latter is used apply an upper-bound to the traffic rate. Setting
this value to a certain amount would shape the traffic. On the
other side, setting it to zero would result to a complete traffic
drop, which would comply to the disabling traffic requirement.

The BGP Flow Specification also defines the redirect
and the traffic-marking extended communities (respec-
tively, type 0x8008 and 0x8009). Using these fields coher-
ently, would enable the traffic to be correctly forwarded for
possible traffic analysis purposes.

Theoretically, then, it is feasible to translate normal and
usual firewall rules in a BGP Flow Specification fashion. On

the other hand, though, rules ordering is a very critical topic.
Flow Specification RFC dedicates a whole section to this point.
In fact, in section 5.1, Order of Traffic Filtering Rules, it can
be read the following:

For TP prefix values (IP destination and source
prefix) precedence is given to the lowest IP value of
the common prefix length; if the common prefix is
equal, then the most specific prefix has precedence.

For what is concerning firewalls, though, the ordering is usu-
ally manually imposed using sequence numbers: if a specific
rule has a sequence number which is lower than another,
then it will be processed before the latter. To impose such
a scheme to BGP Flow Specification, then, an additional
information has to be carried along with the route. All the
information in the protocol are handled using well-known
extended communities: the only ones allocated specifically
for the protocol are the already introduced traffic-rate,
traffic-marking and redirect, and also the unmen-
tioned traffic—action, which is used either to regulate
the evaluation of multiple and subsequent rules or the sampling
and logging of the traffic. There is no other option than to
allocate a new extended community for that purpose. Extended
communities are of the size of 64 bits, with the first 16 bits
dedicated to the type label. This means that the remaining 48
bits could be used to carry the sequence number associated
to a specific rule. Hence, this scheme, relying on BGP, would
enable a maximum amount of 248 = 2.8147498 x 104 rules.

Even with such a high threshold, it is undesirable to make
all the rules spread on the whole network nodes, especially if
a given rule does not apply at all to a specific node. For this
purpose, an additional extended communities comes to help. In
fact, the RFC 4360 [[14]] not only specifies the extended variant
of communities for the first time, but also the first well-known
ones: the Route Target (RT) and Route Origin (RO). The first
one perfectly applies to the introduced Data Center use-case,
as it states:

The Route Target Community identifies one or more
routers that may receive a set of routes (that carry
this Community) carried by BGP. This is transitive
across the Autonomous System boundary.
Looking further on the subsequent RFC 4364 [15], the role of
this extended community is more deepened:

Every VRF is associated with one or more Route
Target (RT) attributes.
[...]
A Route Target attribute can be thought of as iden-
tifying a set of sites. (Though it would be more
precise to think of it as identifying a set of VRFs.)
Associating a particular Route Target attribute with
a route allows that route to be placed in the VRFs
that are used for routing traffic that is received from
the corresponding sites.
Hence, if a given rule only applies to specific segments,
the RT extended community is the most suitable and well-
known option to reduce the rule recipients range to those

VRFs. This is highly recommended to make the Data Center
even higher scalable. On the other hand, though, this could
be not sufficient: moving the firewall to a host-based variant
would be, instead. But this specific focus is beyond the scope
of this research.

VI. EXPERIMENTS

In order to realise the proof of concept relying on an open
source implementation of the BGP protocol, which shipped
with the Flow Specification protocol, the range of possibilities
is not wide.

One of the oldest open source alternatives is Quagga [16]. It
is a routing software suite, which provides the implementation
of not only BGP, but also of Open Shortest Path First (OSPF)
and Routing Information Protocol (RIP). It has started as a
fork of GNU Zebra [17], which was developed by Kunihiro
Ishiguro. The drawback with Quagga is that it is no more
actively mantained, nor shipping with the Flow Specification
implementation and has been therefore discarded. Also, Open-
BGPD [18]], which is a BGP-only router, has been discarded as
well, as only implementing a limited set of RFC related to the
BGP protocol, among which there is no the Flow Specification
one. On the other hand, ExaBGP [19] correctly implements
BGP as well as the Flow Specification protocol, but it does
not manipulate the local Forwarding Information Base (FIB).

These constraints led the choice to a combination of Bird
[20] and Free Range Routing (FRR) [21]]. The first one was
originally developed as a school project at Faculty of Math
and Physics, Charles University Prague, and during last years
added support for several routing protocols, as well as BGP
and Flow Specification. The latter is born as a fork of Quagga
and aims to seamlessly integrate with the native Linux/Unix IP
networking stacks. Anyway, both share a specular drawback:
they lack of full Flow Specification protocol implementation.

In fact, the Flow Specification protocol works relying on
two distinct roles: the controller and the client. The controller
is assigned of spawning of the Flow Specification routes: it
configures them and transmits them to its peers. The latter
receives the Flow Specification routes from the controller
and possibly forwards them to its peers. The reason behind
choosing both Bird and FRR, then, is that the first one only
implements the Flow Specification for the controller use-case,
while the second for the client one.

As starting from version 2, Bird added support for Flow
Specification protocol, version 2.0.7 has been picked. FRR
7.0.1 is running on the other switches.

Furthermore, none of the two software suites is able to inject
Flow Specification routes entries into the underlying system.
This lack led the research to cover also the realisation of the
code needed to make this sphere working, which relies on rules
application over iptables, the utility program used to configure
the Linux kernel firewall.

A. Protocol additions

As discussed in the previous section, the only capability
BGP Flow Specification is missing for the purpose aiming to

spinedl

spined2

spined3 spinedd

leafo2 leafo3

leafo4 svcll svcl2

| | |

srvd3 |

|

srv06

| appol || app02 |

Fig. 2. The Clos network topology adopted to bring on the proof of concept, composed of four main spine switches, three pairs of leaf switches and nine
servers. The BGP Flow Specification controller is configured in the server fw01, while all the other switches are configured as clients.

be achieved is a way to carry, along with the rule, the sequence
number associated to it. Given the nature of a proof of
concept, the complexity of extending the protocol specification
to add such information and the inactivity, regarding the
specific use-case, of already specified extended communities,
the traffic-marker one has been chosen to carry that
information.

Furthermore, it is needed to represent in some way a
rule which defined the default policy: to do that, the route,
regardless of the sequence number associated to it, for which
filters point to source and destination prefixes of 0.0.0.0/0 is
considered the default.

B. Network topology

Fig. 2] represents the virtual network that has been built to
realise the proof of concept. Its topology shape is commonly
known as a Clos network [22] and it is in a simple two-
tier variant: switches at the top are called spine nodes, while
the lower ones are leaf nodes. The spines connect the leaves
with one another, whereas the leaves define how servers get
connected to the network. In this kind of network, in which
spines are working as connectors, the functionality and the
capabilities are pushed out to the edges rather than pulled into
the spines. This is why this scaling model is called scale-out
23]].

The specific network used to perform the experiment is
composed by four spine and six leaf switches. Last pair of
leaves, svc01 and svc02, has been connected to the server
fw01, which works as a Flow Specification controller. All
the other switches are supposed to work as Flow Specification
clients.

It is worth to mention that every switch node in the network
is not a layer-2 switch, but a Cumulus Linux 4.0.0
machine, while all the servers are Ubuntu [25]] 18.04 machines.
Exception made for fw01 machine, all the other servers are
supposed to work as hypervisors which host several virtual
machines, each with at least one dedicated IP.

C. Flow Specification configuration

First operation has been configuring Bird on fw01, to make
it act as a BGP speaker and establish a session with its
neighbours, the leaves svc01 and svc02.

svechl svech2

| swpl: 192.168.254.108/30 | | swpl: 192.168.254.21/30 !

ethl: 192.168.254.9/30

eth2: 192.168.254.22/30

fwol

Fig. 3. Leaves svc01 and svc02 are connected to server fw01 relying on
their swpl interfaces. Each interface is given a /30 IP.

Fig. 3] shows how node fw01 is connected to leaves svc01
and svc02, which have, respectively, AS numbers 65105
and 65106. The Bird server has been configured with the
following parameters to correctly establish a BGP session with
the switches:

template bgp bgp_fs {
local 192.168.254.9 as 65309;

1
2

3 ipvd |

4 import all;

5 export all;

6 bi

7}

8 protocol bgp bgp_svc0l from bgp_fs {
9 neighbor 192.168.254.10 as 65105;

0}
11 protocol bgp bgp_svc02 from bgp_fs {
12 neighbor 192.168.254.21 as 65106;

13 }

On the other end, both the other FRR nodes needed to allow
the new neighbour: this has been done using FRR shell, vtysh,
with the instructions below (which apply to svc01).

1 svcOl# configure terminal
2 svcO0l (conf)# router bgp 65105

3 svc0l (conf-rtr)# neighbor swpl interface
peer—-group underlay

Using this configuration, Bird was capable of exchanging
routes with the switches and constructing a routing table based
on the network BGP graph.

Next step has been enabling the session to exchange Flow
Specification routes. The configuration, controller-side, needed
to incorporate in bgp_ fs template configuration the £1low4
protocol is the following:

flowd table flowtab4;

1
2 protocol static {

3 flowd

4 import all;

5 export all;

6 Vi

7 # sample rule

8 route flowd {

9 src 254.254.254.1/32;

10 dst 254.254.254.254/32;

1 oA

12 bgp_ext_community.add(# traffic-rate: 0.0
13 (generic, 0x80060000, 0x0)

14)

15 }i

16 }

17 template bgp bgp_=fs {
18 [...]

19 flowd {

20 table flowtab4;
21 import all;

22 export all;

23 }i

FRR nodes, on the other hand, needed activate Flow Spec-
ification SAFI:

1 svcOl# configure terminal

2 svcOl (conf)# router bgp 65105

3 svc0l (conf-rtr)# address—-family ipv4 flowspec

4 svcO0l (conf-rtr-af)# do show ip bgp neighbor swpl
s [..0.]

6 For address family: IPv4 Flowspec

7 underlay peer—-group member

8 Update group 18, subgroup 20

9 Packet Queue length O

10 Community attribute sent to this neighbor (all)
1 0 accepted prefixes

As clearly visible, Flow Specification SAFI was enabled
but prefixes were neither received or applied. Looking further
at the reason behind that discrepancy, FRR log showed the
following:

1 FS Rx Update IPv4 to 254.254.254.254/32 from
254.254.254.1/32 EC{FS:rate 0.000000}
SNOTIFICATION: rcvd End-of-RIB for IPv4 Flowspec
from swpl in vrf default
3 S%NOTIFICATION: received from neighbor swpl 3/1
(UPDATE Message Error/Malformed Attribute
List) 0O bytes

)

Apparently, as a response to the service switches try to relay
Flow Specification routes, the controller was giving back a
Malformed Attribute List error. So, the UPDATE message sent
by the controller was valid, as correctly parsed by the FRR
receivers and the problem came up when receivers needed
to redistribute the same routes, where they got corrupted.
The reason behind this bug was a manual alteration of Flow
Specification NLRI length, which caused a mismatch between
the NLRI length calculation and its effective one. Working
together with Cumulus Networks engineers, a new contribution
has been done at that regard, to properly fix FRR Flow
Specification routes redistribution [26].

In fact, patching the FRR instance installed on the switches,
fixed the issue and now peers were able to both establish a
Flow Specification enabled BGP session and relay routes:

svc0l# show bgp ipv4 flowspec

[...]
Network Next Hop Metric LocPrf Weight Path

x> to 254.254.254.254/32 from 254.254.254.1/32 0
65309 1

S

Displayed 1 routes and 1 total paths
svcOl# show bgp ipv4 flowspec detail json
[

© ® 9 o v

{
10 "to":"254.254.254.254\/32",

11 "from":"254.254.254.1\/32"

12 by

14 "ecomlist":"FS:rate 0.000000"
15 },

17 "time":"00:20:28"

Spawning the same instructions to enable Flow Specification
SAFI for all peers sessions, all the switches were able to
receive the routes:

leaf0l# show bgp ipv4 flowspec detail json
[

{
"to":"254.254.254.254\/32",

"from":"254.254.254.1\/32"

"ecomlist":"FS:rate 0.000000"

1
2

3

4

5

6 by
7

8

9 br
{

1 "time":"00:22:33"

D. Flow Specification injection

As already noted, the injection of Flow Specification rules
over the underlying system has been done using iptables. It
is worth the mention, then, that this choice not only has been
possible because of the switches not being effectively layer-2
switches, but Linux machines. It also brought an important
additional simplification. In fact, when applying a rule on
iptables, the utility itself is covering also all the possible cases
of traffic that is inherently related to the original rule, e.g.,
adding a rule to accept traffic from a specific IP prefix to
another one for TCP protocol connections, against a specific
port, will automatically enable also the traffic coming from that
port to the active socket that has been generated to open up
the aforementioned connection. The fig.] shows a perspective
of the whole proof of concept flow.

—
|| E

Chain FORWARD (policy DROP)
1 ACCEPT all -- 254.254.254.1 254.254.254.254

l | — |
| BIRD |

route flowd {

src 254.254.254.1/32;

dst 254.254.254.254/32;
o

bgp_ext_community.add(
(generic, 0x80090000, 0x1)
)3
}

route flowd {

src 0.0.0.0/0;

dst 0.0.0.0/0;
}{

bgp_ext_community.add(
(generic, 0x80060000, 0x0)
)3
I

FETCHER

A
BGP transport

A\
INJECTOR

I 1
FRR

{
. "to":"254.254.254.254\ /32",
"from":"254.254.254.1\/32"
i
{

"ecomlist":"FS:marking 1"

s

"time":"00:00:09"

1
I IPTABLES I I:

Chain FORWARD (policy ACCEPT)

num target prot opt source destination
1 FLOWSPEC all -- anywhere anywhere
[...]

Chain FLOWSPEC (1 references)

num target prot opt source destination
1 ACCEPT all - 2.0.0.1 1.0.0.1

2 DROP all - anywhere anywhere

Fig. 4. From the top, the fetcher iterates over the iptables FORWARD chain,
parsing each entry as a Flow Specification route. It produces a Bird-supported
configuration. The routes get distributed from Bird — the Flow Specification
controller — to FRR — the client — relying on the BGP protocol. The
injector collects the routes from the FRR vtysh shell and inject them into a
iptables dedicated FLOWSPEC chain.

The injector utility has been thought to work in a dual
direction: the first one is effectively used to inject Flow Spec-
ification routes as iptables rules to the underlying system. The
latter, to generate Bird-compatible £1ow4 table configurations
starting from an iptables instance. From now on, the first role
will be referred as injector, while the latter as fetcher.

The fetcher iterates over the iptables FORWARD chain and
parses each entry as a flowspec.Entry object:

1 type Entry struct ({
2 // source prefix
3 Src xnet.IPNet
4 // source port
5 SrcPort x[]int64
6 // destination prefix
7 Dst *net.IPNet
8 // destination port
9 DstPort *[]into64
// IP protocol
1 Proto *[]int64
// ICMP type
ICMPType *[]int64
// ICMP code
ICMPCode *[]int64
Params xstruct ({
// line number
SeqgID *int64
// traffic-rate
Rate xfloato64
// unsupported actions
Unknown map|[string]string
23 }
Time time.Duration

The parsing procedure works by mapping iptables rules
options to the flowspec.Entry object fields, which is
aiming to represent a Flow Specification route. While it is
obvious that most of fields map easily to each others, few
exceptions are made:

1) the default chain policy is parsed as an entry without a
sequence number, the SeqID field, as it will be always
positioned as last rule by the injector

2) the default chain policy is translated as an entry with Src
and Dst fields set to 0.0.0.0/0

3) if the policy is set to DENY, the entry will have the
Params.Rate field set to 0.0

Once proper flowspec.Entry object instances are gen-
erated for each rule of the FORWARD chain, the fetcher
generates a Bird-supported configuration file shipping with
each of the parsed routes.

The injector carries the BGP Flow Specification routes, that
have landed into the FRR nodes as BGP UPDATE packets, to
the underlying system, using iptables, still.

As already shown, the FRR vtysh shell offers a way
to display the BGP Flow Specification routes in the
JavaScript Object Notation (JSON) format. The injector it-
erates over these JSON entries to construct the corresponding
flowspec.Entry objects. Relying on these instances, then,
it applies the rules in a dedicated iptables chain, called
FLOWSPEC, which is referenced as first “jump” instruction
on the FORWARD chain. This approach has been adopted

to not let the injector interfere with other system protocols
that could have already filled the FORWARD chain for their
own purposes. The FLOWSPEC chain contains all the rules
corresponding to the BGP Flow Specification received routes,
ordered by their sequence number.

VII. CONCLUSIONS

The proof of concept demonstrated how the theoretical idea
can be actually implemented relying on the bare BGP Flow
Specification capabilities. Other than that, few clarification are
to be done.

First, the proof of concept relied on iptables to inject the
rules to the underlying system. As already pointed out, this
choice brings a massive simplification, but also the need of
carrying rules numbering. In fact, classical switches operating
systems, on the other hand, do not use iptables to represent
Access Control List (ACL)s, because all switches are level-2
or level-3, nowadays. Even though a proper application of the
idea in that case should be covered by a dedicated research
use-case, rules ordering remains an issue. As BGP Flow
Specification defines a specific way of ordering rules, either
the underlying system should be following the same ordering
convention, or a proper and formal extended community sub-
type should be defined for ordering purposes, such as the
sequence numbers used in the proof of concept.

Also, the research showed how the open source landscape is
not ready at all to offer proper implementation of the protocols
involved in the topic, mainly due to BGP Flow Specification
shortcomings. Other than that, the implementation of rules
injection is completely missing.

A. Further research

First, this research could not deepen into what kind of
additions would be actually needed to extend the role of BGP
Flow Specification to cover also load-balancing capabilities,
adopting the redirect and the traffic-marking ex-
tended community sub-types to let it be able to route traffic
coherently.

Furthermore, as already mentioned, rules ordering remains
a critical issue, that has been solved in a very specific way
which was applicable to iptables. On the other hand, though,
a formal way to handle rules ordering should be defined that
applies to all the sub-systems to which the routes are to be
injected.

To conclude, this research only shows how the distribution
of rules can be limited a (set of) VRF. It would be definitely
useful to deepen the possibilities available to reach an even
further limit, reducing the distribution on a per-host basis,
instead of a per-VRF one.

VIII. ACKNOWLEDGEMENT

The role of Attilla de Groot, the research supervisor, has
been of great help. In his person, a very good practical point of
view has always been found, always accompanied frankness,
both for encouraging or straighten the aim.

Finally, a very sincere thank you goes to Paul Dunn, without
which the whole research would not have been possible:
being colleagues does not necessarily mean being friends, but
being both can only help, both in a professional and human
perspective.

REFERENCES

[1] Lougheed, K. and Rekhter, Y. A Border Gateway Proto-
col (BGP). RFC 1105. RFC Editor, June 1989, pp. 1-17.
URL: https://www.rfc-editor.org/rfc/rfc1105.txt.

[2] Hawkinson, J. and Bates, T. Guidelines for creation,
selection, and registration of an Autonomous System
(AS). RFC 1930. RFC Editor, Mar. 1996, pp. 1-10. URL:
https://www.rfc-editor.org/rfc/rfc1930.txt.

[3] Traina, P. Autonomous System Confederations for BGP.
RFC 1965. RFC Editor, June 1996, pp. 1-7. URL: https:
/Iwww.rfc-editor.org/rfc/rfc1965.txt.

[4] Bates, T. and Chandra, R. BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP). RFC
1966. RFC Editor, June 1996, pp. 1-12. URL: https:
/Iwww.rfc-editor.org/rfc/rfc1966.txt.

[5] Lapukhov, P, Premji, A., and Mitchell, J. Use of BGP
for Routing in Large-Scale Data Centers. RFC 7938.
RFC Editor, Aug. 2016, pp. 1-35. URL: https://www.
rfc-editor.org/rfc/rfc7938.txt.

[6] Marques, P. et al. Dissemination of Flow Specification
Rules. RFC 5575. RFC Editor, Aug. 2009, pp. 1-22.
URL: https://www.rfc-editor.org/rfc/rfc5575.txt.

[7] Amold, T. et al. “Beating BGP is Harder than we
Thought”. In: Nov. 2019, pp. 9—16. 1SBN: 978-1-4503-
7020-2. DOTI: 10.1145/3365609.3365865.

[8] Giotsas, V. et al. “Inferring BGP blackholing activity in
the internet”. In: Nov. 2017, pp. 1-14. por: 10.1145/
3131365.3131379.

[9]1 Bakker, D. Impact-based optimisation of BGP Flowspec
rules for DDoS attack mitigation. Mar. 2019. URL: http:
/lessay.utwente.nl/77598/.

[10] Thaler, D. Reflections on Host Firewalls. RFC 7288.
RFC Editor, June 2014, pp. 1-13. URL: https://www.rfc-
editor.org/rfc/rfc7288.txt.

Toannidis, S. et al. “Implementing a Distributed Fire-
wall”. In: 7th ACM Conference on Computer and Com-
munications Security (CCS) (Apr. 2001).

[12] Keen, H. “IEEE 802.1Q: Virtual Bridged Local Area
Networks”. In: IEEE Network 14 (July 2000), pp. 3-3.

https://www.rfc-editor.org/rfc/rfc1105.txt
https://www.rfc-editor.org/rfc/rfc1930.txt
https://www.rfc-editor.org/rfc/rfc1965.txt
https://www.rfc-editor.org/rfc/rfc1965.txt
https://www.rfc-editor.org/rfc/rfc1966.txt
https://www.rfc-editor.org/rfc/rfc1966.txt
https://www.rfc-editor.org/rfc/rfc7938.txt
https://www.rfc-editor.org/rfc/rfc7938.txt
https://www.rfc-editor.org/rfc/rfc5575.txt
https://doi.org/10.1145/3365609.3365865
https://doi.org/10.1145/3131365.3131379
https://doi.org/10.1145/3131365.3131379
http://essay.utwente.nl/77598/
http://essay.utwente.nl/77598/
https://www.rfc-editor.org/rfc/rfc7288.txt
https://www.rfc-editor.org/rfc/rfc7288.txt

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

Micro-Segmentation with VMware NSX. https://www.
vmware . com / solutions / micro - segmentation . html.
Accessed: 2020-01-30.

Sangli, S., Tappan, D., and Rekhter, Y. BGP Extended
Communities Attribute. RFC 4360. RFC Editor, Feb.
2006, pp. 1-12. URL: https://www.rfc-editor.org/rfc/
rfc4360.txt.

Rosen, E. and Rosen, E. BGP/MPLS IP Virtual Private
Networks (VPNs). RFC 4364. RFC Editor, Feb. 2006,
pp. 1-47. URL: https://www.rfc-editor.org/rfc/rfc4364.
txt.

Quagga. https://www.quagga.net. Accessed: 2020-01-
29.

GNU Zebra. http://www.zebra.org, Accessed: 2020-01-
29.

OpenBGPD. http : // www . openbgpd . org. Accessed:
2020-01-29.

ExaBGP. https://github.com/Exa- Networks/exabgp.
Accessed: 2020-01-29.

Bird. https://bird.network.cz. Accessed: 2020-01-29.
FRRouting. https://frrouting.org. Accessed: 2020-01-29.
Clos, C. “A study of non-blocking switching networks”.
In: The Bell System Technical Journal 32.2 (Mar. 1953),
pp. 406-424. 1SSN: 0005-8580. por: 10.1002/5.1538-
7305.1953.tb01433 x.

Vahdat, A. et al. “Scale-Out Networking in the Data
Center”. In: IEEE Micro 30 (July 2010), pp. 29-41.
DOI: 10.1109/MM.2010.72l

Cumulus Linux. https://camulusnetworks.com/products/
cumulus-linux. Accessed: 2020-01-29.

Ubuntu. https://ubuntu.com. Accessed: 2020-01-29.

Flowspec issue redistribute. https : // github . com /
FRRouting/frr/pull/5717, Accessed: 2020-01-31.

https://www.vmware.com/solutions/micro-segmentation.html
https://www.vmware.com/solutions/micro-segmentation.html
https://www.rfc-editor.org/rfc/rfc4360.txt
https://www.rfc-editor.org/rfc/rfc4360.txt
https://www.rfc-editor.org/rfc/rfc4364.txt
https://www.rfc-editor.org/rfc/rfc4364.txt
https://www.quagga.net
http://www.zebra.org
http://www.openbgpd.org
https://github.com/Exa-Networks/exabgp
https://bird.network.cz
https://frrouting.org
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1109/MM.2010.72
https://cumulusnetworks.com/products/cumulus-linux
https://cumulusnetworks.com/products/cumulus-linux
https://ubuntu.com
https://github.com/FRRouting/frr/pull/5717
https://github.com/FRRouting/frr/pull/5717

	Introduction
	Problem
	Research Question
	Literature
	Research Considerations
	Using BGP Flow Specification

	Experiments
	Protocol additions
	Network topology
	Flow Specification configuration
	Flow Specification injection

	Conclusions
	Further research

	Acknowledgement

