
Detecting Fileless Malicious
Behaviour of .NET C2

Agents using ETW

Authors:
Alexander Bode

Niels Warnars

Supervisors:
Leandro Velasco
Joao de Novais Marques

Course:
Research Project 1

Event Tracing for Windows

2

Enables logging kernel or application data, since Windows 2000

Components of ETW

- Providers
- Controllers
- Consumers

Introduction

Source: Microsoft Docs, 2020

Fileless Malicious Behaviour of .NET C2 Agents

3

.NET assemblies can be dynamically loaded and executed into memory

- Using methods from the System.Reflection namespace
- Allowing remote execution of malicious code

Introduction

Assembly MemoryC#

4

Example

.NET code / executables are uploaded
to bots and executed through the
server by the botnet administrator

Source:Paisan Homhuan/123RF.com

Research Questions

5

Main Research Question

How can ETW be leveraged to detect fileless malicious behaviour of .NET agents used by

popular C2 frameworks?

Introduction

Sub Questions

What language-specific features can be used by .NET C2 agents for fileless attacks?

Which event types are relevant for detecting malicious .NET behaviour?

Importance

6

- Attackers shifting away from PowerShell to malicious .NET

- Logging and tracing support since Windows 2000

- Complexity and volume of data produced by ETW

Introduction

Research Goals
- Find ways to detect .NET agents used by popular C2 frameworks using ETW

- Reduce false-positives and data volume

- Identify limitations of proposed detection methods

Current Research

7

Detection using ETW

- .NET code injection (F-Secure)

- Ransomware (CyberPoint)

Related Work

Bypassing ETW

- For specific events, e.g., Asynchronous Procedure Calls (Tsukerman)

- Disable or delete ETW components (Palentir)

- ETW logs being renamed in the wild (Kaspersky)

Shortcomings

8

Detection using ETW

- Methods for detecting .NET code injection using ETW (F-Secure)

- Inefficient research POC which uses the PyWintrace library

- Relies on high-risk built-in function names

Related Work

Methodology

9

Lab Setup

10

● Virtual Machine 1:

○ OS: Linux

○ Function: Command and Control

server

Methodology

● Virtual Machine 2:

○ OS: Windows 10

○ Function: Logging ETW events during

code execution / loading agents

Investigated C2 frameworks

11

Methodology

Tested four popular C2 frameworks documented by C2 Matrix project

● Generate .NET agents

● Load .NET assemblies into memory

Assembly loading in C2 frameworks
- Executing built-in assembly in Covenant C2

12

Methodology

Log Creation and Analysis

13

1. Determine relevant ETW providers and event names

Methodology

2. Generate ETW logs:

a. Malicious .NET agents

b. Assembly loading POCs

c. Benign .NET software

3. Compare event logs side-by-side

SilkETW

14

● Developed by Ruben Boonen of FireEye

● Logging utility for ETW

● Abstracts complexities

● Entries written to

- JSON file

- Windows Event logs

- Logstash

Methodology

15

SilkETW

SilkETW is installed on hosts to control
ETW sessions and providers Data 🢂 JSON log file

Methodology

16

SilkETW

SilkETW is installed on hosts to control
ETW sessions and providers

Data 🢂 JSON log file

Methodology

17

SilkETW

SilkETW is installed on hosts to control
ETW sessions and providers

Data 🢂 JSON log file

Methodology

Example ETW Event (Simplified)
{

 "ProviderName": "Microsoft-Windows-DotNETRuntime",

 "EventName": "Loader/AssemblyLoad",

 "TimeStamp": "2020-01-17T07:34:18.0794758-08:00",

 "ProcessName": "N/A",

 ...

 "XmlEventData":{

 "AssemblyFlags": "DomainNeutral|Native",

 "FullyQualifiedAssemblyName": "mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=...",

 "EventName": "Loader/AssemblyLoad"

 ...

 }

}

18

{

 "ProviderName": "Microsoft-Windows-DotNETRuntime",

 "EventName": "Loader/AssemblyLoad",

 "TimeStamp": "2020-01-17T07:34:18.0794758-08:00",

 "ProcessName": "N/A",

 ...

 "XmlEventData":{

 "AssemblyFlags": "DomainNeutral|Native",

 "FullyQualifiedAssemblyName": "mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=...",

 "EventName": "Loader/AssemblyLoad"

 ...

 }

}

Methodology

Results

19

Assembly.Load

20

Results

ETW Filtering Steps

Start: Assembly loading POC +

logging all .NET-runtime events

99.937 events

26 types of events

21

Results

End result: Only subscribe to Loader

events

9 events

3 types of events

Manually clear away
irrelevant and
verbose event types
(Unload, GC,
Method/Load, etc.)

Assembly loading seen from ETW (.NET 4.x)

1. Loader/AssemblyLoad (* Optional if a module is loaded into an existing assembly)

2. Loader/ModuleLoad

3. Loader/DomainModuleLoad

22

Results

Assembly loading seen from ETW (.NET 3.5)

1. CLRLoader/ModuleLoad (* Both events contain same information)

2. Loader/ModuleLoad

23

Results

Assembly loading seen from ETW

Assembly: Any executable or module, including:

● .NET application itself

● .NET libraries and dependencies

● Dynamically loaded components

24

Results

AssemblyLoad Event (.NET 4.x)

25

C2 framework Assembly name AssemblyFlags PublicKeyToken

Covenant "jhyfwkp2.hwm" "0" null

PoshC2 "Core" "0" null

FactionC2 "stdlib" "0" null

SilentTrinity "Stage" "Dynamic" null

Legit Module Assembly name AssemblyFlags PublicKeyToken

mscorlib.dll (as observed in
Assembly.Load POC)

mscorlib "DomainNeutral|Native" b77a5c561934e089

mscorlib.dll (as observed in
Covenant agent)

mscorlib "DomainNeutral" b77a5c561934e089

Results

ModuleLoad Event (.NET 4.x)

26

C2 framework ModuleILPath ModuleNativePath ModuleFlags

Covenant "jhyfwkp2.hwm" "" "Manifest"

PoshC2 "Core" "" "Manifest"

FactionC2 "stdlib" "" "Manifest"

SilentTrinity "Stage.exe" "" "Dynamic"

Legit Module ModuleILPath ModuleNativePath ModuleFlags

mscorlib.dll (as observed in
Assembly.Load POC)

"C:\\[...]\\mscorlib.dll" "C:\\[...]\\mscorlib.ni.dll" "DomainNeutral|Native|
Manifest|0x10"

mscorlib.dll (as observed in
Covenant agent)

"C:\\[...]\\mscorlib.dll" "" "DomainNeutral|Manifest"

Results

ModuleLoad Event (.NET 3.5)

27

C2 framework ModuleILPath ModuleNativePath ModuleFlags

Covenant "" "" "0"

FactionC2 "" "" "0"

Legit Module ModuleILPath ModuleNativePath ModuleFlags

mscorlib.dll (as observed in
Assembly.Load POC)

"C:\\[...]\\mscorlib.dll" "C:\\[...]\\mscorlib.ni.dll" "3" (DomainNeutral|Native)

mscorlib.dll (as observed in
Covenant agent)

"C:\\[...]\\mscorlib.dll" "" "1" (DomainNeutral)

Results

ModuleLoad Signature

28

Results

Field Value

ModuleILPath No absolute path (i.e. exclude slashes)

ModuleNativePath Empty string

ModuleFlags (if present) "0", "Dynamic" or "Manifest"

ModuleLoad Signature - FP Testing

Tested against numerous .NET applications:

● Paint.NET

● KeePass

● Visual Studio

No false positives

29

Results

Discussion

30

Limitations - General Considerations

● Assembly loading may occur for legitimate reasons

● Only performed limited false-positive testing

● Different .NET versions result in different event output

31

Discussion

Conclusion

32

Conclusion

33

How can ETW be leveraged to detect fileless malicious behaviour of .NET agents used by C2 frameworks?

● Agents of multiple C2 frameworks dynamically load assemblies

● Detection possible based on ModuleLoad event

Future Work

● Investigate other use cases of ETW for endpoint monitoring

● Investigate real-world implementation of detection

34

Questions?

35

Backup slides

36

Limitations - ModuleLoad signature

● ModuleLoad signature relies on absence of full path

● Loading assembly file from disk results in absolute path logged in ModuleILPath
○ Assembly.LoadFile(string path)
○ Assembly.LoadFrom(string assemblyName)

37

Limitations - ModuleLoad signature

● ModuleLoad signature relies on absence of full path

● For dynamically loaded assembly, ModuleILPath = assembly name
● Bypass: Patch assembly name with fake path to get fake absolute path logged in ModuleILPath

38

Documentation

39

Event Field Description

AssemblyLoad AssemblyFlags Type of assembly

PublicKeyToken "Last 8 bytes of the SHA-1 hash of the public key under which the application
is signed."

ModuleLoad ModuleILPath "Path of the Microsoft intermediate language (MSIL) image for the module, or
dynamic module name if it is a dynamic assembly."

ModuleNativePath "Path of the module native image, if present"

ModuleFlags Type of module

Sources:
● https://docs.microsoft.com/en-us/dotnet/framework/performance/loader-etw-events
● https://docs.microsoft.com/en-us/dotnet/api/system.applicationid.publickeytoken

Assembly.Load Variants

Assemblies can be loaded using:

● Assembly.Load

● Assembly.loadFile

● Assembly.LoadFrom

● Assembly.LoadModule

● Assembly.LoadWithPartialName

● Assembly.UnsafeloadFrom

40

