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Abstract—Attackers are interested in bypassing malware de-
tection. One of the techniques they rely on is by ensuring that
malicious code only reside in memory and not on disk. This can
amongst others things be achieved using .NET’s Assembly.Load
function, which can load .NET executables into memory without
touching the disk. Multiple command-and-control frameworks
implement the technique for its usefulness.

Our research looked into whether Event Tracing for Windows
(ETW) could be used to detect this type of executable loading that
uses the .NET software framework. An analysis and comparison
of ETW logs generated in our experiments showed that it is
possible to identify assembly loading from memory using ETW.
The proposed detection method relied on the ModuleLoad event
provided by the .NET runtime ETW provider and a specific set
of expected values. In the performed test cases, the detection
signature could correctly identify in-memory .NET executable
loading operations. The aim of this study is to provide defenders
with valuable insight into detecting malicious fileless behaviour
of .NET C2 agents.

I. INTRODUCTION

One of an attacker’s goal may be to stay undetected during
a compromise. To do so, the adversary may make use of
tools and functionality provided by the operating system
and script-based malware relying on, e.g., PowerShell [1].
Increased awareness and detection capabilities of defenders
result in attackers shifting away from PowerShell to, amongst
other things, malicious .NET applications [2] [3]. One of the
advantages .NET offers is that code can be dynamically loaded
and executed in memory, thus allowing malicious code to be
executed from memory by a lightweight agent instead of it
residing in an executable on disk [4]. Recent attention to Event
Tracing for Windows (ETW) has led to the idea of using
event tracing to detect malicious behaviour of applications.
ETW includes mechanisms to log and trace events issued by
user-mode applications and kernel-mode drivers. Relatively
little research has addressed the question of how ETW could
be used for the detection of malicious software. However,
challenges remain due to the complexity and volume of
generated data. This study aims to address the challenges and
to provide a generic solution for detecting malicious .NET
software that is loaded into memory by popular command and
control (C2) frameworks.

RESEARCH QUESTIONS

The focus of our research is the detection of .NET agents
used by popular C2 frameworks, also known as command
and control frameworks, using Event Tracing for Windows.
The main research question is therefore defined as:

How can ETW be leveraged to detect fileless malicious
behaviour of .NET agents used by popular C2 frameworks?

This results in the following sub-questions:
• What language-specific features can be used by .NET C2

agents for fileless attacks?
• Which event types are relevant for detecting malicious

.NET behaviour?

A. Structure

The remainder of this paper has the following structure;
In section II we look at highlights of research performed by
others that relates to ours. In section III we give a high-level
overview of ETW and the C2 frameworks that are used during
the experiments. In section IV we define our approach to
determine how ETW can be used to detect malicious .NET C2
agents. In section V we present the findings of our evaluation.
In section VI we give interpretations, discuss the implications
and highlight the limitations of the study. Using the results of
the experiments, we will draw conclusions and present those
in section VII. The last section, VIII, contains suggestions for
future work.

II. RELATED WORK

Earlier work on ETW arises primarily from industry re-
search and is presented in blog posts.

A. Detecting .NET code injection

F-Secure has for example investigated methods for detecting
.NET code injection using ETW, but only showed which
related events exist. Their Python-based proof of concept
relied for its detection on, among other things, the names
of high-risk methods and namespaces, while using the in-
efficient PyWinTrace library. They also state that their PoC
is only intended as a research and exploration tool and is
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inefficient at processing data [4] [5]. More generic attempts of
detecting malicious behaviour have also been made. Lelonek
et al. of CyberPoint, e.g., showcased an ETW-based PoC for
detecting ransomware by monitoring read and write operations
performed by suspicious applications [6].

B. Bypassing ETW

First impressions of ETW made us hypothesise that Event
Tracing for Windows can give an in-depth picture of the
behaviour of .NET agents. ETW bypasses exist though; Tsuk-
erman demonstrated that an ETW sensor for detecting Asyn-
chronous Procedure Calls can be circumvented [7]. Palentir
documented that ETW logging can be subverted if malware or
a malicious user has administrator or SYSTEM-level privileges
[8]. Bypasses are also used in the wild. Kaspersky documented
that the Slingshot APT group, amongst others, avoids detection
by renaming ETW log files [9].

C. C2 Frameworks

The C2 Matrix Team actively investigate popular C2 frame-
works and share details that are useful for adversary emulation
plans [10]. This includes information, such as programming
languages used for the C2 servers and agents, the type of
user interface, API presence and the support of common
capabilities for each C2 framework.

III. DESIGN

In this section we will give an overview of ETW and
the C2 frameworks that will be investigated. We will take
a look at functionalities of ETW that can be leveraged for
detecting malicious software. For each C2 framework, relevant
characteristics of the C2 framework will be briefly mentioned,
followed by the specification of hardware and software used
during the experiments.

A. Event Tracing for Windows

Event Tracing for Windows enables logging kernel level or
user-mode application data. It can, amongst other things, be
used for debugging an application or detecting performance
issues. Event Tracing for Windows has been included in the
Windows kernel since Windows 2000 [11]. Kernel events that
ETW can log include executed system calls, Windows Registry
access, memory allocation and more [12] [13]. The type of
log traces produced by individual user-mode ETW providers
differs per provider. The trace data can be consumed in real-
time or by writing it to a file first. The output of the sessions
can be highly detailed and large in volume. The verbosity of
the trace data gives potential for leveraging the logs to detect
malicious behaviour of software.

ETW consists of three type of components, including:
1) Controllers
2) Consumers
3) Providers

Controllers are utilities that are used to start or stop logging
sessions and enable or disable providers [14]. These can be

software, such as applications, libraries or services, either
custom or developed by Microsoft. ETW uses Win32 API’s
to control the sessions and associate sessions with providers
[15].

Consumers are tools that are used to view and parse trace
data that are generated from trace sessions, either from stored
log files or in real-time [14]. These can be software, such
as applications or libraries, either custom or developed by
Microsoft. The consumer must support the format of the event
data to be able to consume the events.

Providers are applications that contain instrumentation [14],
i.e. the conceptual components that provide the events [15].
Event tracing sources are separated under providers, e.g.,
Microsoft-Windows-VolumeControl for volume control and
Microsoft-Windows-USB-UCX for USB devices. Events can
further be filtered per category using keywords, which are 64-
bit bitmask values used to group similar events. The events
do not have to come from a single source, such as a single
dynamic-link library or executable [15].

B. C2 Frameworks

All tested C2 frameworks can generate agents written in C#
that use the .NET software framework. The .NET framework
includes a large class library, supports multiple languages
including C# and is developed by Microsoft [16].

More importantly, the studied C2 frameworks can load
.NET assemblies from memory. A .NET assembly is a .NET
executable or library that can exist standalone or can be used
by other assemblies [17]. Functionality to load assemblies into
memory is provided by methods from the Assembly class of
the ”System.Reflection” namespace [18]. The investigated C2
frameworks load additional assemblies onto infected machines
by pushing an assembly from the C2 server to the agent that
subsequently executes the assembly from memory. Various
proof of concept implementations that can load assemblies
into memory are included in appendix section IX-A.

We investigated the following C2 frameworks:
• Covenant v0.4
• PoshC2 v5.2
• Faction C2 v20.10.2019
• SilentTrinity v0.46

Covenant is a C2 framework that focuses on the usage of
.NET on Windows systems. The server is written in C# and
can generate .NET Core 2.1, .NET 3.5 and .NET 4.0 agents.
Covenant includes a set of .NET assemblies which can be
executed by issuing a new task from within the web interface
[19].

PoshC2 is written in Python and can generate agents written
in PowerShell, C# or Python. It allows users to extend its
functionality by following a modular format. PoshC2 payloads
are frequently updated to bypass anti-virus products [20].

Faction is another C2 framework that focuses on the usage
of .NET on Windows systems. The server is written using the
.NET framework and can generate .NET 3.5 and .NET 4.5
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agents. However, Faction supports custom agents of any pro-
gramming language. The framework supports using language-
specific modules for interacting with its agents [21].

SilentTrinity is a C2 framework that is written in Python
and can generate C# agents that support using the open-source
IronPython implementation, which allows loading .NET as-
semblies into memory [22]. The agent requires that .NET
4.5 or a newer version is installed on the system so that the
ZipArchive library is included and the IronPython DLLs can
be compiled against .NET 4.0 [23].

IV. METHODOLOGY

To determine how ETW can be used to detect malicious
.NET agents, a test environment was setup containing:

• Kali Linux host running a C2 server for controlling the
agents

• Windows 10 host running benign or malicious software
and tooling for controlling and logging event traces

We used the following hardware and operating system
software to conduct our experiments on:

• Intel Core i7 Quad-Core CPU @ 3.60GHz
• 16GB RAM
• Kali GNU/Linux Rolling 2019.2 VM
• Microsoft Windows 10 Pro Build 18362 VM

The steps taken for gathering and analysing data can be
outlined as follows:

1) Determine relevant ETW providers and events
2) Generate event trace logs of the execution of:

• Malicious .NET C2 agents
• Assembly loading PoCs
• Benign .NET software

3) Compare the generated logs side-by-side
4) Create detection method and automate detection
5) Identify limitations of detection methods

The first step to our approach was to determine the relevant
ETW providers, ETW keywords and event names. Previous
research by F-Secure served as a starting point. F-Secure
documented two providers that are relevant for logging event
traces of .NET software [4]:

1) Microsoft-Windows-DotNETRuntime
2) Microsoft-Windows-DotNETRuntimeRundown

F-Secure’s Python-based proof of concept consumed .NET-
Runtime Loader events [24]. Nevertheless, we wanted to
independently determine the relevant .NET-Runtime events.
Therefore, for one of the assembly loading proof of concepts,
a full log trace was generated without filters. Irrelevant and
verbose event types were subsequently manually removed.

The next step included generating the event tracing logs of
the different test cases. SilkETW v0.8 was used to control
and consume the ETW traces during the experiments [25].
SilkETW is a C# wrapper for ETW that abstracts complexities

of ETW. It provides an interface to start or stop trace sessions
and outputs logged data to a serialized JSON file [26].

The first test case consisted of tracing the execution of
four agents that were generated by the C2 servers of the
different frameworks. Depending on the framework, agents
built for the following .NET versions were tested: v3.5, v4.0,
and v4.5. During the experiments, the agents were instructed
from the C2 server to execute at least one command. This
would ensure that a second stage .NET payload containing
additional functionality or a .NET assembly containing code
to execute the issued command was loaded from memory and
executed by the agent.

The second test case was intended to investigate the impact
of different assembly loading methods and .NET versions
on the generated events. The .NET versions are taken into
consideration because the C2 frameworks can generate agents
for different .NET versions. For the study, traces were logged
of the execution of custom .NET executables that load a .NET
assembly from memory or disk in one of three ways:

• Loading an assembly from memory using Assembly.Load
• Loading an assembly from disk using Assembly.LoadFile
• Creating an assembly dynamically and subsequently

loading the payload into the dynamic assembly using
Module.LoadModule, based on an implementation from
Graeber, 2018 [27].

Proof-of-concept code of these implementations is included
in appendix section IX-A.

The third test case was designed to compare the event
trace logs of malicious software with the trace logs of benign
software. In this experiment, ETW logs were generated of
three benign .NET applications. These programs included:

• Paint.NET 4.2.8
• KeePass 2.44
• Visual Studio 2019.16.4.2

The logs were manually inspected and compared side
by side to see if there are any anomalies. This was done
primarily to detect the behaviour of the .NET agents that
invoke assemblies into memory using the methods of the .NET
reflection namespace [18]. Based on the anomalies, a method
was devised to detect in-memory loaded assemblies.

Finally, the detection method was automated using a custom
script written in Python, after which we looked at ways to
bypass the constructed detection method. The script works on
logs generated by SilkETW and makes it possible to more
easily test for detection.

V. RESULTS

The results section covers the outcomes of the performed
experiments to understand assembly loading by .NET appli-
cations and describes how a detection method was developed
for in-memory assembly loading.
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A. ETW Providers and Filters

F-Secure documented that two providers generate events
for .NET applications [4]. Initial testing showed that the
Microsoft-Windows-DotNETRuntime was the runtime that
should be used. To determine the relevant events, a full ETW
log trace without filters was created of the Assembly.Load
proof of concept.

The log trace contained 99937 generated events, divided
over 26 event types. This number was reduced by manually
removing irrelevant event types and included, e.g., method
loading, unloading and garbage collection events.

In the end, we determined that only Loader events had to
be logged, which contain information related to the loading
of application domains, assemblies and modules [28]. This
matches with the events logged by F-Secure’s detection proof
of concept [24].

Our tests show that assembly loading in a .NET 4.x appli-
cation results in the logging of up to three events, namely:

• AssemblyLoad
• ModuleLoad
• DomainModuleLoad

For .NET 3.5 applications, only ModuleLoad events are
logged.

B. Event analysis

The test runs revealed that two types of .NET-runtime events
could be useful for detecting in-memory assembly loading,
namely AssemblyLoad and ModuleLoad events.

1) AssemblyLoad event: The first observation we made, is
that for many legitimate .NET modules a Public Key Token
value is set. The assemblies loaded from memory by the C2
agents were unsigned and did not have a Public Key Token
value set, as is shown in table II. The PublicKeyToken value
is only set when a .NET assembly is strong named [29].
Strong naming is optional and therefore, the in-memory loaded
assemblies together with our assembly loading PoCs and also
some benign software applications are not strong-named and
have a Public Key Token value of null.

The observation that the assemblies loaded from memory
have no Public Key Token value, matches with the Assembly-
Load events generated by our assembly loading PoCs. A list
of AssemblyLoad events generated by our assembly loading
PoCs can be found in appendix IX-B.

Legitimate
Module

Assembly name PublicKeyToken

mscorlib.dll ”mscorlib” b77a5c561934e089

TABLE I: AssemblyLoad event values when a legitimate
module, in this case mscorlib.dll, is loaded

2) ModuleLoad event: A comparison between ModuleLoad
events generated by legitimate modules (table III) and as-
semblies loaded from memory (table IV and V), shows
that loading assemblies from memory results in ModuleLoad

C2 Agent Assembly name PublicKeyToken
Covenant ”jhyfwkp2.hwm” null

PoshC2 Sharp ”Core” null
Faction ”stdlib” null

SilentTrinity ”Stage” null

TABLE II: Overview of AssemblyLoad event values when a
second stage assembly (or equivalent) is loaded by an agent

events containing a ModuleILPath value with merely the
assembly name. The ModuleILPath field contains the path of
the Microsoft intermediate language image of a module [30]
[28]. Assemblies that are loaded directly into memory lack
a full path value. Instead, only the name of the assembly is
given as the ModuleILPath value. Therefore, a signature for
this behaviour can filter on ETW events of the .NET runtime
that have a ModuleILPath value where the backslashes are
missing.

Additionally, none of the ModuleLoad events resulting from
assemblies loaded by the C2 agents contained a Module-
NativePath, as is shown in appendix IX-C. The ModuleNa-
tivePath and the ”Native” module flag are set if a native
image is present, meaning that an assembly has been pre-
compiled into machine code. Using pre-compiled native im-
ages increases performance because the .NET runtime does
not have to compile the module every time it is loaded [31].

The observation that in-memory loaded assemblies result in
a ModuleILPath value containing only the assembly name and
not a full path, matches with the ModuleLoad events generated
by our assembly loading proof-of-concept implementations.
The same holds for the absence of the ModuleNativePath
value, which if present is the path of the native image [28]. A
list of ModuleLoad events generated by our assembly loading
PoCs can be found in appendix IX-B.

Legitimate
Module

ModuleILPath ModuleFlags

mscorlib.dll ”C:\\[...]\\mscorlib.dll” ”DomainNeutral|
Manifest”

TABLE III: ModuleLoad event values when a legitimate
module, in this case mscorlib.dll, is loaded

C2 Agent ModuleILPath ModuleFlags
Covenant ”jhyfwkp2.hwm” ”Manifest”

PoshC2 Sharp ”Core” ”Manifest”
Faction ”stdlib” ”Manifest”

SilentTrinity ”Stage” ”Dynamic”

TABLE IV: Overview of ModuleLoad event values when a
second stage assembly (or equivalent) is loaded by a .NET
4.x agent

C2 Agent ModuleILPath ModuleFlags
Covenant ”” ”0”
Faction ”” ”0”

TABLE V: Overview of ModuleLoad event values when a
second stage assembly (or equivalent) is loaded by a .NET
3.5 agent

4



C. Detection Method

Based on the ModuleLoad-events observed in the test cases,
we can see that in-memory assembly loading results in cer-
tain values being logged. Based on the observed values, the
following detection signature can be derived that can detect
in-memory assembly loading performed by the C2 agents:

Field Value

ModuleILPath No absolute path
(i.e. exclude slashes)

ModuleNativePath Empty string
ModuleFlags
(if present) ”0”, ”Dynamic” or ”Manifest”

TABLE VI: Signature to detect in-memory assembly loading
by the C2 agents based on the ModuleLoad event

The signature has been implemented in a Python script that
can consume a JSON log file generated by SikETW and is
available in appendix IX-D.

D. Reducing False Positives

For completeness, the detection signature was tested against
multiple benign .NET applications. It is important to know
whether the developed detection method triggers on Mod-
uleLoad events generated by legitimate software, therefore the
signature was tested on ETW logs generated while opening the
following .NET applications:

• Paint.NET 4.2.8
• KeePass 2.44
• Visual Studio 2019.16.4.2
In this limited testing, the signature did not flag on any

events.

VI. DISCUSSION

The overall purpose of this study is to determine whether
ETW can be used to detect fileless malicious behaviour of C2
agents that make use of the .NET software framework.

A. Interpretations

An analysis of the investigated C2 frameworks shows that
multiple frameworks dynamically load additional components
into the .NET agent process. ETW logs generated while tracing
the behaviour of the agents show that this technique leaves
specific traces.

B. Implications

Based on a comparison of in-memory assembly loading and
benign module loads, the characteristics of assemblies loaded
from memory appear to be distinct enough to be useful in
helping to identify malicious .NET behaviour. The proposed
detection method can detect assembly loading performed by
the studied agents and our proof of concepts.

C. Limitations

Despite the promising indicators, our research has some
limitations:

• First of all, benign software may also use in-memory
assembly loading. It is unknown how often this oc-
curs, only limited false-positive testing was performed
to study whether legitimate applications load assemblies
into memory the same way malicious software does.
Nevertheless, observing dynamically loaded modules is
still an indicator of potentially malicious behaviour.

• Secondly, attackers with knowledge of implemented de-
tection methods can bypass or complicate detection. The
proposed ModuleLoad-signature identifies an assembly
loaded from memory by checking whether the Mod-
uleILPath field contains slashes or backslashes. Only
the assembly name is logged for an assembly loaded
from memory, not a full path. The assembly’s name is
hardcoded in the .NET executable and can be replaced
with a name that resembles a fake path. This way,
whenever the assembly is loaded in memory a fake path
is logged in the ModuleILPath field, thus creating the
appearance of an absolute file path in logs. This method
can bypass the proposed detection method. However, this
bypass technique was not observed in any of the tested
C2 frameworks.

Fig. 1: .NET executable with patched assembly name

VII. CONCLUSION

Due to increased awareness and detection capabilities of
defenders, attackers are shifting towards the use of .NET for
its evasive capabilities. Our research aimed to identify methods
to detect malicious fileless behaviour of .NET agents used by
popular C2 frameworks using ETW. Based on a qualitative and
experimental analysis, it can be concluded that multiple .NET
agents acquire additional functionality by loading assemblies,
that were sent by the C2 server, from memory. Loading
assemblies into memory using .NET was detectable in the
performed test runs. The test runs included a selection of
C2 agents, custom software that loaded .NET assemblies
into memory and a selection of benign software. Besides a
detection method that can detect in-memory assembly loading,
our research also identified the limitations of the proposed
detection technique. Despite new efforts to detect malicious
fileless malicious behaviour of .NET C2 agents, more research
is necessary to implement detection with ETW into production
environments.

VIII. FUTURE WORK

Our research has shown that in-memory assembly loading
is used by multiple .NET C2 frameworks and that the agents
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exhibit specific properties that can be logged with ETW.
Nevertheless, more work can be done on .NET malware
detection.

• First, false-positive testing was only performed on a small
number of benign .NET applications. More testing is
required to determine false positive rates in a production
environment.

• Secondly, the scope was limited to identifying unique
characteristics that may be useful for detection. Inves-
tigating how detection using ETW can be practically and
efficiently implemented on endpoints or in a security
information and event management system was out of
scope and is left as future work.

• Finally, our research focused on detecting a specific
type of malicious behaviour. Future research can possibly
result in other use cases of ETW for malware detection.

To summarize, more research into additional use cases of
ETW and practical .NET malware detection using ETW is
favourable, our research has provided some building blocks
on which future work can build on.
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IX. APPENDIX

A. Assembly.Load PoCs

1) Assembly.Load:

var payload = Convert.FromBase64String("[PAYLOAD REMOVED]");

// Load assembly
var asm = Assembly.Load(payload);

// Execute payload
asm.EntryPoint.Invoke(0, new object[] { new string[] { } });

2) Assembly.LoadFile:

var path = "[PATH REMOVED]";

// Load assembly
var asm = Assembly.LoadFile(path);

// Execute payload
asm.EntryPoint.Invoke(0, new object[] { new string[] { } });

3) Assembly.LoadModule:

// Derived from:
https://gist.github.com/mattifestation/8958b4c18d8bca9e221b29252cfee26b↪→

var payload = Convert.FromBase64String("[PAYLOAD REMOVED]");

// Define assembly name
var an = new AssemblyName("asm");

// Create builder for dynamic assembly
var ab = AssemblyBuilder.DefineDynamicAssembly(an, AssemblyBuilderAccess.Run);

// Define dummy module necessary for assembly creation
var mb = ab.DefineDynamicModule("dummy");

// Define payload module, the payload module is loaded at a later stage
ab.DefineDynamicModule("payload");

// Define dummy class necessary for assembly creation
var tb = mb.DefineType("dummy");

// Create type
var type = tb.CreateType();

// Load payload module into assembly
var module = type.Assembly.LoadModule("payload", payload);

// Execute payload
module.GetTypes()[0].GetMethods()[0]Invoke(0, new object[] { new string[] { } });
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B. Event comparison of assembly loading PoCs

1) .NET 4.0: AssemblyLoad event:

Action triggering AssemblyLoad event Assembly name AssemblyFlags PublicKeyToken
Loading of mscorlib library ”mscorlib” ”DomainNeutral|Native” b77a5c561934e089

Loading of main executable file ”[name]” ”0” null
Assembly.Load ”[name]” ”0” null

Assembly.LoadFile ”[name]” ”0” null
Assembly.LoadModule ”asm” ”Dynamic” null

Note: AssemblyLoad events are not generated for .NET 3.5 applications.

2) .NET 4.0: ModuleLoad event:

Action triggering ModuleLoad event ModuleILPath ModuleNativePath ModuleFlags

Loading of mscorlib library ”[path]\\mscorlib.dll” ”[path]\\mscorlib.ni.dll”
”DomainNeutral|Native

|Manifest|0x10”
Loading of main executable file ”[path]\\[name].exe” ”” ”Manifest”

Assembly.Load ”[name]” ”” ”Manifest”
Assembly.LoadFile ”[path]\\[name].exe” ”” ”Manifest”

Assembly.LoadModule (1) ”asm” ”” ”Dynamic|Manifest”
Assembly.LoadModule (2) ”payload” ”” ”Dynamic”

3) .NET 3.5: ModuleLoad event:

Action triggering ModuleLoad event ModuleILPath ModuleNativePath ModuleFlags

Loading of mscorlib library ”[path]\\mscorlib.dll” ”[path]\\mscorlib.ni.dll”
”3” /

”DomainNeutral|Native”
Loading of main executable file ”[path]\\[name].exe” ”” ”0”

Assembly.Load ”” ”” ”0”
Assembly.LoadFile ”[path]\\[name].exe” ”” ”0”

Assembly.LoadModule (1) ”asm” ”” ”4” / ”Dynamic”
Assembly.LoadModule (2) ”dummy” ”” ”4” / ”Dynamic”
Assembly.LoadModule (3) ”payload” ”” ”4” / ”Dynamic”

C. Event comparison of .NET agents

1) AssemblyLoad event:

Agent .NET
Version Assembly name AssemblyFlags Public

KeyToken
Covenant 4.0 ”jhyfwkp2.hwm” ”0” null

PoshC2 Sharp 4.0 ”Core” ”0” null
Faction 4.5.2 ”stdlib” ”0” null

SilentTrinity 4.0 ”Stage” ”Dynamic” null

Note: The AssemblyLoad events listed above were generated when a second stage assembly (or equivalent) was loaded into
the agent process. AssemblyLoad events are not generated for .NET 3.5 applications.

2) ModuleLoad event:
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Agent .NET
Version ModuleILPath Module

NativePath ModuleFlags

Covenant 3.5 ”” ”” ”0”
Covenant 4.0 ”jhyfwkp2.hwm” ”” ”Manifest”

PoshC2 Sharp 4.0 ”Core” ”” ”Manifest”
Faction 3.5 ”” ”” ”0”
Faction 4.5.2 ”stdlib” ”” ”Manifest”

SilentTrinity 4.0 ”Stage” ”” ”Dynamic|Manifest”
SilentTrinity 4.0 ”Stage.exe” ”” ”Dynamic”

Note: The ModuleLoad events listed above were generated when a second stage assembly (or equivalent) was loaded into
the agent process.

D. moduleload.py - ModuleLoad detection script

#!/usr/bin/env python3
#
# Script to detect .NET assemblies loaded from memory.
# The expected input file is a JSON log file created by SilkETW.
import json
import sys

def check_moduleload(j):
if (

"EventName" not in j or
"XmlEventData" not in j or
"ModuleILPath" not in j["XmlEventData"] or
"ModuleNativePath" not in j["XmlEventData"]

): return False

event_name = j["EventName"]
xml_event_data = j["XmlEventData"]
module_il_path = xml_event_data["ModuleILPath"]
module_native_path = xml_event_data["ModuleNativePath"]

if (
not event_name.endswith("/ModuleLoad") or
"\\" in module_il_path or
"/" in module_il_path or
module_native_path != ""

): return False

if "ModuleFlags" in xml_event_data:
module_flags = xml_event_data["ModuleFlags"]
if module_flags not in ["0", "Dynamic", "Manifest"]: return False

return True

def main():
if len(sys.argv) != 2:

sys.exit("Usage: moduleload.py <SilkETW JSON file>")

lines = open(sys.argv[1]).readlines()

for line in lines:
try:

j = json.loads(line)
if check_moduleload(j):

print(j)
except ValueError:

pass

if __name__ == '__main__':
main()
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