
Ibis Data Serialization in
Apache Spark

By Dadepo Aderemi and Mathijs Visser
Supervisors:

dr. Jason Maassen (eScience Center)
Adam Belloum (UvA)

We live in a big data world
- Increase in data generation: IoT,

mobile devices, social media,
logs from large scale software
etc.

- Large and complex data sets
- Beyond ability of traditional

software tools.
- Rich analytical potential

2
Image source: https://towardsdatascience.com/what-is-big-data-lets-answer-this-question-933b94709caf

We live in a big data world
- Big data is essential not only in

business but in Science
- Computational Astrophysics, Climate

Modeling, Medical and Pharmaceutical
research etc.

- Volume 455 Issue 7209, 4 September
2008 of Nature magazine talked about
the challenges of dealing with big data.

- Core problem: Explosion of data that
cannot be managed speedily using
traditional approaches.

3

Big data is high-volume, high-velocity and/or high-variety
information assets that demand cost-effective, innovative
forms of information processing that enable enhanced
insight, decision making, and process automation.

- Gartner Glossary

4

Big data is high-volume, high-velocity and/or high-variety
information assets that demand cost-effective, innovative
forms of information processing that enable enhanced
insight, decision making, and process automation.

- Gartner Glossary

5

6

What is Apache Spark
- Is a unified analytics engine for large-scale data processing written in Scala
- Began at UC Berkeley in 2009, Apache project in 2013
- Supports the MapReduce programming model
- Supports both batch and streaming processing of data
- Provides SQL, Machine learning and Graph processing capabilities
- Provides a distributed computing platform that can be run Apache Mesos,

Kubernetes, standalone, or in the cloud.
- Has ability to access data in:

- HDFS (Hadoop Distributed File System)
- Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources

7

Common bottleneck in big data processing
- Network bandwidth
- Disk IO
- Memory
- Serialization

8

“...the mechanism for converting (graphs of) data (Java
objects) to some format that can be stored or transferred
(e.g., a stream of bytes, or XML)...”

Research Questions
- Can Apache Spark's performance be improved by taking advantage of Ibis'

serialization techniques?

Sub questions:

- What components of Apache Spark can benefit from Ibis' fast serialization?
- How can Ibis' serialization techniques be integrated into Apache Spark?
- How does the performance of Apache Spark differ when using Java, Kryo and

Ibis serialization?

9

10

What is Ibis
- Ibis is an open source Java distributed computing software project
- Developed at the Vrije Universiteit Amsterdam
- With the goal of creating an efficient Java-based platform for distributed

computing.1

[1] https://www.cs.vu.nl/ibis/

11

Related work
- Xiaoyi Lu et al.

- Improvements to Spark has been made using various methods such as Remote
Direct Memory Access (RDMA)

- Applying zero-copy buffer management in the network stack
- van Nieuwpoort, Rob et al

- Applied compile-time code generation to improve Java's RMI in Ibis RMI
- Apache Spark has also shown serialization performance can be improved

using Kryo serialization.

12

- But no prior work has been done regarding using Ibis serialization in Spark

[1] “High-performance design of apache spark with RDMA and its benefitson various workloads”. In:2016 IEEE International
Conference on Big Data (BigData). IEEE. 2016, pp. 253–262

[2] Accelerating spark with rdma for big data processing: Early experiences”. In:2014 IEEE 22nd Annual Symposium on
High-Performance Interconnects.IEEE. 2014, pp. 9–16

Overview of Ibis components

13

What is Ibis software stack: Component view

14

What is Ibis software stack

15

What makes Ibis serialization efficient
- Ibis serialization optimizes:

- Optimizes object creation
- Avoiding Data Copying
- Optionally moves runtime type inspection to compile time

16

Overview of how Spark works

17

How Spark Works

Source: https://spark.apache.org/docs/latest/cluster-overview.html

18

Spark APIs

RDD (Resilient Distributed Dataset)

DataFrames

Datasets

19

How Spark executes applications

Source: https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/

20

Methodology

21

Methodology
- Identifying Spark components using serialization.
- Extracting the serialization component in Ibis
- Modify spark to use the serialization from Ibis
- Measure performance difference

22

Identifying Spark components using serialization
- We analysed the source code of Spark
- We found 17 instances of direct serialization calls

- Internal operations
- Network operations
- Persistence operations (Disk and Memory)

- Available serialization mechanisms:
- Native Java serialization
- Kryo serialization 1

[1] https://github.com/EsotericSoftware/kryo

23

Modifying Spark to use Ibis serialization
- 17 different components using serialization.
- We managed to replace 15 of those.

24

Unresolved Incompatibilities.
- Incompatibility with NettyBlockRpcServer and NettyBlockTransferService

- Uses Zero-copy I/O
- Off heap network buffer management
- Making a drop in replacement harder

- Incompatibility with deserializing from Hadoop filesystem.

25

Resolved Incompatibilities.
- Modification to support serialization of Scala’s Option type
- Modification to support serialization of Enum with constant method

- Thanks to the Ibis maintainer: Ceriel Jacobs from the Vrije University Amsterdam

- Modification to support ByteBuffer

26

Measuring the performance differences

27

Benchmark setup
- We now have a:

- A modified version of Spark
- Original Spark version to test Kryo and Native Java serialization

- Two worker nodes, directly connected
- Both running a HDFS DataNode
- Using Hadoop Yarn as resource manager

28

Benchmark setup

HDFS

Worker Node 1

Yarn

Worker Node 2

Spark

29

Benchmarking method
- Single test results may not be conclusive
- To get more reliable results we perform each benchmark 50 times
- Take the mean of all results
- Test environments are reset between test runs
- Also comparing Ibis and Ibisc

30

Benchmark types
- Mostly use standardized benchmarks

- TeraSort:
- Distributed sorting algorithm
- Measures shuffling performance

- SparkPi:
- Computes an approximation of Pi
- Measures computing performance

- Memory persistence
- Measure memory persistence performance

31

Results

32

TeraSort results

33

34

35

36

37

38

Conclusion
- Research question:

- Can Apache Spark's performance be improved by taking advantage of Ibis'
serialization techniques?

- 15 out of 17 components could be replaced
- Ibis was 15-20% faster in benchmarks that extensively use serialization
- Ibis was 10-15% more efficient in memory usage in benchmarks that

extensively use serialization
- There was no noticeable performance difference in purely computational

benchmarks

39

Future Work
- Replace remaining two components with Ibis serialization
- Measure performance using other benchmarks
- Research performance on a larger scale
- Apply Ibis rewriter to Spark
- Compare Ibis against dataset encoders
- Experiment with Ibis' networking implementations in Spark
- Investigate Ibis serialization performance in other distributed applications

40

Questions?

41

