|Ibis Data Serialization In
Apache Spark

By Dadepo Aderemi and Mathijs Visser
Supervisors:

dr. Jason Maassen (eScience Center)
Adam Belloum (UvA)

We live in a big data world

- Increase in data generation: loT,
mobile devices, social media,
logs from large scale software
etc.

- Large and complex data sets

- Beyond ability of traditional
software tools.

- Rich analytical potential

{444
o) E

Image source: https://towardsdatascience.com/what-is-big-data-lets-answer-this-question-933b94709caf

We live in a big data world

THEBITERBIT
Viral infections for viruses

- Big data is essential not only in TROPICAL CYCLONES
. . . o The strong get stronger
business but in Science . 7 BLACK HOLEPHYSICS

A new window on the

- Computational Astrophysics, Climate | Galactic Centre
Modeling, Medical and Pharmaceutical
research etc.

- Volume 455 Issue 7209, 4 September ,

2008 of Nature magazine talked about = 3
the challenges of dealing with big data.

NATUREJOBS
t ings

- Core problem: Explosion of data that Minnesota musin .

cannot be managed speedily using SCIENCE IN THE
traditional approaches. PETABYTE ERA '"I”"i

Big data is high-volume, high-velocity and/or high-variety
information assets that demand cost-effective, innovative
forms of information processing that enable enhanced
insight, decision making, and process automation.

- Gartner Glossary

Big data is high-volume, high-velocity and/or high-variety
information assets that demand cost-effective, innovative
forms of information processing that enable enhanced
insight, decision making, and process automation.

- Gartner Glossary

What is Apache Spark

- Is a unified analytics engine for large-scale data processing written in Scala

- Began at UC Berkeley in 2009, Apache project in 2013

- Supports the MapReduce programming model

- Supports both batch and streaming processing of data

- Provides SQL, Machine learning and Graph processing capabilities

- Provides a distributed computing platform that can be run Apache Mesos,
Kubernetes, standalone, or in the cloud.

- Has ability to access data in:

HDFS (Hadoop Distributed File System)
Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources

Common bottleneck in big data processing

- Network bandwidth
- Disk IO

- Memory

- Serialization

“..the mechanism for converting (graphs of) data (Java
objects) to some format that can be stored or transferred
(e.g., a stream of bytes, or XML)...”

Research Questions

- Can Apache Spark's performance be improved by taking advantage of Ibis'
serialization techniques?

Sub questions:

- What components of Apache Spark can benefit from lbis' fast serialization?
- How can Ibis' serialization techniques be integrated into Apache Spark?

- How does the performance of Apache Spark differ when using Java, Kryo and
Ibis serialization?

10

What is Ibis

- |bis is an open source Java distributed computing software project

- Developed at the Vrije Universiteit Amsterdam
- With the goal of creating an efficient Java-based platform for distributed

computing.’

[1] https://lwww.cs.vu.nl/ibis/

11

Related work

Xiaoyi Lu et al.
- Improvements to Spark has been made using various methods such as Remote
Direct Memory Access (RDMA)
- Applying zero-copy buffer management in the network stack

van Nieuwpoort, Rob et al
- Applied compile-time code generation to improve Java's RMI in Ibis RMI
Apache Spark has also shown serialization performance can be improved

using Kryo serialization.

But no prior work has been done regarding using Ibis serialization in Spark

12

Overview of |bis components

13

What is Ibis software stack: Component view

Application

RMI GMI RepMI

Satin

HlHiNiZnbbhGGSGGGbGbGGSGGGGaidGs G s s

Ibis Portability Layer (IPL)
\\1m\mm\mw\mmm

erialization & % Grid Topology Resource

S
Communication N Monltorlng Dlscovery Manag ement

TCP, UDP, MPI NWS, etc. TopoMon GRAM, etc.
Panda, GM, etc. etc.

GIS, etc.

14

What is |bis software stack

Application

RMI GMI RepMI Satin
R R HRME2 TR HR 2 2 R R R HR H R R R H R D D T R R R R R R R R R R R R KR R KR KR R

Ibis Portability Layer (IPL)

R mm“mwmm‘m
Serialization & Grid Topology Resource Q Information
\

W

IIIII'IIIIIIII’

O
)
3
S
=
3
o
=
o
5

; Monltorlng Dlscovery Management \ Service

N
N
N
]
N
N
N
8
N
N
N
8
N
N

L
V777

AMALTVALVVARLYWRALYER VAR WARY VAR WAL WRY

TCP, UDP, MPl | Nnws ete. || TOPOMON || GRAM, ete. || GIS, ete.
Panda, GM, etc. etc.

What makes Ibis serialization efficient

- lbis serialization optimizes:
- Optimizes object creation
- Avoiding Data Copying
- Optionally moves runtime type inspection to compile time

16

Overview of how Spark works

How Spark Works

Driver Program

SparkContext

e

Cluster Manager

Worker Node
Executor | Cache
Task Task

\

[\

Worker Node
Executor | Cache
|| Task || Task

Source: https://spark.apache.org/docs/latest/cluster-overview.html

18

Spark APls

Datasets

DataFrames

RDD (Resilient Distributed Dataset)

19

How Spark executes applications

RDD Objects DAGScheduler TaskScheduler
| | | | Cluster
~a manager
| Task
2 >
P _—
rddl.join(rdd2) split graph into launch tasks via
-groupsy (..) stages of tasks cluster manager

filter(..)

Worker

Threads }

Block
manager |

execute tasks

Source: https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/

Methodology

Methodology

- ldentifying Spark components using serialization.
- Extracting the serialization component in Ibis

- Modify spark to use the serialization from lbis

- Measure performance difference

22

ldentifying Spark components using serialization

- We analysed the source code of Spark

- We found 17 instances of direct serialization calls
- Internal operations
- Network operations
- Persistence operations (Disk and Memory)
- Avallable serialization mechanisms:
- Native Java serialization
- Kryo serialization '

[1] https://github.com/EsotericSoftware/kryo

23

Modifying Spark to use lbis serialization

- 17 different components using serialization.
- We managed to replace 15 of those.

24

Unresolved Incompatibilities.

- Incompatibility with NettyBlockRpcServer and NettyBlockTransferService

Uses Zero-copy 1/O
Off heap network buffer management
Making a drop in replacement harder

- Incompatibility with deserializing from Hadoop filesystem.

25

Resolved Incompatibilities.

- Moadification to support serialization of Scala’s Option type

- Moadification to support serialization of Enum with constant method
Thanks to the Ibis maintainer: Ceriel Jacobs from the Vrije University Amsterdam

- Modification to support ByteBuffer

26

Measuring the performance differences

27

Benchmark setup

We now have a:
- A modified version of Spark
- Original Spark version to test Kryo and Native Java serialization

Two worker nodes, directly connected
Both running a HDFS DataNode
Using Hadoop Yarn as resource manager

e

28

Benchmark setup

Spark

Worker Node 1

Worker Node 2

Yarn

HDFS

29

Benchmarking method

- Single test results may not be conclusive

- To get more reliable results we perform each benchmark 50 times
- Take the mean of all results

- Test environments are reset between test runs

- Also comparing Ibis and Ibisc

30

Benchmark types

Mostly use standardized benchmarks

TeraSort;

- Distributed sorting algorithm
- Measures shuffling performance

SparkPi:

- Computes an approximation of Pi

- Measures computing performance
Memory persistence

- Measure memory persistence performance

31

Results

32

Time in seconds

Flgure 3: Terabort time to completlon
|

41. 43 4]. 45

=
e

34.65 34.57

o
=]

N}
=]

—
=

Java Kryo Ibis Ibisc

33

Memory usage in mbit

45000

40000

35000 -

30000

25000 1

20000

15000 1

10000

5000 A

Memory Utilization (Terasort)

ibis_memory

ibisc_memory
java_memory
kryo_memory

i ol

10 15

Time interval in seconds

20

25

30

34

Time in seconds

15

[y
-

o

SparkPi time to completion

| ! L !
13.64 13.83 13.8 13.77

Kryo Ibis Ibisc

35

Memory usage in (unit)

Memory Utilization (SparkPI)

45000
ibis_memory
ibisc_memory
40000 java_memory
kryo_memory
35000
30000
25000 >/’
20000 -
15000 -
10000 -
5000
O T T T T T
0 2 4 6 8 10

Time interval in seconds

36

Time in seconds

oA
o

1=
o

e
e

o
ja

[
e

Persistence time to combpletion

00.31

A7
12.31

Ibis

Ibise

37

45000

Memory utilization (Persistence)

40000 H

35000 -

30000 -

25000 -

20000 -

15000 -

10000 -

5000

ibis_memory

ibisc_memory
java_memory
kryo_memory

15 20

Time interval in seconds

38

Conclusion

Research question:
- Can Apache Spark's performance be improved by taking advantage of Ibis'
serialization techniques?

- 15 out of 17 components could be replaced

- Ibis was 15-20% faster in benchmarks that extensively use serialization

- |bis was 10-15% more efficient in memory usage in benchmarks that
extensively use serialization

- There was no noticeable performance difference in purely computational

benchmarks

39

Future Work

- Replace remaining two components with Ibis serialization

- Measure performance using other benchmarks

- Research performance on a larger scale

- Apply Ibis rewriter to Spark

- Compare Ibis against dataset encoders

- Experiment with Ibis' networking implementations in Spark

- Investigate lbis serialization performance in other distributed applications

40

Questions?

41

