
Security Evaluation on Amazon Web Services’
REST API Authentication Protocol Signature

Version 4
Khanh Hoang Huynh

Security and Network Engineering
University of Amsterdam
Amsterdam, Netherlands

hhuynh@os3.nl

Jason Kerssens
Security and Network Engineering

University of Amsterdam
Amsterdam, Netherlands

jason.kerssens@os3.nl

Abstract—The Signature Version 4 protocol is used in Amazon
Web Services to sign API requests, providing data integrity,
verification of the requesting user, and protection against reuse
of the signed portions of requests. In this research we evaluated
the security of this protocol by first understanding the protocol
workings to choose known attacks that undermine one or more
of the three aforementioned features that the Signature Version
4 protocol should provide. We have performed and analyzed
a replay attack, modified requests, probed for the possibility
of performing an HTTP smuggling attack, and analyzed the
possibility for a timing attack. From our research we have found
that replay attacks are possible if requests are replayed within a
limited time window, modifying signed portions of requests is not
possible, HTTP smuggling attacks are prevented, and we have
found an indication that timing attacks might be possible. We
conclude that, in practice, the Signature Version 4 protocol can
be considered secure.

I. INTRODUCTION

Amazon Web Services (AWS) is one of the largest web
service and cloud providers globally. It offers many services
from Infrastructure as a Service (IaaS) to databases and
analytics. Many consumers make use of these services. As
use of these services often requires sending private information
or performing operations that cost money, it is important that
confidentiality, integrity, and availability are preserved. This is
also relevant when sending requests to API endpoints, where
communication between the requester and the endpoint needs
to be carried out in a secure manner. In addition, often one
needs to authenticate themselves to become authorized to make
requests.

There exist many schemes with which secure communica-
tion is possible by providing authentication, authorization, data
integrity or confidentiality. Some of the most widely used
schemes include Transport Layer Security (TLS) [1], Open
Authorization (OAuth 1.0 [2] and OAuth 2.0 [3]), and HTTP
authentication [4]. These schemes all offer different function-
alities, but none of these schemes provide end-to-end integrity
of exchanged data. In order to achieve end-to-end integrity
with a scheme, data need to be signed cryptographically.

There is no public standard scheme that achieves this, which
is why AWS has implemented its own proprietary protocol

named Signature Version 4 (SigV4). The SigV4 protocol
is used to sign HTTP requests to AWS’ API endpoints in
order to provide verification of the identity of the requester
(authentication), in-transit data protection (data integrity), and
protection against reuse of the signed portions of requests [5].
The previous AWS Signature protocol, Signature Version 1,
has been proven insecure [6]. Signature Version 2 has been
deprecated and replaced in favor of SigV4, as SigV4 offers
a more flexible signing method and better protection against
key reuse [7].

In this research we will give an assessment on the security
of the SigV4 protocol, which is used when HTTP requests
are sent to AWS’ API endpoints. This is done by looking at
possible attack vectors on the protocol. We will look at attacks
that undermine at least one of the aforementioned features
that SigV4 provides, i.e., authentication, data integrity, and
protection against reuse of signed portions. Normally, SigV4
is used in combination with TLS to further enhance security
by also providing confidentiality of requests and protection
against replaying requests. In this research we will disregard
the use of TLS and only consider SigV4. Investigating other
security measures that are in place for AWS’ APIs is thus not
within the scope of this research.

A. Research questions

As previously mentioned, SigV4 is used to provide
verification of the identity of the requester, in-transit data
protection, and protection against reuse of the signed portions
of a request. Therefore, to evaluate the security of SigV4 on
these three points, the following research question is defined:

Does the Signature Version 4 protocol, used when sending a
request to AWS REST API endpoints, provide data integrity,
verification of the requesting user, and protection against
reuse of signed requests?

To answer our research question, we have defined the
following sub-questions:



• How does the Signature Version 4 Protocol ensure data
integrity, verification of the requesting user, and protec-
tion against reuse of signed requests?

• What kind of attacks are able to undermine data integrity,
verification of the requesting user, or protection against
reuse of signed requests?

B. Structure

The remainder of this paper is structured as follows. Section
II reviews related work of SigV4. In section III we will give
an overview of the workings of the SigV4 protocol. In section
IV we outline the attacks, which we will perform on the SigV4
protocol. The results of our experiments will be shown in
section V. We will discuss these results in section VI and draw
a conclusion from them in section VII. Finally, in section VIII,
we suggest points for future work.

II. RELATED WORK

This section gives an overview of work that has previously
been conducted on the subject of HTTP message signing
schemes, attacks on signing methods, and attacks on other
security protocols.

A. HTTP Message signing schemes

L. Lo Iacono and H.V. Nguyen [8] have provided a generic
authentication scheme for REST. They define three elements
of REST messages (control data, resource meta data and
resource representation meta data) that form the Uniform
Interface. They state that all three elements of the Uniform
Interface must be integrity protected and authenticated to
prevent malicious changes being made to the message. This
can be achieved by creating a cryptographic signature of the
message which takes all three elements into account.

The IETF draft Signing HTTP Messages [9] shows an
approach to signing HTTP messages as well. They define two
mechanisms: signing and authorization. The signing scheme
is used to verify the integrity of the message while the
authorization scheme is used to give a requester access to
certain resources.

B. HMAC side-channel attacks

The Signature Version 4 protocol signs messages using
Keyed-Hashing for Message Authentication (HMAC) [10].
There exist side-channel attacks on HMAC. C.S. Islam and
M.S.H. Mollah [11] have found that information about the
HMAC key, such as its length and its Hamming weight, can
be revealed by monitoring the execution time of the algorithm.

Fouque, Pierre-Alain, et al. [12] have shown that it is
possible to recover the secret key of HMAC-SHA1. They
have achieved this by monitoring the electromagnetic radiation
emitted by the processor that executes the algorithm. This
attack requires physical proximity to the processor to monitor
the electromagnetic radiation, however.

C. Attack on Signature Version 1

Colin Percival [6] had found an insecurity in the Signature
Version 1 protocol. The exploit relied on the fact that there
were no delimiters between keys and values when signing the
HTTP query string. This meant that different query strings
resulted in the same signature, which allowed an attacker to
forge requests with valid signatures more easily.

D. HTTP smuggling

In 2005, Watchfire had documented an HTTP smuggling
attack [13]. At a Black Hat USA Briefing on the 7th of
August 2019, security researcher James Kettle gave a briefing
about HTTP request smuggling using new techniques. Along
with the briefing he also published a whitepaper in which
he explains these new techniques [14]. These techniques may
be used to smuggle requests by placing them inside of valid
requests, circumventing the Sigv4 protocol.

III. DESIGN

In this section we will discuss the workings of the SigV4
protocol as well as outline the differences between the SigV4
protocol and the Escher protocol. The Escher protocol is
an open source project based on AWS’ SigV4 protocol. It
allows us to look into the source code to understand SigV4
better, perform attacks on the protocol locally, and modify the
protocol if desired.

A. Signing requests with Signature Version 4

SigV4 is a proprietary protocol which is used to create sig-
natures for HTTP requests destined for AWS’ API endpoints.
HTTP requests can be sent either via the AWS Command Line
Interface (AWS CLI) [15], using one of the AWS SDKs [16],
or they can be crafted manually. When using AWS CLI or
AWS SDKs, the requests are signed automatically. Requests
have to be signed manually when the HTTP requests are
created manually, however.

When a request is signed it provides verification of its
sender, data integrity, and prevents replay attacks of the signed
portions of the request. All HTTP requests, with the exception
of anonymous API calls and some specific calls to AWS
Security Token Service (STS), must be signed.

The SigV4 protocol is explained in AWS’ documentation
[17]. The protocol consists of four steps, which are shown in
Figure 1.

In the first step of the SigV4 protocol, a canonical request
is created, as can be seen in Figure 1. This canonical request
consists of: the HTTP request method, a URI-encoded version
of the absolute component of the URI, the query string, a
list of HTTP request headers one wants to sign, a list of
HTTP request header names which are signed, and the hashed
payload of the request. Some services, such as the Amazon S3
service, allow for unsigned payloads. In this case, the literal
string UNSIGNED-PAYLOAD is included in the canonical
request instead of a hashed payload.

In second step a string is created which will be used in
the third step to create a signature. The string begins with the



Figure 1. Procedure of the Signature Version 4 protocol for creating and
adding a signature to a request.

hashing algorithm used in the first step to hash the payload,
usually this is HMAC-SHA256, however AWS supports the
use of HMAC-SHA1 as well. Other elements of the string
are the timestamp in ISO8601 basic format, the credential
scope, and the hashed canonical request. The credential scope
specifies the date, the AWS region the request is targeting,
and the service for which the request is intended. The hashed
canonical request is hashed with the same algorithm specified
at the start of the to be created string.

In the third step, the signing key is derived from the secret
access key. The secret access key is a security credential for
one’s user account. Secret access keys are used to authenticate
users and make programmatic calls to AWS API operations or
to use AWS CLI commands. The procedure for deriving the
signing key from the secret access key can be seen in Figure 1.
In this procedure, either HMAC-SHA1 or HMAC-SHA256 is
used. According to the AWS documentation, the signing key
is valid for up to seven days for S3 services [18]. As for IAM
this is unknown, as it was not documented.

Finally, in step four, the signature is added to the HTTP
request. This can be done in two ways. The first method is

by adding a header, which includes the signature and any
additional information needed to create the signature, to the
HTTP request. The second method is by adding the signing
information to the query string of the URL. A limitation of
the second method, is that a URL can only have a limited
number of characters. This limit is dependent on the server
that receives the request. It is recommended to keep the URL
length shorter than 2000 characters [19].

A request can be sent to an AWS API endpoint after the
steps shown in Figure 1 have been executed. When a signed
request is received, AWS will perform the same steps by
taking the necessary information from the received request
and calculating its corresponding signature. The calculated
signature is then compared with the signature that was attached
to the received request. If the signatures are the same, the
request will be processed, otherwise the request is denied.

B. AWS Server Side Behaviour

This section describes more in-depth how AWS handles
requests to their API endpoint and verifies if a request is valid.

After the server receives a request, it first checks the HTTP
version. Both HTTP/1.1 and HTTP/1.0 are supported. The
server continues with checking the action and the version that
are specified in the request. Then it verifies if the mandatory
parameters of Signature Version 4 are present. If they are
all present it proceeds with checking whether the X-AMZ-
Date is in the correct format (ISO8601 Basic Format). It
continues by verifying if the request contains all the headers
that are specified in Signed Headers. The server proceeds
with checking whether a valid signing algorithm is selected.
This is done by looking at the value that was provided in
X-AMZ-Algorithm. It expects either AWS4-HMAC-SHA1 or
AWS4-HMAC-SHA256 as its value. A valid signature can be
created, regardless of the capitalization of this variable. This
means that the values AWS4-hMac-sha1 and AWS4-HMAC-
SHA1 give different signatures for the same requests, but both
are valid. Next, it compares the date format of the credential
scope and the date that is contained in the X-AMZ-Date header,
to see if they are the same. The server will proceed in checking
whether the rest of the credential scope is correct. That is, the
region, service and ending string aws4 request. The server
then proceeds with checking the user key ID, to see if a secret
access key with such an ID does indeed exist. Finally, if all
previous checks were successful, it calculates the signature
from the values in the request and compares it with the
signature provided in the request.

C. Amazon IAM and Amazon S3

In this research, we will be sending API requests to the
Amazon Identity and Access Management (IAM) service and
to Amazon Simple Storage Service (S3). The IAM service
allows users to create and manage AWS users and groups,
and use permissions to allow and deny their access to AWS
resources [20]. The S3 service is an object storage service. It
allows users to store and manage data by creating buckets and
uploading data to these buckets [21].



D. Differences SigV4 and Escher

As mentioned earlier, Escher is based on SigV4. How-
ever, there are some minor differences between the SigV4
protocol and the Escher protocol. Escher has been imple-
mented in various programming languages. In the case of
this research, we make use of the Python wrapper for the
Golang implementation. As there are various implementations,
this also results in minor differences between each of the
Escher implementations. The logic of the protocol, however, is
identical across the different implementations. The majority of
them are compatible with AWS’ SigV4. However, the Escher
implementation that we have used is not compatible with
SigV4, due to some minor differences in the source code. This
was not known a priori when the Escher implementation was
chosen.

One of the differences between SigV4 and the Escher
implementation that we have used, is that both protocols
support different HMAC algorithms. SigV4 supports the use
of HMAC-SHA1 and HMAC-SHA256, while Escher supports
HMAC-SHA256 and HMAC-SHA512 by default. Header
names differ as well. Headers in Escher contain the prefix x-
ems, while with SigV4 they have x-amz as a prefix. The Escher
library itself supports changing one to the other. Another
difference is the variable name that SigV4 and Escher use
to add the credentials needed to create the signature. SigV4
adds a Credential variable, while the Escher implementation
that was used adds a Credentials variable. Looking at the
source code of other Escher implementations, we have seen
that Credential is used. As Escher is an open source project,
it would be trivial to resolve these differences.

IV. METHODOLOGY

As SigV4 is a proprietary protocol, it was not possible to
implement the protocol locally ourselves. In order to analyze
the SigV4 protocol we set up a local stack which implements
Escher [22]. The local stack is set up by first creating an
API endpoint by writing an application in Python using Flask
[23]. For that API endpoint we use the Escher Library for
validating the request. Then using uWSGI, we made the
endpoint reachable via the internet by using a port and a
public IP address and bound this to the application. This local
stack is created because we wanted to perform attacks on our
local servers first, where applicable, before performing them
on AWS. This was to minimize interference with AWS normal
operations.

We define four different existing attacks in order to evaluate
the security of SigV4. The four attacks are replay attack,
modifying the request, HTTP smuggling, and a timing attack.

The attacks should undermine at least one of the features
that SigV4 provides: verification of the identity of the re-
quester, in-transit data protection, and protection against reuse
of the signed portions of a request.

A. Replay Attack

Being able to replay requests would go against the fact that
SigV4 should protect against reuse of signed portions. For this

reason we performed a replay attack.
As mentioned in Section I we assumed that TLS is not used.

This would allow us to perform a Man In The Middle attack
(MITM) whereafter we could perform a replay attack. For this
attack we used the Burp Suite software [24]. We set up a proxy
through which all requests from the requester were sent. The
proxy was bound to the localhost IP address 127.0.0.1 and
was listening on port 5000.

The API requests were first sent to the proxy. In the Burp
Suite software, we moved the API request to the repeater
which allowed us to send identical request as often as needed.
The requests from the proxy were then sent to the destined
API endpoint. Once an API request is received, the destined
server will respond with a response and corresponding HTTP
status code. The destined server described in this paragraph is
either our local server or AWS.

The AWS API endpoints that were chosen to send requests
to, were from the AWS S3 and IAM services. We have chosen
different services as there are minor differences in SigV4
between various services. We used the example code written
in Python from the AWS documentation [25] as our base for
creating a signed API request manually.

In this attack we have looked at the possibility of performing
a replay attack and for how long one is able to perform a
replay attack if it were possible. This was done in two steps.
First, we looked if it was possible to send the exact same
request twice in a small time window. This time window
was no longer than 10 seconds. After we had verified that
it was possible, we sent the request every minute to the AWS
server and examined what the AWS response was. We tried to
send many different types of requests. That is, both read and
write requests. For example, for the IAM service we use the
GetGroup and CreateGroup request. For the S3 service we use
the GetObject and PutObject requests. In the documentation
of AWS it is noted that the X-AMZ-Expires parameter can be
used to specify for how long a request is valid in seconds
[18]. This parameter is exclusive to query string requests. We
have also performed a replay attack for requests containing
this parameter.

B. Modifying requests

If modification of requests were possible, it would mean that
data integrity, which SigV4 should provide, is not realized.

In order to modify requests we used the same setup for
performing a MITM attack as described in the replay attack.
After sending the request from the proxy to the repeater, we
modified various headers and parameters to see if it is possible
to modify the requests in any way. We did this for both
read and write requests. Similar to the replay attack, we first
performed the experiment on our local server, before trying to
modify the requests destined for AWS. In the case of AWS,
the modified request were sent to API endpoints of the IAM
and S3 services.

As mentioned in section III, the S3 service supports the use
of unsigned payloads. Thus, it should be possible to modify
the payload without it affecting the signature. We also tried



modifying the payload for these types of requests and look
at the impact that changing the payload could have on the
request.

C. HTTP smuggling

For an HTTP request smuggling attack, one encapsulates
a single or multiple requests into a single request. This
can be achieved by placing requests inside the payload of
another request. The request, containing another request in
its payload, is then sent to a target server. If the architecture
of the API endpoint is poorly designed, one may be able
to execute this attack to successfully bypass security, obtain
unauthorized access, compromise other users request, and
potentially introduce cache poisoning.

Websites nowadays usually consist of a chain of systems.
Multiple requests are aggregated at the front-end and are
then sent to the back-end on a single connection for further
processing. Figure 2, shows this graphically. The back-end
distinguishes requests by looking at the headers. This archi-
tectural design also means that the back-end and front-end
should have the same request boundaries. If this is not the
case, one is able to execute an HTTP request smuggling attack.
Figure 3, shows a variant of HTTP request smuggling, where
the attacker can hijack another user’s HTTP request. As, in
this case, there is a discrepancy between the front-end and the
back-end, the attacker can trick the back-end into believing
that the boundary of a request is different by manipulating its
headers.

Figure 2. The request flow of modern website architecture from client to
front-end server, and from the front-end server to the back-end server. Source:
[14]

Figure 3. Example of an HTTP request smuggling attack. Source: [14]

As HTTP request smuggling relies on there being a dis-
crepancy between the front-end and back-end, it implies that
the attack is design specific. Thus, to perform this attack on
our local servers first, before performing them on AWS’ API
endpoint, is of no use. We will thus only execute this attack
on AWS’ servers. The nature of this attack, however, is very
intrusive and disrupting to other users. To prevent causing

any disruption, we have followed the paper by James Kettle
that was mentioned in Section II, in which he describes a
method on how to execute HTTP smuggling attacks [14]. The
method consist of a number of steps, with which HTTP request
smuggling vulnerabilities can be found and attacks can be
performed. These steps are: detect, confirm, explore, store and
attack. Any step, other than the detect step, may introduce side
effects for other users. Therefore, we have limited ourselves
to only perform the detect step to limit the disruption we
otherwise may cause to AWS’ API endpoints and AWS’ users.

This attack is similar to the modifying request attack from
the previous subsection. The set up for intercepting and
modifying requests is identical. We created a legitimate request
with a payload and sent it to the Burp suite. The payload is
created in a way, which would exploit the discrepancy between
the front-end and back-end server, if there is any. We then
sent the request to the repeater to finish crafting our HTTP
smuggling request.

We have created an HTTP smuggling request for detecting
if the AWS servers are susceptible to HTTP smuggling. The
request can be seen in Listing 1. This request is used to send
to AWS’ IAM API endpoint. However, we have also tested a
similar request for the S3 service. We do not list this, as the
basics shown in Listing 1 remain the same. The basics will be
explained in the next paragraph.

In order to exploit a potential discrepancy between the front-
end and back-end, the request makes use of both the Content-
Length and Transfer-Encoding headers. Normally the Content-
Length header is used to determine the length of the payload.
While, if the Transfer-Encoding: chunked header is used, the
payload is divided into chunks. In this case, the length of
the chunks is specified in the payload itself. A discrepancy is
present if the front-end looks at the Content-Length header to
determine the length of the request, while the back-end looks
at the chunk size of the payload to determine the length, or
vice versa. We can manipulate the Content-Length value and
the chunk size value in such a way that the front-end and
back-end do not agree on the boundary of a request.

The request that is constructed, is shown in Listing 1. The
exploitation of this request works as follows. If the front-
end server takes the Content-Length in consideration, then the
request until the G is sent by the front-end server to the back-
end server, while the back-end will wait for the next request,
due to the Transfer-Encoding: chunked. If this is the other
way around, and the front-end takes the Transfer-Encoding:
chunked in consideration, then the front-end will reject the
request, due to the invalid chunk size Q. Finally, if both the
front-end and back-end are in sync, then they would either both
use content-length or Transfer-Encoding: chunked. The result
would be that either the request gets rejected at the front-end
or processed by both the front-end and back-end.

We constructed the request in Listing 1, by first creating
a legitimate request. This is the constructed request without
Transfer-Encoding: chunked and the Q. We then sent then
intercept the request with Burp, and move it to the repeater. In
the repeater, we added the Transfer-Encoding: chunked and Q



to complete the construction of the HTTP smuggling request.

We have also tried to obfuscate Transfer-Encoding by plac-
ing white spaces or tabs in and around the transfer encoding.
By doing this, it may be possible to use the Transfer-Encoding:
chunked header even though a request with this header may
otherwise be declined.

D. Timing attack

A timing attack is the general term for attacks where one
analyzes the time it takes to execute an algorithm in order
to reveal information about a cryptosystem. In our attack we
focus on looking if we could perform a timing attack to gain
information about the signature. By examining the execution
time of the algorithm which is used to compare the signature,
it may be possible to recreate the signature without knowing
the key. This would allow an attacker to forge any request.
This could be achieved by sending the same request with
different signatures, and looking at which signature took the
longest to compare. Comparison functions normally perform a
byte-wise match between two arrays. If a bit does not match,
the comparison would terminate early which would result
in a shorter execution time. If a bit was guessed correctly,
however, more bits would be compared which results in a
longer execution time. Such an attack can be prevented by
using a comparison function that is always executed in a
constant-time.

To find out if such an attack is possible, we have conducted
an analysis on the number of correct consecutive bits versus
the response time of the server. We look at the response time,
as an attacker is not able to measure the execution time of the
comparison. This analysis, however, requires to send many
requests, which could potentially flood the destined server.
AWS prohibits flooding of their AWS services under their
customer service policy [26]. Therefore, we were only able to
perform this analysis on our local server, which uses Escher.

In order to perform this analysis, we first created a request
with a legitimate signature, which consists of 256 bits. We
then performed a series of steps. In the first step, the last bit
of the signature is set to an incorrect value. In the second step,
the last and the penultimate bits of the signature are set to an
incorrect value, and so on. We then measured the response
time for a request with a correct signature and requests with
signatures containing one or more consecutive incorrect bits.
The assumption was that if the signature is correct, it would
also mean that the comparison of the signature would take
longer amount of time. So we expect to see a decline in
execution time when the signatures are compared with each
other as more bits of the signature are set to an incorrect value.

Figure 4 shows how an incorrect signature is created. Figure
5 shows the first step of the analysis, in which the last bit of
the signature is set to an incorrect value. As can be seen, this
is achieved by performing an XOR operation with a bit string
containing a 1 at the end. This bit string has the same length
as the signature.

Figure 4. The flowchart for creating a request with an incorrect signature
from a correct one.

Figure 5. Example of how a request with the correct signature is converted
to a request where one bit of the signature is incorrect.

After creating an incorrect signature, we would use the same
legitimate request, but change the correct signature with the
incorrect one. The request was then sent to our local servers.
This was done 100 000 times, because a lot of repetitions
would stabilize the mean and standard deviation and therefore
the statistical inference would be more reliable. We did not do
this more often, as it would otherwise take too long to execute.
After this step we would create the next bit string to create
the next wrong signature.

In order to send the requests, we made use of the Requests
library in Python. Using the elapsed object from the response
class, we were able to measure the amount of time elapsed
between sending a request and the arrival of the response.
The measured elapsed time is then used to see if there is
a correlation between the number of incorrect bits in the
signature and the response time.

To see if there is a correlation between the response time
and the number of incorrect bits in the signature, we define
a significance level α of 0.1. H0 is defined as there being no
correlation between the response time and number of incorrect
bits in the signature. We then calculate the p-value. If it lies
under the significance level, we reject H0. This indicates that
there is indeed a correlation between the two parameters. If
not, we do not have enough evidence to reject H0.

V. RESULTS

This section consists of the results from the experiments
that we have defined in section IV.

A. Replay Attack

We have verified that replay attacks are possible with
requests of both the IAM and S3 services that are sent to
AWS. The same request can be replayed multiple times and



POST /?Action=ListUsers&Version=2010-05-08 HTTP/1.1
Host: iam.amazonaws.com
User-Agent: python-requests/2.22.0
Accept-Encoding: gzip, deflate
Accept: */*
Connection: close
X-Amz-Date: 20200203T111158Z
Authorization: AWS4-HMAC-SHA256 Credential=<AMAZON_API_KEY_ID>/20200203/us-east-1/iam/aws4_request,
SignedHeaders=host;x-amz-date,
Signature=25495f300ab93c6f86d78c9dd4a76e071574d153b2f08273ff0016c1f8d91009
Content-Length: 4
Transfer-Encoding: chunked

0

G
Q

Listing 1. The detecting HTTP smuggling request that we have used to test on AWS’API endpoint.

will be processed by the server. We have verified this for both
read and write requests. We have found that AWS has a time
limit on how long a request is valid, depending on the service.
With the IAM service, a request is valid for 15 minutes.

As described in Section IV, the X-AMZ-Expires can be used
to specify for how long a request is valid. This parameter
is limited to query strings. We found that IAM ignores this
header altogether. Therefore, with IAM, a request can be valid
for at most 15 minutes. Other services may accept it and use it,
however. The AWS S3 service, for example, does support the
use of the X-AMZ-Expires parameter. For S3 service requests,
the time window in which it is possible to replay requests can
thus be larger, if the X-AMZ-Expires is used.

B. Modifying requests

We have found that requests can partly be modified. Only
the parameters and headers that are not relevant for the SigV4
and the API action itself can be changed. For example, one is
able to add or modify the Content-Length header, however this
does not implicate the requester. One is able to implicate the
requester by adding the Transfer-Encoding: chunked header.

Any parts of the request that are signed cannot be modified,
as it would result in a mismatch of signatures. Some API re-
quest allow additional parameters, such as the X-AMZ-Expires
parameter mentioned in the previous subsection, however these
parameters need to be added to the request URL, which is
also signed. Changing these parameters would thus result in a
mismatch of signatures as well.

As S3 supports the use of unsigned payloads, it is possible to
modify the payload without it resulting in a different signature.
While S3 supports this function, IAM does not.

C. HTTP smuggling

We have found that if the Transfer-Encoding: chunked
header is added to a request, it would result in a response
with an HTTP status code 500 “Internal Server Error” for
the IAM service. As for S3, the server does not respond
anything at all but the connection was terminated whenever
Transfer-Encoding: chunked was used. As mentioned in the

methodology, we have also tried to obfuscate the Transfer-
Encoding: chunked. Below, the attempts to obfuscate this
header, are shown:

1) Transfer-Encoding: chunked
2) Transfer-Encoding:[Tab]chunked
3) Transfer-Encoding[Tab]:[Tab]chunked
4) Transfer-Encoding: Chunked
5) Transfer-Encoding : chunked
6) Transfer-Encoding: chunked x
7) Transfer-Encoding: chunkedx
8) Transfer-Encoding: xchunked

The results from trying to obfuscate the Transfer-Encoding:
chunked with IAM API endpoints was that either, the API
endpoint would respond with an HTTP status code 500 “In-
ternal Server Error” or with an HTTP status code 501 “Not
Implemented”. The results for the S3 service was either a
response with an HTTP status code 501 or there would be
no response at all.

D. Timing attack

The result of this attack is a graph which shows the number
of incorrect bits of the signature on the x-axis of the graph
and the response time in microseconds on the y-axis. When
the graph is read from left to right, the first data point is the
average response time for a request with a correct signature.
The right-most data point of the graph is the average response
time for a request with a signature which is completely wrong
compared to the correct one. Moreover, from the data we have
calculated both the correlation coefficient and the p-value to
determine if a timing is attack would be feasible.

As described in Section IV, we calculate the p-value to see
if it is justified to state that there is a correlation between
the number of incorrect bits in the signature and the response
time. The p-value has a value 0.0577, which is lower than the
significance level of 0.1.

VI. DISCUSSION

This section discusses the results from section V.



Figure 6. The graph shows the average time it took for a client sending a request and receiving an response given the number of wrong bits of the signature
of the request. For every average 100 000 requests were send.

A. Replay Attack

SigV4 on itself is susceptible to replay attacks, as described
in section V. Worth noting was that this was already warned
in the documentation. In practice, it is only possible to replay
requests under a condition. That is, the request that is to be
replayed should be sent with HTTP. If HTTPS is used, the
attacker needs to break this first, before it can start replaying
the requests. This is because nonces are used in TLS which
would prevent replaying of requests.

AWS has disabled HTTP connections for the IAM service. It
only accepts HTTPS connections. The S3 service does support
the use of HTTP, however. A replay attack on S3 services is
thus possible in practice.

It is unknown if other services also support the use of HTTP,
as we have not tried to send requests to other services. We
have also not looked into the possibility of attacking TLS,
or looking into the cipher suite that is used by AWS, as this
was outside of our scope. However, there are known attacks
against TLS, such as down-grade attacks, where the use of a
weak cipher suite can be exploited [27].

As mentioned in Section IV we have looked at the possibil-
ity of replaying both read and write requests. Replaying read
requests could result in an attacker gaining private information.
For example, when a GetObject request, which is part of the
S3 service, is replayed, an attacker would be able to read files
without having the permission to do so. It may also be possible
for an attacker to perform operations that another user has to
pay for. Writing objects to a bucket, for example, costs money.
If a write request, such as PutObject, which is part of the S3
service, is replayed many times, an attacker could increase the
expenses of the original owner of that bucket.

B. Modifying requests

As seen from section V, no significant modifications can
be made to the request because the significant headers and

parameters are signed. As for completely changing the request,
one needs to know the secret access key or signing key in order
to forge a new request.

While, normally, no significant modifications can be made,
it is possible to change the payload of requests when the
original sender specified in the request that the payload should
not be taken into account when creating the signature. This
is done by providing the UNSIGNED-PAYLOAD parameter.
This feature is supported by S3 but not by IAM. As S3
supports HTTP connections, it is possible that an attacker
could intercept such an unsigned payload request, change the
payload and send it to an S3 API endpoint. Depending on
the request that was intercepted, it could allow the attacker
to overwrite objects, delete objects, or change policies of a
bucket, among other things.

C. HTTP smuggling

Although we have not successfully been able to send HTTP
smuggling request to AWS, it is still crucial that we have
performed this attack to see if AWS’ API endpoints are
protected against these kinds of attacks. The attack was still
in the scope of this research as the attack could be used to
circumvent the authentication of users. The front-end server of
the AWS API endpoints that we have tested are not vulnerable
against the HTTP smuggling attack described in Section IV.
The IAM API server would respond with an HTTP status code
of 500 whenever it would the Transfer-Encoding: chunked
header was used. The S3 API server, would not send back
a response but instead terminated the connection. This did not
reveal if the S3 was susceptible to HTTP smuggling attacks.

The HTTP status code 501 occurred whenever we tried
to obfuscate the chunked directive by placing an arbitrary x
before the directive. Placing white space around the chunked
directive resulted often in a bit slower response from the IAM
API server, however the response HTTP status code was still



500. As for S3, there was no response at all but a termination
in the connection. Therefore, from the observations that we
have made, we assume that the AWS’ API front-end server is
secured against HTTP smuggling attack.

D. Timing attack

As stated in Section V, the p-value is lower than the signifi-
cance level. We thus reject our initial hypothesis, which stated
that there is no correlation between the number of incorrect
bits in the signature and the response time. From our results
in Figure 6, we saw that there is a weak positive correlation
of 0.1185. We expected there to be a negative correlation,
however. As explained in Section IV, we expected to measure
a faster response time when the number of incorrect bits
was higher, as the comparison function would then terminate
earlier. While the correlation that was found was indeed found
to be significant, we cannot confirm that a timing attack
would actually be possible, as the results are in the order of
microseconds.

One may argue, that our assumptions on how the signatures
are being compared and read may have been incorrect. We
have taken this into account when we had set up the experi-
ment for testing. We noticed that the Escher implementation
that we have used, used an unequal comparison operator for
comparing its own calculated signature from the request and
the signature of the request. This made us look deeper into
how Golang comparison would work on a low level. As far
as we can tell, Golang uses the system native endianness for
reading bytes on a low level. The system that we have tested
on, used little endian as its native byte order. From our example
signature modification in figure 5, the bit that we had changed
would be the last bit to be read due to the system’s endianness.

Instead of looking at the response time, a different metric
could have been measured, such as CPU cycles. However, an
attacker would not have any other measurement unit available
to them besides the response time. A timing attack normally
would be executed by an attacker by sending multiple requests
to see if there is a discrepancy in time depending on the
variables in the request being changed.

VII. CONCLUSION

In this research, we have looked at various attacks in order
to evaluate security of the SigV4 protocol. This protocol is
used by AWS to provide verification of the identity of the
requester, in-transit data protection, and protection against
reuse of the signed portions of a request sent to a service’s API
endpoint. Each AWS’ service has subtle differences between
them, but the basic workings are the same. In this research,
we have looked only at the IAM service and S3 service. We
saw that the protection of the SigV4 protocol is dependent
on HMAC-SHA1 or HMAC-SHA256. There exist no feasible
attacks on these two algorithms, however. Therefore, we have
looked at other ways to attack or circumvent the SigV4 proto-
col. We have specified attacks which would undermine at least
one of the aforementioned three points that the SigV4 protocol

should provide. We have looked at replay attacks, modifying
of the request, HTTP smuggling, and timing attacks.

We have found that replay attacks are possible for both the
IAM and S3 service within a specific time window. By default,
replaying requests is possible within the first 15 minutes of
the request being signed. Normally, replaying of requests is
prevented by using SSL/TLS. The S3 service, however, allows
one to send request without SSL/TLS.

For modifying requests, we were not able to make any
significant changes to the request. All important data for the
request is signed, and cannot be tampered with. However, with
S3 service, there is an option to not sign a payload. When this
option is used, the payload is susceptible to modification.

We have looked into the possibility of performing an
HTTP smuggling attack to circumvent the SigV4 protocol.
We had crafted requests with which we could detect if HTTP
smuggling is possible. These requests elicited a 500 or 501
HTTP status code response or no response at all. The requests
were thus not accepted, indicating that HTTP smuggling is not
possible.

For the timing attack we were only able to make an analysis
for our local server, which makes use of Escher, as we were
not allowed to flood the AWS servers. We found a weak
positive correlation between the number of incorrect bits in
the signature and the response time. This could indicate that,
by looking at the response time, one can gain information
about the signature.

Revisiting our research question, we will answer them in
a concise manner. How does Signatures Version 4 Protocol
ensure data integrity, verification of the requesting user, and
protection against reuse of signed requests?

The SigV4 protocol ensures data integrity by creating a
signature. The integrity is only limited to the things that one
has specified to sign. The protocol authenticates a user, by
recreating the signature from data in the request and compare
it with the signature of the same request. It verifies a user by
taking the API Key ID and the corresponding secret access
key to recreate the signature. This secret access key is bound
to a specific user. Finally, the protocol protects against reuse
of signed request due to expiration time for a request.

What kind of attacks are able to undermine data in-
tegrity,verification of the requesting user, or protection against
reuse of signed requests?

The attacks that we have conducted that were able to
undermine one of the three points in the research question
are, replay attacks, modifying the request and possibly timing
attack. Replay attacks are able to undermine the protection
against reuse signed request. The modifying request attacks
is able to undermine the data integrity. This is only true for
the specifically specified UNSIGNED-PAYLOAD option from
S3 services. Timing attacks may be able to undermine the
verification of the requesting user. Our timing experiment only
gave an indication of a possibility that a timing attack may be
able on Escher. We could not confirm if this is also true for
the SigV4 protocol.



We can conclude that the SigV4 protocol is secure as
long the user creating the request acts carefully. The practical
attacks that we have found (replay attack and modifying the
request), are mitigated if HTTPS is used instead of HTTP, to
send the requests.

In conclusion, the SigV4 protocol does provide data-
integrity for the portions of the requests that have been signed.
It also verifies the requesting user. It only partly protects
against reuse of signed requests, however as replaying requests
is possible within a specific time window.

VIII. FUTURE WORK

As we have seen, there are subtle differences between AWS
services. Further research could be done into what differences
there are between the various services that AWS provides.
Looking for vulnerabilities in services other than IAM and
S3, which we have looked at in this research, could lead to
finding service-specific vulnerabilities in the SigV4 protocol.

Performing a timing attack on AWS services could be tried
as well. In this research, we have analyzed the possibility of
performing a timing attack on our local server, which ran
Escher. This was done because flooding of AWS servers is
prohibited. Permission to perform flooding attacks for pene-
tration testing can be requested, however.

Finally, attacks on HMAC-SHA1 are considered infeasible
but have proven to be possible. These attacks could become
feasible in the future, and may become a valid attack vector
on the SigV4 protocol.

ACKNOWLEDGMENT

We would like to thank our supervisors Alex Stavroulakis
and Aristide Bouix from KPMG N.V., for their time, guidance
and feedback throughout this work. Not only have they helped
us with the research and and writing of this paper, they have
also helped us with giving feedback for our presentation. We
are grateful that we have been able to do our research at
KPMG as we have enjoyed our time working on this paper.

REFERENCES

[1] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446. August 2018. DOI:
10 .17487/RFC8446. URL: https : / / rfc - editor.org / rfc /
rfc8446.txt.

[2] Eran Hammer-Lahav. The OAuth 1.0 Protocol. RFC
5849. April 2010. DOI: 10.17487/RFC5849. URL: https:
//rfc-editor.org/rfc/rfc5849.txt.

[3] Dick Hardt. The OAuth 2.0 Authorization Framework.
RFC 6749. October 2012. DOI: 10 . 17487 / RFC6749.
URL: https://rfc-editor.org/rfc/rfc6749.txt.

[4] Professor John Franks et al. HTTP Authentication:
Basic and Digest Access Authentication. RFC 2617.
June 1999. DOI: 10.17487/RFC2617. URL: https://rfc-
editor.org/rfc/rfc2617.txt.

[5] Authenticating Requests (AWS Signature Version 4).
Visited on: 08-01-2020. URL: https://docs.aws.amazon.
com / AmazonS3 / latest / API / sig - v4 - authenticating -
requests.html.

[6] Colin Percival. AWS signature version 1 is insecure.
Visited on: 09-01-2020. 2008. URL: http : / / www .
daemonology.net /blog/2008- 12- 18- AWS- signature-
version-1-is-insecure.html.

[7] Jeff Bar. Amazon S3 Update - SigV2 Deprecation Period
Extended Modified. Visited on: 09-01-2020. 2019. URL:
https://aws.amazon.com/blogs/aws/amazon-s3-update-
sigv2-deprecation-period-extended-modified/.

[8] Luigi Lo Iacono and Hoai Viet Nguyen. “Authentication
scheme for REST”. In: International Conference on
Future Network Systems and Security. Springer. 2015,
pp. 113–128.

[9] Mark Cavage and Manu Sporny. Signing HTTP Mes-
sages. DRAFT. IETF, October 2019, pp. 1–22. URL:
https://www.ietf.org/id/draft- cavage-http- signatures-
12.txt.

[10] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti.
HMAC: Keyed-Hashing for Message Authentication.
RFC 2104. February 1997. DOI: 10.17487/RFC2104.
URL: https://rfc-editor.org/rfc/rfc2104.txt.

[11] Chowdhury Sajadul Islam and Mohammad Sarwar Hos-
sain Mollah. “Timing SCA against HMAC to investigate
from the execution time of algorithm viewpoint”. In:
2015 International Conference on Informatics, Elec-
tronics & Vision (ICIEV). IEEE. 2015, pp. 1–6.

[12] Pierre-Alain Fouque et al. “Practical electromagnetic
template attack on HMAC”. In: International Workshop
on Cryptographic Hardware and Embedded Systems.
Springer. 2009, pp. 66–80.

[13] Ronen Heled. “HTTP REQUEST SMUGGLING”. In:
(2005).

[14] James Kettle. “HTTP Desync Attacks: Request Smug-
gling Reborn”. In: (2019). Visited on: 30-01-2020. URL:
https : / / portswigger . net / kb / papers / z7ow0oy8 / http -
desync-attacks.pdf.

[15] AWS Command Line Interface. Visited on: 10-01-2020.
URL: https://aws.amazon.com/cli/.

[16] AWS SDK. Visited on: 10-01-2020. URL: https://aws.
amazon.com/tools/.

[17] Signing AWS Requests with Signature Version 4. Visited
on: 10-01-2020. URL: https:/ /docs.aws.amazon.com/
general/latest/gr/sigv4 signing.html.

[18] Authenticating Requests: Using Query Parameters
(AWS Signature Version 4). Visited on: 29-01-2020.
URL: https://docs.aws.amazon.com/AmazonS3/latest/
API/sigv4-query-string-auth.html.

[19] WWW FAQs: What is the maximum length of a URL?
Visited on: 30-01-2020. URL: https://web.archive.org/
web/20190902193246/https://boutell.com/newfaq/misc/
urllength.html.

[20] AWS Identity and Access Management (IAM). Visited
on: 31-01-2020. URL: https://aws.amazon.com/iam/.

[21] Amazon S3. Visited on: 31-01-2020. URL: https://aws.
amazon.com/s3/.

https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC5849
https://rfc-editor.org/rfc/rfc5849.txt
https://rfc-editor.org/rfc/rfc5849.txt
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.17487/RFC2617
https://rfc-editor.org/rfc/rfc2617.txt
https://rfc-editor.org/rfc/rfc2617.txt
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is-insecure.html
http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is-insecure.html
http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is-insecure.html
https://aws.amazon.com/blogs/aws/amazon-s3-update-sigv2-deprecation-period-extended-modified/
https://aws.amazon.com/blogs/aws/amazon-s3-update-sigv2-deprecation-period-extended-modified/
https://www.ietf.org/id/draft-cavage-http-signatures-12.txt
https://www.ietf.org/id/draft-cavage-http-signatures-12.txt
https://doi.org/10.17487/RFC2104
https://rfc-editor.org/rfc/rfc2104.txt
https://portswigger.net/kb/papers/z7ow0oy8/http-desync-attacks.pdf
https://portswigger.net/kb/papers/z7ow0oy8/http-desync-attacks.pdf
https://aws.amazon.com/cli/
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-query-string-auth.html
https://web.archive.org/web/20190902193246/https://boutell.com/newfaq/misc/urllength.html
https://web.archive.org/web/20190902193246/https://boutell.com/newfaq/misc/urllength.html
https://web.archive.org/web/20190902193246/https://boutell.com/newfaq/misc/urllength.html
https://aws.amazon.com/iam/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/


[22] Escher - stateless HTTP request signing library. Visited
on: 09-01-2020. 2019. URL: https : / / github . com /
emartech/escher.

[23] Flask — The Pallets Projects. Visited on: 29-01-2020.
URL: https://www.palletsprojects.com/p/flask/.

[24] Burp Suite - Cybersecurity Software from PortSwigger.
Visited on: 22-01-2020. URL: https://portswigger.net/
burp.

[25] Examples of the Complete Version 4 Signing Process
(Python). Visited on: 22-01-2020. URL: https : / /docs .
aws . amazon . com / general / latest / gr / sigv4 - signed -
request-examples.html.

[26] AWS Customer Support Policy for Penetration Testing.
Visited on: 08-01-2020. URL: https://aws.amazon.com/
security/penetration-testing/.

[27] Eman Salem Alashwali and Kasper Rasmussen.
“What’s in a downgrade? A taxonomy of downgrade
attacks in the TLS protocol and application protocols
using TLS”. In: International Conference on Security
and Privacy in Communication Systems. Springer. 2018,
pp. 468–487.

https://github.com/emartech/escher
https://github.com/emartech/escher
https://www.palletsprojects.com/p/flask/
https://portswigger.net/burp
https://portswigger.net/burp
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/

	Introduction
	Research questions
	Structure

	Related Work
	HTTP Message signing schemes
	HMAC side-channel attacks
	Attack on Signature Version 1
	HTTP smuggling

	Design
	Signing requests with Signature Version 4
	AWS Server Side Behaviour
	Amazon IAM and Amazon S3
	Differences SigV4 and Escher

	Methodology
	Replay Attack
	Modifying requests
	HTTP smuggling
	Timing attack

	Results
	Replay Attack
	Modifying requests
	HTTP smuggling
	Timing attack

	Discussion
	Replay Attack
	Modifying requests
	HTTP smuggling
	Timing attack

	Conclusion
	Future Work
	References

