
Server agnostic DNS augmentation

using eBPF

Master thesis by Tom Carpay
Security and Network Engineering masters programme

Supervisors: Willem Toorop and Luuk Hendriks
NLnet Labs

August 17, 2020

With ever larger DNS request volumes, handling requests efficiently becomes
ever more important. One way to address higher network performance is to
bypass the kernel network stack completely, however the software providing the
service then has the daunting task to perform all the low-level tasks the kernel
would normally handle. The Extended Berkeley Packet Filter (eBPF) and in
particular Express Data Path (XDP) kernel hook provides an alternative ap-
proach, in which traffic can be considered and acted upon, or passed on to the
kernel, from the lowest layer of the network stack.
This research seeks to take this approach one step further and augment DNS
software agnostic of the software providing the (basic) DNS service. To this end
we explore several aspects of the XDP kernel hook introduced by eBPF. We
examine two use cases: QName rewriting and Response Rate Limiting (RRL).
We develop a prototype for QName rewriting and develop three RRL proto-
types, including an augmentation that is currently unavailable in other DNS
software. Each of these prototypes demonstrates one or more different XDP
eBPF functionalities to augment DNS. The QName rewriting prototype is used
in a continued setup involving the RIPE Atlas network. We perform experiments
for each Response Rate Limit prototype by stress testing an authoritative DNS
server and introducing the prototypes to the setup. We show that the CPU
load drops when using the prototypes over their user space counterparts and
we conclude that XDP eBPF is a viable candidate for augmentations to DNS
software agnostic of the supplier.

1

Contents

1 Introduction 3

2 Related work 5

3 Background 5

4 Methods 8
4.1 QName rewriting . 9
4.2 Response Rate Limiting . 9

5 Experiments 10
5.1 QName rewrite . 11
5.2 General RRL . 11
5.3 Per IP RRL . 12
5.4 Unknown host RRL . 13

6 Results 13
6.1 QName rewrite . 13
6.2 General RRL . 14
6.3 Per IP RRL . 16
6.4 Unknown host RRL . 17

7 Discussion 18

8 Conclusion 19

9 Future work 20

10 Acknowledgements 22

A QName rewrite prototype code 23

B General RLL prototype code 36

C Per IP RRL prototype code 43

D Unknown host RRL prototype code 51

2

1 Introduction
As the internet is constantly growing, the amount of DNS requests grows
with it. With ever larger request volumes, handling requests more efficiently
becomes more and more of a necessity. This increase in volume becomes
apparent in the packet processing limitations of network stacks at packet rates
higher than 10 Gbps [1].

Currently, there is no Domain Name System (DNS) interaction available low
in the Linux kernel network stack. This is desirable for operators of DNS
software, for example at high volume authoritative nameservers. A method for
handling DNS messages more efficiently is by removing the overhead from the
network stack, which could significantly improve performance. A candidate
technology this research explores for this is the Berkely Packet Filter (BPF).

The BPF is a Linux based, in-kernel virtual machine that runs a custom 64 bit
instruction set that is Just-In-Time (JIT) compiled to machine instructions.
BPF allows compiled C BPF bytecode to be attached to a data path via
the built in verifier. Once the program passes the verifying process, which is
discussed in more detail in Section 3, the program is executed whenever the
attached path is traversed.

The extended Berkely Packet Filter (eBPF), the 2014 expansion added to the
retroactively called classic Berkely Packet Filter (cBPF), offers a significant
number of improvements which enhance its capabilities as packet filter and
processor, and shift the focus to a low level tracing tool set. One of the aspects
that enables this research is the addition of the eXpress Data Path (XDP).
This high performance kernel hook allows BPF programs to be attached to a
network interface and execute instructions on a per packet basis. Instructions
can be hardware offloaded on selected Network Interface Cards (NICs). Further
improvements are discussed in more detail in Section 3. BPF is native to the
Linux kernel, so BPF programs are widely available. From Section 2 we learn
that BPF programs are more performant to their user space counterparts in
many cases.

To explore the capabilities of this technology in relation to DNS, we create
a number of prototypes with limited functionalities. These functionalities
are chosen based on operator needs and functionalities that are not currently
available in DNS software, or are improved by this technology. If successful,
these prototypes implement their respective functionalities agnostic of the
software supplier, as the logic that is executed is completely invisible to user
space. If successful, further developed and be used to augment all current DNS
software.

We examine two main use cases: a Query Name (QName) rewriting experi-
mental setup, and Response Rate Limiting, the DNS addition to mitigate DNS
amplification attacks. For both use cases we explore prototypes to examine the
functionalities of BPF.
The QName rewrite prototype is used in an experimental setup for research
being done by Koolhaas and Slokker [2]. For their measurements, a method

3

is needed to change the DNS query to invoke a predetermined sized response.
The authoritative DNS server on the test setup replies different sized responses
based on the query name. The probes from which the queries are sent, embed
their (variable sized) probe IDs in the query as these are needed to process the
measurement results. Besides rewriting the query name to request different
sized responses, also the length of the probe ID within the query name needs
to be compensated, to guarantee the same (requested) sized responses for all
probes. As we show in the Section 4, BPF offers a viable solution to this
need, as the measurements can be taken without the need for a DNS parser
or modification to a DNS software, facilitating easier reproducibility of the
experiment.
The other prototypes revolve around Response Rate Limiting (RRL), a DNS
enhancement to mitigate DNS amplification attacks [3]. While RRL is a
functionality that is present in a number of the well known DNS software
products (BIND1, NSD2, KnotDNS3) it is not present in others. Software
native RRL implementations leave the overhead of the network stack in place
for every packet.
The RRL prototypes examine the possibilities for RRL using BPF in three
iterations. The first prototype implements a general version of RRL for
all incoming DNS messages. The second prototype differentiates the RRL
“buckets” for individual IP addresses. The final prototype implements a novel
method where a configurable allowlist of “known senders” are exempt from
RRL, while all other senders are subject to it per individual source IP address.
With each prototype we explore the different functionalities that BPF offers
for DNS.

The prototypes for both uses cases are experimentally verified to be functional.
In case of the QName rewriting, the XDP program is verified to work on a
small scale setup before being used in the large scale experiment by Koolhaas
and Slokker.
With the different RRL prototypes, we examine the impact on performance
that the XDP programs have to their user space counterpart, where possible.
This comparison is drawn by observing the change in CPU load when both
cases are being subjected to a stress test. If a comparison is not possible, as
with the final RRL prototype iteration, we examine how the prototype scales
within the limitation of the resources of this research.

The aim of this research is to augment DNS software agnostic of the software
supplier. To this end we pose the main research question: How can XDP eBPF
be used to augment and improve DNS software?

To help answer the main research question, we pose the following research sub-
questions:

• Which features from XDP BPF could be used to augment DNS software?

• How can DNS augmentations be implemented based upon these XDP

1Berkely Internet Name Domain: https://www.isc.org/bind/
2NLnet Labs’ open source Name Server Daemon: https://www.nlnetlabs.nl/projects/

nsd/about/
3Open source authoritative-only name server: https://www.knot-dns.cz

4

https://www.isc.org/bind/
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.knot-dns.cz

eBPF features?

• How do these implementations impact performance?

This paper is structured as follows. In Section 2 we discuss the related work
of this research and in Section 3 we discuss the concepts of BPF and XDP in
more detail. In Section 4 we examine the research methods, prototypes and
algorithms, and in Section 5 the experiments. In Section 6 we examine the
results of the experiments and in Section 7 we discuss our findings. Finally, in
Section 8 we show our conclusions and in Section 9 we discuss the future work
for this research.

2 Related work
The eBPF instruction set itself has been a thoroughly researched topic. In
2017 Vieira et al. [4] gave comprehensive insight into eBPF and its data path
hooks. In 2020, Høiland-Jørgenson et al. [5] extended this insight by focusing
on the XDP kernel hook. They also compare the packet drop performance of
XDP compared to its user space counterparts and show that XDP is more
efficient. Their research builds a fundamental understanding of eBPF and the
XDP kernel hook, and their conclusion on XDP efficiency build the foundations
for this research.

A networking use case for XDP eBPF is for Distributed Denial Of Service
(DDOS) protection. This has been studied in scientific research [6] [7] as well
as by large organisations such as Cloudflare. The research has shown that
an XDP eBPF DDOS program was possible technically and functional [8]
and show their product works well [9]. The findings from both the industry
and scientific sources show that an XDP protection program offers more
efficient DDOS protection than its user space counterparts. Our Response Rate
Limiting prototype aims to extend the use case to DNS, to provide protection
against the DNS Amplification Reflection type of Denial of Service attacks,
independent of the DNS software in use in user space.

3 Background
Originally BPF was designed as a low level packet filter with a customisable
set of rules. With the follow up of eBPF in 2014 the functionality of the capa-
bilities of the technology have been expanded to include network performance,
firewalls, security, tracing, and device drivers [10].

For clarity, we distinguish classic BPF and extended BPF, which are retroac-
tively named cBPF and BPF respectively, as in the rest of this research we
adhere to this naming convention.

The extension on the cBPF improves on several points as shown in Table 1.
One of the changes is that the extension of BPF introduces the ability of
executing a limited set of kernel functions through “helper functions”, which
was not allowed in cBPF. An example of a helper function is bpf ktime get ns,
which calls the kernel function ktime get ns. Only kernel functions that have a

5

Property cBPF eBPF
Number of registers 2 11

Register size 32 bits 64 bits
Stack size 16 bytes 512 bytes

Instruction execution limit 10.000 1.000.000
Kernel function calls Not allowed Allowed

Program offloading to SmartNIC Not possible Possible
Dynamic loading and program reloading Not possible Possible

Table 1: The changes made extending BPF [4].

helper function counterpart can be used in BPF programs. Specifically, an BPF
program cannot call user-space functions, because it is not running in user space.

BPF programs are user-created programs that run in kernel space. Code
written in C is compiled to bytecode as a BPF program. Running user-created
programs in kernel space could potentially lead to security or stability risks. To
mitigate this risk, all BPF programs are inspected by the BPF verifier. If the
program passes the verifier, on first execution the bytecode program is JIT com-
piled to machine instructions to be executed. This life cycle is shown in Figure 1.

Figure 1: The life cycle of a BPF Program (copied from Vieira et
al. [4]).

The BPF verifier performs three main checks [11]. The first check tries to
verify that the program does not contain any kernel locking loops and that the
program terminates. To this end, the verifier creates a directed acyclic Control
Flow Graph (CFG) and does a depth first search of this graph to find the termi-
nating points. If it finds any potentially non terminating path, the verifier will
fail the program, as these are not allowed. An example CFG is shown in figure 2.

6

Figure 2: A directed acyclic control flow graph representation for a
BPF Program that rejects all incoming DNS queries. This program
is follows a different flow based on the received IP version. Note the
distinction between the starting points for both IP versions. This dis-
tinction is made to ensure that all instructions are reachable in either
IP case during verification.

The second verifier check involves simulating the program, executing and
checking per single instruction. This simulation verifies that the program stays
within bounds and never accesses out of range memory.
For the final verifier check, the verifier restricts kernel functions and data
structures available to the program according to the eBPF program type. In
this research we use program types corresponding to the XDP kernel hook.
The XDP hook is limited to incoming traffic. A more elaborate description of
the verifier is described by Vieira et al. [4] and Høiland-Jørgensen et al. [5].

The method that BPF uses to interact with user space is via BPF “maps”.
These maps are data structures of which the type has to be defined at compile
time and are stored in user space. The map types are used in the final verifier
check to restrict map usage to its respective type. BPF programs can interact
with maps through BPF helper functions such as bpf map lookup elem(),
bpf map update elem(), and bpf map delete elem(). Since BPF programs
attach to a data path which can be traversed many times per second, to avoid
memory locks the map types can be defined as per CPU core or shared between
all CPU cores.

A selection of available map types are:

• BPF ARRAY,

7

• BPF PERCPU ARRAY

• BPF HASH

• BPF PERCPU HASH

• BPF STACK TRACE

• BPF ARRAY OF MAPS

The map types used in this research are the BPF PERCPU ARRAY, BPF HASH, and
BPF PERCPU HASH.
The Array type has a predefined number of elements and is available per CPU
or shared between cores. The maximum key size is 32-bit and the size of the
array is defined before compiling [12].
The Hash type is a HashMap (or associative array) implementation which
is optimised for fast lookup and updates. The Hash type uses the jhash

library [12], which is a Linux kernel library. The maximum key size is
configurable, though the standard is 64-bit.

To summarise, there are three components that enable the agnostic augmen-
tation of DNS software. Firstly, the extension of cBPF allows BPF programs
to be used in a wider method. Secondly, the three checks of the BPF verifier
ensure that a BPF program is executed safely and that it is finite. Lastly, BPF
maps offer a method for BPF programs to interact with user space and need to
be configured with a specific type at compile time.

4 Methods
In this section we discuss the approaches for designing the prototypes. Code
for all prototypes is found in the Appendix.

As mentioned before, we choose two main use cases to write prototypes for:
rewriting query names of DNS messages and response rate limiting large
volumes query sources. The selection of prototypes is chosen because each one
demonstrates one or more different key functionalities of XDP BPF.

The QName rewrite prototype demonstrates the ability to rewrite packet
contents before they are passed on to the network stack and the usability
of XDP programs in large scale network tests. The general RRL prototype
demonstrates a performance comparison of a native DNS software functionality,
and displays the interaction with the map user space storage from within
the XDP program. The per IP RRL prototype iterates on the general RRL
prototype and attempts to show that increasing the number of source IPs does
not influence the workload, which displays that the XDP program scales for
more IPs as used as source addresses. The unknown host prototype attempts
to demonstrate a functionality that is not available in most, current DNS
software and shows interaction and configurability of a running XDP program
from user space.
The listed functionalities help to answer the first research sub-question: Which
features from XDP BPF could be used to augment DNS software?

8

4.1 QName rewriting

With the QName rewrite prototype we explore rewriting incoming packets by
rewriting the packet before it is passed on to the network stack. This process
is completely invisible to programs running in user space. The use case here
is DNS message size measurements done with RIPE Atlas4. For this use case
only the QName and checksum are rewritten, so that the query invokes a
different response. The need for rewriting the query comes from the fact that
the measurement has been scheduled with predefined properties allowing it
to target all resolvers on all current and future probes, in an hourly schedule,
and in an ongoing manner without preset end time. However, these predefined
properties are bound to a fixed query name. To invoke different response
sizes on different moments in time the query name needs to be changed
before it is passed on to the network stack. Furthermore, the query structure
involves the probe ID, which can be up to 7 digits and changes per probe.
Since different probes send queries with different sizes, they invoke different
respective responses. To enable all probes to invoke the same response, which
is desirable for the use case, the number of digits in the ID is compensated by
the XDP program. To guarantee the same sized responses for every probe ID,
the query name needs to be further adjusted to reflect the length of the probe
ID which is compensated with a tuned response by the NSD daemon serving
the request in user space.

To this end, a DNS request is received on the network interface and the XDP
program is run by the kernel. The program determines if the packet is either
IPv4 or IPv6, and verifies it as a DNS message by looking at the UDP port.
When the message is verified to be DNS, the expected size of the query and
the size of the probe ID are checked, and a following label is expanded to fill
the discrepancy between the expected and the current size. To guarantee the
checksum is still correct, it is recalculated and updated. When this succeeds
the packet is passed along to the network stack.
Using this method, the DNS label can be modified on the machine running the
NSD instance, without the need to modify any zones or the program itself.

4.2 Response Rate Limiting

To explore the RRL topic we present three prototype iterations:

• General RRL

• Per IP RRL

• Unknown host RRL

The first prototype version, general RRL, offers an operator the ability to
set a fine-grained limit of received packets that the DNS service can process
without dropping packets. This limit can be fine-tuned to the capabilities of
the machine and network that this service is running on.

The general version of the RRL prototype functions by counting every DNS
message that is received within a predetermined time frame, and stores the

4The RIPE Atlas internet measurement network: https://atlas.ripe.net

9

https://atlas.ripe.net

frame starting time and the total counted packets in the frame in an array
BPF map with a single entry to be accessible at every program execution. The
time frame determines the granularity of the algorithm and is configured before
compiling. The starting time in the frame is updated every instance it has
reached or surpassed the predetermined time frame size value. This check is
performed by subtracting the current time of the packet from the starting time,
both in nanoseconds, and examining this against the time frame threshold.
If the total number of packets exceeds the threshold within the time frame,
which are both configured before compiling, all other packets in the same time
frame are either dropped or replied to the sender with the truncated flag set
(bounced), depending on the desired behavior.

Per IP RRL
The per IP RRL prototype functions much the same as the general version.
The main difference is that the time frame and number of packets are calculated
and stored per IP. The values are stored in a hash type BPF map where the
key is the source IP address of the incoming query. The size of the map can be
configured before compilation.

The per IP RRL prototype provides the option to differentiate between
low volume query sources and high volume, repetitive query sources. This
differentiation allows the algorithm to restrict high volume senders, while
serving the low volumes senders unimpeded.

Unknown host RRL
The unknown host RRL prototype is similar to the per IP RRL prototype in
that IPs can be rate limited, but differs in how this is accomplished.

The unknown host RRL program functions by matching the IP of the current
DNS message to an entry in the known hosts HashMap, and subjects the
message to RRL if the source IP is not in the allowlist. If an entry exists in
the known hosts HashMap for an IP, the program can be configured to bounce
or pass the message based on the entry. The entry, like in the per IP RRL
prototype, stores the number of packets seen from this sender and the start of
the current time frame. If the entry does not exist, the algorithm creates an
entry in a second HashMap with the number of packets set to 1 and the start
time set to the current time. This second HashMap is identical in use to the
one in the per IP RRL program.

The method of adding entries to the HashMap is manually adding them from
user space. This method allows the user to create a list of trusted senders
which are exempt from rate limiting without recompiling and reloading the
BPF program.

5 Experiments
In this Section we describe the experimental setups for the two use cases,
QName rewriting and RRL, and their respective prototypes.

10

5.1 QName rewrite

The QName rewrite prototype is used in research by Koolhaas and Slokker [2].
The goal of their experiment is to find the optimal size for User Datagram
Protocol (UDP) packets traversing the network without fragmenting using the
RIPE ATLAS measurement platform by measuring DNS responses of a known
size.

Their experimental setup involves long running RIPE Atlas measurements for
which the parameters cannot be changed once the measurements are started.
The query name (QName) of DNS requests is changed by an XDP program
to invoke requests for different response sizes. Rewriting by the XDP program
is done without the need to change the query parameters of the RIPE Atlas
measurement, such as individual prove IDs. The setup used by Koolhaas and
Slokker can be seen in Figure 3

Figure 3: The experimental setup used by Koolhaas and Slokker. Note
that the MTU size is determined by the query and is corrected in the
eBPF program. (copied from [2]).
An example query from probe N could request a response of 1480 bytes
directly from the authoritative server. In this example case, the ID of
probe N, which is included in the query, is smaller than the maximum
probe length and the response the query receives would be 1472 bytes.
To ensure each measurement receives the same response size regardless
of the ID length, the eBPF program adds padding to the query to ensure
the response size is correct.

The QName prototype is used extensively during measurements of the Koolhaas
and Slokker research and shown to function for all used queries which are also
shown in Figure 3.

5.2 General RRL

The experimental setup for the RRL experiment consists of two servers. One
running an instance of NSD5, as DNS server, and one running an instance of
the Flamethrower6 tool. Flamethrower is a community-based tool that can be

5NSD, an open source authoratative DNS name server: https://www.nlnetlabs.nl/

projects/nsd/about/
6The open source Flamethrower source code: https://github.com/DNS-OARC/

flamethrower

11

https://www.nlnetlabs.nl/projects/nsd/about/
https://www.nlnetlabs.nl/projects/nsd/about/
https://github.com/DNS-OARC/flamethrower
https://github.com/DNS-OARC/flamethrower

used as a stress test method for DNS software by sending many queries in rapid
succession. The tool has the capability of concurrent requests with config-
urable Queries per second (QPS). Flamethrower is used in all RRL experiments.

At the time of writing, an instance of NSD comes preconfigured with the RRL
feature enabled with a default of 200 QPS per IP address. Enabling the NSD
RRL implementation for this experiment offers a method of verifying the RRL
prototype. Most packets will be dropped by the NSD RRL when querying in
large volumes. Counting the number of dropped packets, as timeouts, allows us
to measure the effectiveness of the XDP program as we configure it to return
the queries that are response rate limited with the truncated flag set. Using
increasingly more aggressive RRL thresholds, i.e. lowering the threshold so that
more messages are Response Rate Limited, in the XDP program, we expect
the number of dropped packets to decrease. If successful, we can conclude that
the program is functional.
Increasing the RRL threshold while measuring the CPU load will also give us
insight in the efficiency relation between the two. We expect the CPU load
to drop when increasing the aggressiveness of the RRL threshold on the XDP
program, by lowering the RRL threshold.
The configuration choice of using the NSD RRL functionality is made, as
logging the packet dropped by the XDP program would be a relatively com-
putationally expensive operation. An expensive operation could influence the
CPU load measurements, and the current solution allows for easier measuring,
as Flamethrower creates a report for every executed run.

5.3 Per IP RRL

The setup for the per IP RRL experiment is similar to the previous exper-
iment. The difference is that the RRL functionality of NSD is switched
off and that instead of receiving the same query from one source IP, here
we send traffic from multiple source IP addresses. Since the functionality
of the program is established by the previous experiment, the goal of this
experiment is assessing how traffic originating from multiple senders affects the
CPU load of our XDP implementation. The NSD RRL functionality is not
needed for this goal. A visual representation of the setup can be seen in Figure 4.

Figure 4: Representation of the setup of the per IP experiment. Note
that all senders have their own assigned IP address from which they
send queries to the same machine.

12

To keep the measurements comparable while varying the number of senders, a
maximum QPS limit needs to be found. The machine running the flamethrower
instances and the machine running the NSD instance are not on the same net-
work. We empirically determine a maximum QPS for our specific measurement
setup, ensuring the load per core never exceeds 100 percent usage, as this could
influence the results. When found, this limit will be used in the rest of the
experiments.

For this experiment we configure the RRL aggressively, to ensure the majority
of the responses are sent by the XDP program, as opposed to NSD. Since the
total number of responses does not vary significantly, we do not expect the
CPU load of the NSD instance to change as it is highly optimised for large
number of queries from different sources.
To measure the difference in CPU load from the XDP program, the number
of flamethrower instances with their own IPs is increased incrementally. We
expect the total CPU load not to change significantly as the number of source
IPs increases.

5.4 Unknown host RRL

The experimental setup for the unknown host RRL experiment is the same as
for the per IP RRL experiment. It consist of multiple flamethrower instances
with their own respective IP addresses, which send queries to a single machine
running an NSD instance, such as can be seen in Figure 4.
The difference compared to the previous experiment is that instead of varying
the number of flamethrower instances, the number of source IPs that are
included in the allowlist is incremented between runs. This incremental change
allows us to verify that the XDP program is functional, as we expect to see
CPU load increase as more IPs are included in the allowlist as the workload
for NSD grows. IPs are added to the map of known hosts with the bpftool

toolset.

Querying non-existing domains allows us to differentiate the responses received
from the XDP program and NSD. The responses that the Flamethrower tools
receive contain the DNS response code REFUSED, while responses that are above
the RRL threshold within the XDP program contain the DNS return code
NOERROR. This difference in response code allows us to verify that the number
of queries that reach the NSD instance is increasing according to the respective
run.

6 Results
In this Section we present our results from developing and assessing the
prototypes as described in Section 5.

6.1 QName rewrite

With the research of Koolhaas and Slokker, a RIPE Atlas measurement was
scheduled with the special properties of reaching all resolvers running on all
RIPE Atlas probes, and going on continuously and persistently. These special

13

properties came at the expense of the ability to modify the query. Our query
rewrite XDP program resolved this limitation independent of, and without
modifying DNS software. Maintaining standard components greatly increases
reproducibility of the experiment. Furthermore, we were able to fine tune
rewritten queries on a per packet basis to fine tune the variations in response
sizes caused by the length of the Probe ID embedded in the query name.

We found that rewriting the query name of incoming DNS packets, and
restoring the original query name on response, is possible as DNS wire format
imposes hard limits on the length and the number of the labels in a query
name, which makes the number of control flow paths and boundaries within the
program, that the verifier has to check, finite. Overall, we find that an entire
DNS packet can be rewritten as long as the size of the packet does not change.
A change of the size of a packet is limited to 256 bytes. These 256 bytes are
located at the head of the packet to enable encapsulation and are less suitable
for extension of the DNS packet [13].

The functionality of the QName rewrite program is emergent from the results of
[2], as they verify that the program is effective. All queries within specifications
are handled correctly by the XDP program, including the layer 3 and layer 4
checksums. Queries outside of the specification are not tested, and would not
likely result in correct execution. Koolhaas and Slokker have reported no loss
in performance using the XDP program. From their report we can conclude
that it is functional in large scale networking experiments, and thus realises the
goal set for this experiment in Section 4.

6.2 General RRL

As mentioned in Section 5, we perform multiple iterations of the experiment
increasing the aggressiveness of the RRL threshold to verify that the general
RRL program works correctly. To this end, we choose 8 RRL thresholds which
give insight into the performance of the XDP program. This performance is
measured by comparing timeouts, i.e. packets that are dropped by NSD, against
truncated packets. The range of these thresholds is found by experimentally
finding a low threshold number that results in a number of timeouts that is
close to zero. From there, the threshold is increased in intermediate steps to a
number that is close to the number of packets that are dropped by the NSD
resolver itself. To visualise the working of the program, we configure all packets
that go above the threshold to be returned with the truncation flag instead of
being dropped.

In total, roughly 600.000 DNS queries are sent per run. We find that with this
configuration NSD uses roughly 80% of a single CPU core for replies. Since
the assigned CPU core changes per run, we measure the total CPU load. The
machine running the Flamethrower instance has access to 3 CPU cores.

14

Figure 5: Visualisation of the general RRL experiment. Note that the
red shaded area shows all the packets that timeout at the Flamethrower
tool as they are dropped by the built-in NSD RRL, and the final mea-
surement is taken without an XDP program attached. We discuss the
variability of the number of packets sent in Section 7.

Figure 5 shows incrementally increases in the configured RRL threshold until it
roughly corresponds with the NSD RRL threshold. From the figure we notice
that increasing the RRL threshold, decreases the number of responses that are
received by the Flamethrower tool. This is due to more queries reaching the
NSD instance, which starts dropping them accordingly. From this observation
we can deduce that packets are processed correctly by the XDP program and
conclude that the program is functional.

Simultaneously to the measurements, the total CPU load on the resolver ma-
chine was measured as well.

15

Figure 6: Visualisation of the measured total CPU load per configured
RRL threshold. Note that this change is due to a difference in workload
for NSD.

In Figure 6 we visualise the CPU load of different RRL thresholds. We can
observe that the CPU load drops significantly when lowering the RRL threshold.
When we compare the XDP program to the NSD RRL functionality, we can
observe that the CPU load is lower in the XDP program while handling the
same number of packets. We can observe that this behavior increases as the
XDP RRL is configured more aggressively.
From this observation we can conclude that using the XDP program is more
CPU efficient than using the NSD RRL functionality. This conclusion is in line
with our expectations from Section 5.2.

6.3 Per IP RRL

The maximum QPS described in Section 5.3 to keep the total CPU load around
80% without dropping any packets is found to be roughly 45.000 QPS. All
individual Flamethrower processes are assigned one IP address and limit their
QPS per source IP so that the total QPS never rises above 45.000 QPS. For
example, in the configuration with 2 source IPs, both flamethrower instances
are configured to limit at 22.500 QPS. The configured RRL threshold in the XDP
program used for all tests is 1 QPS, which is the minimum in the program. This
low threshold ensures that we only measure the change in the XDP workload and
not in a significantly changing NSD workload. The total CPU load is measured
every second for 30 seconds per run.

16

Figure 7: Visualisation of the measured total CPU load per number
of source IPs. Note that the QPS is constant over the experiment, and
the RRL threshold for the XDP program is set to 1 QPS per source IP.

In Figure 7 we can observe the measured total CPU load for the different
number of source IP addresses. We notice the medians of all measurements to
be within 0.5% of each other, so we can conclude that our predictions made in
Section 5.3 are correct and the total CPU load does not increase significantly
as the number of source IPs increases.

6.4 Unknown host RRL

The source IPs are added to the allowlist in increments of 2 IPs per run.
This increment gives us a gradual overview of the change in CPU load as
more messages reach the NSD instance. Each run involves 12 instances of
Flamethrower which are configured to a limit of 3750 QPS. The RRL threshold
of the XDP program is configured at 1000 QPS to make a change in CPU load
per run visible.

17

Figure 8: A visualisation of the measured total CPU load per number
of source IPs in the allowlist. Note that number of IPs used as source
address and the QPS is constant throughout the experiment and only
the IPs added to the allowlist changes per run.

From Figure 8 we can observe the visualisation of the CPU load per number
of IPs used as source address in the allowlist. The visualisation shows that
adding IPs to the allowlist increases the CPU load. Because the number of
source IPs and the QPS limit is constant throughout the experiment, we can
conclude that the increase in CPU load is due to NSD handling the queries,
and the XDP program is functional.

7 Discussion
In the results from Figure 5 we can observe that the number of packets sent is
not the same for every data point. While these measurements are taken over 10
second intervals, as mentioned before in Section 5.3 the information and control
of the network falls outside of the resources of this research. While the net-
work variability does influence the results, we argue that this is not significant
for the conclusions of the results, as the variability is never more than 5 percent.

While this research shows that XDP BPF provides an opportunity to augment
DNS services without making changes to the service itself, the augmentation
shown is limited to DNS over UDP.
Currently DNS over UDP is the standard and possible agnostic augmentations
can therefore be implemented in the foreseeable future. We do note that DNS
over TLS or DNS over HTTPS specifications exist and acknowledge that the
class of augmentations shown in this work would not be functional, as the
decryption of packets happens in higher network layers which negates the
usability on lower layers.

18

In all RRL experiments, every packet is checked if it exceeds the configured
RRL threshold in the time frame, and if it arrived within the time frame.
While this method of checking is functional, it could be argued that this is not
efficient as BPF helper calls, such as the helper call for the current time, are
relatively computationally expensive as they make a system call. To optimise
this, the time check could be configured based on a predetermined number of
packets or a per-packet probability. This change can be useful in high traffic
volume environments, as the expensive system call and the check could be
superfluous for every packet, as large volumes of packets are received every
time frame.
While these checking methods are likely an efficiency improvement over
checking every packet, such performance improvements are not within the
scope of exploring this research

In the general RRL experiments the XDP program is configured to bounce the
received DNS queries with the TC bit set if the RRL threshold is exceeded.
This behavior is not strictly RRL, as this requires the packet to be dropped
instead of bounced. The XDP program contrasts the behavior of the NSD
instance, Which by default drops 50% of the requests when they exceed the
configured NSD RRL threshold. While bouncing packets is computationally
more expensive as it requires more steps than dropping the packet, the
conclusion drawn in Section 6.2 is still valid, as both actions happen at the
kernel level before the network stack and the results show the XDP program to
be more efficient than the NSD functionality, even while bouncing the packet
instead of dropping it.

A possible criticism on the proposed method of augmenting DNS software is
that it results in layer violation of the application layer in the OSI model.
While we concede this points as application layer data is resolved on the wrong
layer, we can also argue that the violation is contained to a single machine
running the program and is thus constrained to the machine and not the wider
network.

8 Conclusion
In this research, we have proposed a novel method of augmenting DNS services
agnostic of the DNS software supplier. This method is enabled by the BPF
instruction set and the included XDP kernel hook.
To showcase the different aspects of this technology we have created 4 proto-
types. With the QName rewrite prototype we have shown the ability to rewrite
packet contents before they are passed on to the network stack. With the
general RRL experiments we have drawn a performance comparison between
a DNS software native functionality and the general RRL prototype, and has
displayed interaction with the map user space storage from within the XDP
program. The per IP RRL prototype iterates on the general RRL prototype
and shows that increasing the number of source IPs does not influence the
workload. The unknown host prototype has demonstrated a functionality that
is not available in most current DNS software and has shown configurability of
a running XDP program from user space.

19

We have answered the first research sub-question in Section 3: Which features
from XDP eBPF could be used to augment DNS software? We answer this by
examining the properties of BPF and XDP.
The implementations described in Section 4 answer the second research
sub-question: How can DNS augmentations be implemented based upon these
XDP eBPF features? We answer this with the created prototypes.
In Section 6 we have concluded that all experiments show the XDP BPF
prototypes lowers the CPU load compared to the user space counterpart,
and have therefore answered the third research sub-question: How do these
implementations impact performance?
With this research we have shown that XDP BPF is a viable candidate for
augmentations to DNS software agnostic of the supplier and answered the main
research question: How can XDP BPF be used to augment and improve DNS
software?

9 Future work
To further this research, experiments around the per IP RRL prototype could
be done on high traffic simulations or high volume name servers. This could
provide a more real-world scenario where DNS defense against amplification
attacks is required, while legitimate traffic could still be resolved.

Another potential candidate for augmenting a DNS service with BPF, is server-
side handling of DNS Cookies. DNS Cookies are an in-protocol security mech-
anism against off path denial-of-service and amplification, forgery, or cache
poisoning attacks. This protection comes from the DNS server recognising a
returning client by verifying a cookie carried in the request, generated from a
client-provided nonce and a secret known only by the server.
The DNS Cookie interactions are embedded in EDNS0 options and piggy back
on, and are completely independent from, regular DNS interactions between a
client and a server, which makes them especially suitable for processing by BPF.
Furthermore, earlier DNS software implementations were not interoperable
making them impractical to deploy on multi-vendor anycast networks. An BPF
implementation would resolve this issue by providing a single, consistent and
performant implementation of DNS Cookie processing regardless of the DNS
software used to serve the DNS requests.

Another interesting topic for future research is to examine the possible security
implications of the prototypes presented in this research. While they are bound
to the limitations and the verifier of BPF, they could still pose a possible
security risk as unwanted instruction executions in kernel space could pose a
security risk.

References

[1] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Rüth, and K. Wehrle, “Demystifying
the Performance of XDP BPF,” in 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2019, pp. 208–212.

20

[2] A. Koolhaas and T. Slokker, “Defragmenting DNS; Determining the opti-
mal maximum UDP response size for DNS,” 2020.

[3] S. Goldlust, “A Quick Introduction to Response Rate Limiting,” https:
//kb.isc.org/docs/aa-01000 (Accessed: 15 July 2020), 2018.

[4] M. A. Vieira, M. S. Castanho, R. D. Paćıfico, E. R. Santos, E. P. C. Júnior,
and L. F. Vieira, “Fast Packet Processing with eBPF and XDP: Concepts,
Code, Challenges, and Applications,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1–36, 2020.

[5] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast pro-
grammable packet processing in the operating system kernel,” in Proceed-
ings of the 14th International Conference on Emerging Networking EXper-
iments and Technologies, 2018, pp. 54–66.

[6] H. Wieren, “Signature-Based DDoS Attack Mitigation: Automated Gener-
ating Rules for Extended Berkeley Packet Filter and Express Data Path,”
Master’s thesis, University of Twente, 2019.

[7] N. de Bruijn, “eBPF Based Networking,” 2017.

[8] G. Bertin, “XDP in practice: integrating XDP into our DDoS mitigation
pipeline,” in Technical Conference on Linux Networking, Netdev, vol. 2,
2017.

[9] A. Fabre, “L4drop: XDP DDOS mitigations,” https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/ (Accessed: Jun 2020), 2019.

[10] B. Gregg, “Learn ebpf tracing: Tutorial and examples,” http:
//www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html (Ac-
cessed: Aug 2020), 1 Jan 2019.

[11] M. Fleming, “A thorough introduction to eBPF,” Linux Weekly News,
2017.

[12] C. Neira, “bcc reference guide,” https://github.com/iovisor/bcc/blob/
master/docs/reference guide.md#1-bpf table (Accessed: Aug 2020), 2020.

[13] Cilium, “BPF and XDP Reference Guide,” https://docs.cilium.io/en/v1.
8/bpf/#xdp (Accessed: Aug 2020), 2020.

21

https://kb.isc.org/docs/aa-01000
https://kb.isc.org/docs/aa-01000
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#1-bpf_table
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#1-bpf_table
https://docs.cilium.io/en/v1.8/bpf/#xdp
https://docs.cilium.io/en/v1.8/bpf/#xdp

10 Acknowledgements
I would like to thank my supervisors Willem Toorop and Luuk Hendriks for
giving me the opportunity to work on NLnet Labs Research on Networks
project, the great cooperation, and their invaluable contributions to this
research.

I would also like to thank my family and friends for the (continued) support
before, during, and after this project.

22

A QName rewrite prototype code
1 /*

2 * rrl-per-ip

3 * Implements per IP RLL within a time frame for hosts that are not known in hte

4 * Jun 2020 - Tom Carpay

5 */

6

7 #include <stdint.h>

8 #include <linux/bpf.h>

9 #include <linux/if_ether.h> /* for struct ethhdr */

10 #include <linux/ip.h> /* for struct iphdr */

11 #include <linux/ipv6.h> /* for struct ipv6hdr */

12 #include <linux/in.h> /* for IPPROTO_UDP */

13 #include <linux/udp.h> /* for struct udphdr */

14 #include <linux/pkt_cls.h>

15 #include <bpf_helpers.h>

16

17 #define DNS_PORT 53

18 #define MAX_LABELS 50

19

20 #ifndef __section

21 # define __section(NAME) \

22 __attribute__((section(NAME), used))

23 #endif

24

25 #ifndef __inline

26 # define __inline \

27 inline __attribute__((always_inline))

28 #endif

29

30 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

31 # ifndef ntohs

32 # define ntohs(x) __builtin_bswap16(x)

33 # endif

34 # ifndef htons

35 # define htons(x) __builtin_bswap16(x)

36 # endif

37 # ifndef ntohl

38 # define ntohl(x) __builtin_bswap32(x)

39 # endif

40 # ifndef htonl

41 # define htonl(x) __builtin_bswap32(x)

42 # endif

43 #else

44 # ifndef ntohs

45 # define ntohs(x) (x)

46 # endif

47 # ifndef htons

48 # define htons(x) (x)

23

49 # endif

50 # ifndef ntohl

51 # define ntohl(x) (x)

52 # endif

53 # ifndef htonl

54 # define htonl(x) (x)

55 # endif

56 #endif

57

58 #ifndef memset

59 # define memset(dest, chr, n) __builtin_memset((dest), (chr), (n))

60 #endif

61

62 #ifndef memcpy

63 # define memcpy(dest, src, n) __builtin_memcpy((dest), (src), (n))

64 #endif

65

66 #ifndef memmove

67 # define memmove(dest, src, n) __builtin_memmove((dest), (src), (n))

68 #endif

69

70

71 struct vlanhdr {

72 uint16_t tci;

73 uint16_t encap_proto;

74 };

75

76 struct dnshdr {

77 uint16_t id;

78

79 uint8_t rd : 1;

80 uint8_t tc : 1;

81 uint8_t aa : 1;

82 uint8_t opcode : 4;

83 uint8_t qr : 1;

84

85 uint8_t rcode : 4;

86 uint8_t cd : 1;

87 uint8_t ad : 1;

88 uint8_t z : 1;

89 uint8_t ra : 1;

90

91 uint16_t qdcount;

92 uint16_t ancount;

93 uint16_t nscount;

94 uint16_t arcount;

95 };

96

97 struct cursor {

98 void *pos;

24

99 void *end;

100 };

101

102 static __inline

103 void cursor_init(struct cursor *c, struct xdp_md *ctx)

104 {

105 c->end = (void *)(long)ctx->data_end;

106 c->pos = (void *)(long)ctx->data;

107 }

108

109 static __inline

110 void cursor_init_skb(struct cursor *c, struct __sk_buff *skb)

111 {

112 c->end = (void *)(long)skb->data_end;

113 c->pos = (void *)(long)skb->data;

114 }

115

116 #define PARSE_FUNC_DECLARATION(STRUCT) \

117 static __inline \

118 struct STRUCT *parse_ ## STRUCT (struct cursor *c) \

119 { \

120 struct STRUCT *ret = c->pos; \

121 if (c->pos + sizeof(struct STRUCT) > c->end) \

122 return 0; \

123 c->pos += sizeof(struct STRUCT); \

124 return ret; \

125 }

126

127 PARSE_FUNC_DECLARATION(ethhdr)

128 PARSE_FUNC_DECLARATION(vlanhdr)

129 PARSE_FUNC_DECLARATION(iphdr)

130 PARSE_FUNC_DECLARATION(ipv6hdr)

131 PARSE_FUNC_DECLARATION(udphdr)

132 PARSE_FUNC_DECLARATION(dnshdr)

133

134 static __inline

135 struct ethhdr *parse_eth(struct cursor *c, uint16_t *eth_proto)

136 {

137 struct ethhdr *eth;

138

139 if (!(eth = parse_ethhdr(c)))

140 return 0;

141

142 *eth_proto = eth->h_proto;

143 if (*eth_proto == htons(ETH_P_8021Q)

144 || *eth_proto == htons(ETH_P_8021AD)) {

145 struct vlanhdr *vlan;

146

147 if (!(vlan = parse_vlanhdr(c)))

148 return 0;

25

149

150 *eth_proto = vlan->encap_proto;

151 if (*eth_proto == htons(ETH_P_8021Q)

152 || *eth_proto == htons(ETH_P_8021AD)) {

153 if (!(vlan = parse_vlanhdr(c)))

154 return 0;

155

156 *eth_proto = vlan->encap_proto;

157 }

158 }

159 return eth;

160 }

161

162 static __inline

163 void update_checksum(uint16_t *csum, uint16_t old_val, uint16_t new_val)

164 {

165 uint32_t new_csum_value;

166 uint32_t new_csum_comp;

167 uint32_t undo;

168

169 undo = ~((uint32_t)*csum) + ~((uint32_t)old_val);

170 new_csum_value = undo + (undo < ~((uint32_t)old_val)) + (uint32_t)new_val;

171 new_csum_comp = new_csum_value + (new_csum_value < ((uint32_t)new_val));

172 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

173 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

174 *csum = (uint16_t)~new_csum_comp;

175 }

176

177 static __inline

178 void rewrite_qname4(struct cursor *c, uint8_t *pkt, struct udphdr *udp)

179 {

180 uint8_t *labels[MAX_LABELS];

181 uint8_t i;

182

183 for (i = 0; i < MAX_LABELS; i++) { /* Maximum 128 labels */

184 uint8_t o;

185

186 if (c->pos + 1 > c->end)

187 return;

188

189 o = *(uint8_t *)c->pos;

190 if ((o & 0xC0) == 0xC0) {

191 return;

192

193 } else if (o & 0xC0)

194 /* Unknown label type */

195 return;

196

197 labels[i] = c->pos;

198 c->pos += o + 1;

26

199 if (!o)

200 break;

201 }

202 if (i >= MAX_LABELS || i < 5

203 || *labels[i-4] != 10

204 || labels[i-4] + *labels[i-4] + 2 > (uint8_t *)c->end

205 || labels[i-4][1] < '0' || labels[i-4][1] > '9'

206 || labels[i-4][2] < '0' || labels[i-4][2] > '9'

207 || labels[i-4][3] < '0' || labels[i-4][3] > '9'

208 || labels[i-4][4] < '0' || labels[i-4][4] > '9'

209 || labels[i-4][5] != '-'

210 || (labels[i-4][6] != 'p' && labels[i-4][6] != 'P')

211 || (labels[i-4][7] != 'l' && labels[i-4][7] != 'L')

212 || (labels[i-4][8] != 'u' && labels[i-4][8] != 'U')

213 || (labels[i-4][9] != 's' && labels[i-4][9] != 'S')

214 || labels[i-4][10] != '0')

215 return;

216

217 /* Change aligned on 16 bits for checksum recalculaction */

218 uint16_t *pls_pos = (labels[i-4] + 10 - (uint8_t *)udp) % 2

219 ? (uint16_t *)&labels[i-4][9]

220 : (uint16_t *)&labels[i-4][10];

221 uint16_t old_pls = *pls_pos;

222

223 switch (*labels[i-5]) {

224 case 39: labels[i-4][10] = '2'; break;

225 case 38: labels[i-4][10] = '4'; break;

226 case 37: labels[i-4][10] = '6'; break;

227 case 36: labels[i-4][10] = '8'; break;

228 case 35: labels[i-4][10] = 'a'; break;

229 case 34: labels[i-4][10] = 'c'; break;

230 default: break;

231 }

232 update_checksum(&udp->check, old_pls, *pls_pos);

233 #if MTU4 != 1500

234 if (labels[i-4][1] != '1' || labels[i-4][2] != '5'

235 || labels[i-4][3] != '0' || labels[i-4][4] != '0')

236 return;

237

238 if ((labels[i-4] - (uint8_t *)udp) % 2) {

239 uint16_t *sh1_pos = (uint16_t*)&labels[i-4][1];

240 uint16_t old_sh1 = *sh1_pos;

241 uint16_t *sh2_pos = (uint16_t*)&labels[i-4][3];

242 uint16_t old_sh2 = *sh2_pos;

243

244 labels[i-4][1] = MTU4_STR[0];

245 labels[i-4][2] = MTU4_STR[1];

246 labels[i-4][3] = MTU4_STR[2];

247 labels[i-4][4] = MTU4_STR[3];

248

27

249 update_checksum(&udp->check, old_sh1,*sh1_pos);

250 update_checksum(&udp->check, old_sh2,*sh2_pos);

251 } else {

252 uint16_t *sh1_pos = (uint16_t*)&labels[i-4][0];

253 uint16_t old_sh1 = *sh1_pos;

254 uint16_t *sh2_pos = (uint16_t*)&labels[i-4][2];

255 uint16_t old_sh2 = *sh2_pos;

256 uint16_t *sh3_pos = (uint16_t*)&labels[i-4][4];

257 uint16_t old_sh3 = *sh3_pos;

258

259 labels[i-4][1] = MTU4_STR[0];

260 labels[i-4][2] = MTU4_STR[1];

261 labels[i-4][3] = MTU4_STR[2];

262 labels[i-4][4] = MTU4_STR[3];

263

264 update_checksum(&udp->check, old_sh1,*sh1_pos);

265 update_checksum(&udp->check, old_sh2,*sh2_pos);

266 update_checksum(&udp->check, old_sh3,*sh3_pos);

267 }

268 #endif

269 }

270

271 static __inline

272 void restore_qname4(struct cursor *c, uint8_t *pkt, struct udphdr *udp)

273 {

274 uint8_t *labels[MAX_LABELS];

275 uint8_t i;

276

277 for (i = 0; i < MAX_LABELS; i++) { /* Maximum 128 labels */

278 uint8_t o;

279

280 if (c->pos + 1 > c->end)

281 return;

282

283 o = *(uint8_t *)c->pos;

284 if ((o & 0xC0) == 0xC0) {

285 return;

286

287 } else if (o & 0xC0)

288 /* Unknown label type */

289 return;

290

291 labels[i] = c->pos;

292 c->pos += o + 1;

293 if (!o)

294 break;

295 }

296 if (i >= MAX_LABELS || i < 5

297 || *labels[i-4] != 10

298 || labels[i-4] + *labels[i-4] + 2 > (uint8_t *)c->end

28

299 || labels[i-4][1] < '0' || labels[i-4][1] > '9'

300 || labels[i-4][2] < '0' || labels[i-4][2] > '9'

301 || labels[i-4][3] < '0' || labels[i-4][3] > '9'

302 || labels[i-4][4] < '0' || labels[i-4][4] > '9'

303 || labels[i-4][5] != '-'

304 || (labels[i-4][6] != 'p' && labels[i-4][6] != 'P')

305 || (labels[i-4][7] != 'l' && labels[i-4][7] != 'L')

306 || (labels[i-4][8] != 'u' && labels[i-4][8] != 'U')

307 || (labels[i-4][9] != 's' && labels[i-4][9] != 'S'))

308 return;

309

310 if (labels[i-4][10] != '0') {

311 /* Change aligned on 16 bits for checksum recalculaction

312 * Doesn't work on TC/TX! Maybe we should use bpf_l4_csum_replace()

313 * and bpf_csum_diff().

314 *

315 * uint16_t *pls_pos = (labels[i-4] + 10 - (uint8_t *)udp) % 2

316 * ? (uint16_t *)&labels[i-4][9]

317 * : (uint16_t *)&labels[i-4][10];

318 * uint16_t old_pls = *pls_pos;

319 */

320 labels[i-4][10] = '0';

321 // udp->check = 0;

322 }

323

324 #if MTU4 != 1500

325 if (labels[i-4][1] != MTU4_STR[0] || labels[i-4][2] != MTU4_STR[1]

326 || labels[i-4][3] != MTU4_STR[2] || labels[i-4][4] != MTU4_STR[3])

327 return;

328

329 if ((labels[i-4] - (uint8_t *)udp) % 2) {

330 /* TODO: 4 bytes checksum recalculating labes[i-4][1-4]

331 * with bpf_l4_csum_replace() and bpf_csum_diff()

332 */

333 labels[i-4][1] = '1';

334 labels[i-4][2] = '5';

335 labels[i-4][3] = '0';

336 labels[i-4][4] = '0';

337 // udp->check = 0;

338 } else {

339 /* TODO: 6 bytes checksum recalculating labes[i-4][0-5]

340 * with bpf_l4_csum_replace() and bpf_csum_diff()

341 */

342 labels[i-4][1] = '1';

343 labels[i-4][2] = '5';

344 labels[i-4][3] = '0';

345 labels[i-4][4] = '0';

346 // udp->check = 0;

347 }

348 #endif

29

349 return;

350 }

351

352 static __inline

353 void rewrite_qname6(struct cursor *c, uint8_t *pkt, struct udphdr *udp)

354 {

355 uint8_t *labels[MAX_LABELS];

356 uint8_t i;

357

358 for (i = 0; i < MAX_LABELS; i++) { /* Maximum 128 labels */

359 uint8_t o;

360

361 if (c->pos + 1 > c->end)

362 return;

363

364 o = *(uint8_t *)c->pos;

365 if ((o & 0xC0) == 0xC0) {

366 return;

367

368 } else if (o & 0xC0)

369 /* Unknown label type */

370 return;

371

372 labels[i] = c->pos;

373 c->pos += o + 1;

374 if (!o)

375 break;

376 }

377 if (i >= MAX_LABELS || i < 5

378 || *labels[i-4] != 10

379 || labels[i-4] + *labels[i-4] + 2 > (uint8_t *)c->end

380 || labels[i-4][1] < '0' || labels[i-4][1] > '9'

381 || labels[i-4][2] < '0' || labels[i-4][2] > '9'

382 || labels[i-4][3] < '0' || labels[i-4][3] > '9'

383 || labels[i-4][4] < '0' || labels[i-4][4] > '9'

384 || labels[i-4][5] != '-'

385 || (labels[i-4][6] != 'p' && labels[i-4][6] != 'P')

386 || (labels[i-4][7] != 'l' && labels[i-4][7] != 'L')

387 || (labels[i-4][8] != 'u' && labels[i-4][8] != 'U')

388 || (labels[i-4][9] != 's' && labels[i-4][9] != 'S')

389 || labels[i-4][10] != '0')

390 return;

391

392 /* Change aligned on 16 bits for checksum recalculaction */

393 uint16_t *pls_pos = (labels[i-4] + 10 - (uint8_t *)udp) % 2

394 ? (uint16_t *)&labels[i-4][9]

395 : (uint16_t *)&labels[i-4][10];

396 uint16_t old_pls = *pls_pos;

397

398 switch (*labels[i-5]) {

30

399 case 39: labels[i-4][10] = '2'; break;

400 case 38: labels[i-4][10] = '4'; break;

401 case 37: labels[i-4][10] = '6'; break;

402 case 36: labels[i-4][10] = '8'; break;

403 case 35: labels[i-4][10] = 'a'; break;

404 case 34: labels[i-4][10] = 'c'; break;

405 default: break;

406 }

407 update_checksum(&udp->check, old_pls, *pls_pos);

408 #if MTU6 != 1500

409 if (labels[i-4][1] != '1' || labels[i-4][2] != '5'

410 || labels[i-4][3] != '0' || labels[i-4][4] != '0')

411 return;

412

413 if ((labels[i-4] - (uint8_t *)udp) % 2) {

414 uint16_t *sh1_pos = (uint16_t*)&labels[i-4][1];

415 uint16_t old_sh1 = *sh1_pos;

416 uint16_t *sh2_pos = (uint16_t*)&labels[i-4][3];

417 uint16_t old_sh2 = *sh2_pos;

418

419 labels[i-4][1] = MTU6_STR[0];

420 labels[i-4][2] = MTU6_STR[1];

421 labels[i-4][3] = MTU6_STR[2];

422 labels[i-4][4] = MTU6_STR[3];

423

424 update_checksum(&udp->check, old_sh1,*sh1_pos);

425 update_checksum(&udp->check, old_sh2,*sh2_pos);

426 } else {

427 uint16_t *sh1_pos = (uint16_t*)&labels[i-4][0];

428 uint16_t old_sh1 = *sh1_pos;

429 uint16_t *sh2_pos = (uint16_t*)&labels[i-4][2];

430 uint16_t old_sh2 = *sh2_pos;

431 uint16_t *sh3_pos = (uint16_t*)&labels[i-4][4];

432 uint16_t old_sh3 = *sh3_pos;

433

434 labels[i-4][1] = MTU6_STR[0];

435 labels[i-4][2] = MTU6_STR[1];

436 labels[i-4][3] = MTU6_STR[2];

437 labels[i-4][4] = MTU6_STR[3];

438

439 update_checksum(&udp->check, old_sh1,*sh1_pos);

440 update_checksum(&udp->check, old_sh2,*sh2_pos);

441 update_checksum(&udp->check, old_sh3,*sh3_pos);

442 }

443 #endif

444 }

445

446 static __inline

447 uint16_t restore_qname6(struct cursor *c, uint8_t *pkt, struct udphdr *udp)

448 {

31

449 uint8_t *labels[MAX_LABELS];

450 uint8_t i;

451

452 for (i = 0; i < MAX_LABELS; i++) { /* Maximum 128 labels */

453 uint8_t o;

454

455 if (c->pos + 1 > c->end)

456 return 0;

457

458 o = *(uint8_t *)c->pos;

459 if ((o & 0xC0) == 0xC0) {

460 return 0;

461

462 } else if (o & 0xC0)

463 /* Unknown label type */

464 return 0;

465

466 labels[i] = c->pos;

467 c->pos += o + 1;

468 if (!o)

469 break;

470 }

471 if (i >= MAX_LABELS || i < 5

472 || *labels[i-4] != 10

473 || labels[i-4] + *labels[i-4] + 2 > (uint8_t *)c->end

474 || labels[i-4][1] < '0' || labels[i-4][1] > '9'

475 || labels[i-4][2] < '0' || labels[i-4][2] > '9'

476 || labels[i-4][3] < '0' || labels[i-4][3] > '9'

477 || labels[i-4][4] < '0' || labels[i-4][4] > '9'

478 || labels[i-4][5] != '-'

479 || (labels[i-4][6] != 'p' && labels[i-4][6] != 'P')

480 || (labels[i-4][7] != 'l' && labels[i-4][7] != 'L')

481 || (labels[i-4][8] != 'u' && labels[i-4][8] != 'U')

482 || (labels[i-4][9] != 's' && labels[i-4][9] != 'S'))

483 return 0;

484

485 if (labels[i-4][10] != '0') {

486 if ((labels[i-4] - (uint8_t *)udp) % 2) {

487 uint16_t old = ((uint16_t *)&labels[i-4][1])[4];

488 labels[i-4][10] = '0';

489 #if MTU6 > 1280

490 update_checksum(&udp->check, old, ((uint16_t *)&labels[i-4][1])[4]);

491 #endif

492 } else {

493 uint16_t old = ((uint16_t *)labels[i-4])[5];

494 labels[i-4][10] = '0';

495 #if MTU6 > 1280

496 update_checksum(&udp->check, old, ((uint16_t *)labels[i-4])[5]);

497 #endif

498 }

32

499 }

500

501 #if MTU6 != 1500

502 if (labels[i-4][1] != MTU6_STR[0] || labels[i-4][2] != MTU6_STR[1]

503 || labels[i-4][3] != MTU6_STR[2] || labels[i-4][4] != MTU6_STR[3])

504 return 0;

505

506 if ((labels[i-4] - (uint8_t *)udp) % 2) {

507 uint16_t old0 = ((uint16_t *)&labels[i-4][1])[0];

508 uint16_t old1 = ((uint16_t *)&labels[i-4][1])[1];

509 labels[i-4][1] = '1';

510 labels[i-4][2] = '5';

511 labels[i-4][3] = '0';

512 labels[i-4][4] = '0';

513 #if MTU6 > 1280

514 update_checksum(&udp->check, old0, ((uint16_t *)&labels[i-4][1])[0]);

515 update_checksum(&udp->check, old1, ((uint16_t *)&labels[i-4][1])[1]);

516 #endif

517 } else {

518 uint16_t old0 = ((uint16_t *)labels[i-4])[0];

519 uint16_t old1 = ((uint16_t *)labels[i-4])[1];

520 uint16_t old2 = ((uint16_t *)labels[i-4])[2];

521 labels[i-4][1] = '1';

522 labels[i-4][2] = '5';

523 labels[i-4][3] = '0';

524 labels[i-4][4] = '0';

525 #if MTU6 > 1280

526 update_checksum(&udp->check, old0, ((uint16_t *)labels[i-4])[0]);

527 update_checksum(&udp->check, old1, ((uint16_t *)labels[i-4])[1]);

528 update_checksum(&udp->check, old2, ((uint16_t *)labels[i-4])[2]);

529 #endif

530 }

531 #endif

532 return (labels[i-4] - (uint8_t *)pkt) + 1;

533 }

534

535

536 __section("xdp-rewrite-qname")

537 int xdp_rewrite_qname(struct xdp_md *ctx)

538 {

539 struct cursor c;

540 uint16_t eth_proto;

541 struct iphdr *ipv4;

542 struct ipv6hdr *ipv6;

543 struct udphdr *udp;

544 struct dnshdr *dns;

545

546 cursor_init(&c, ctx);

547 if (!parse_eth(&c, ð_proto))

548 return XDP_PASS;

33

549

550 if (eth_proto == htons(ETH_P_IP)) {

551 if (!(ipv4 = parse_iphdr(&c)) || ipv4->protocol != IPPROTO_UDP

552 || !(udp = parse_udphdr(&c)) || udp->dest != htons(DNS_PORT)

553 || !(dns = parse_dnshdr(&c)))

554 return XDP_PASS;

555

556 rewrite_qname4(&c, (void *)dns, udp);

557

558 } else if (eth_proto == htons(ETH_P_IPV6)) {

559 if (!(ipv6 = parse_ipv6hdr(&c)) || ipv6->nexthdr != IPPROTO_UDP

560 || !(udp = parse_udphdr(&c)) || udp->dest != htons(DNS_PORT)

561 || !(dns = parse_dnshdr(&c)))

562 return XDP_PASS;

563

564 rewrite_qname6(&c, (void *)dns, udp);

565 }

566 return XDP_PASS;

567 }

568

569 __section("tc-restore-qname")

570 int tc_restore_qname(struct __sk_buff *skb)

571 {

572 struct cursor c;

573 uint16_t eth_proto;

574 struct iphdr *ipv4;

575 struct ipv6hdr *ipv6;

576 struct udphdr *udp;

577 struct dnshdr *dns;

578

579 cursor_init_skb(&c, skb);

580 if (!parse_eth(&c, ð_proto))

581 return TC_ACT_OK;

582

583 if (eth_proto == htons(ETH_P_IP)) {

584 if (!(ipv4 = parse_iphdr(&c)) || ipv4->protocol != IPPROTO_UDP

585 || !(udp = parse_udphdr(&c)) || udp->source != htons(DNS_PORT)

586 || !(dns = parse_dnshdr(&c)))

587 return TC_ACT_OK;

588

589 uint16_t old_val = ipv4->frag_off;

590 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

591 ipv4->frag_off |= 0x0040;

592 #else

593 ipv4->frag_off |= 0x4000;

594 #endif

595 update_checksum(&ipv4->check, old_val, ipv4->frag_off);

596 restore_qname4(&c, (void *)dns, udp);

597

598 } else if (eth_proto == htons(ETH_P_IPV6)) {

34

599 if (!(ipv6 = parse_ipv6hdr(&c)) || ipv6->nexthdr != IPPROTO_UDP

600 || !(udp = parse_udphdr(&c)) || udp->source != htons(DNS_PORT)

601 || !(dns = parse_dnshdr(&c)))

602 return TC_ACT_OK;

603

604 restore_qname6(&c, (void *)dns, udp);

605 }

606 return TC_ACT_OK;

607 }

608

609 char __license[] __section("license") = "GPL";

35

B General RLL prototype code
1 /*

2 * General_RRL.c

3 * Implements a semi fine grained udp_dns_reply RRL within a time frame

4 * Jun 2020 - Tom Carpay

5 */

6

7 /*

8 * Includes

9 */

10 #include <stdint.h>

11 #include <linux/bpf.h>

12 #include <bpf_helpers.h> /* for bpf_get_prandom_u32() */

13 #include <bpf_endian.h> /* for __bpf_htons() */

14 #include <linux/if_ether.h> /* for struct ethhdr */

15 #include <linux/ip.h> /* for struct iphdr */

16 #include <linux/ipv6.h> /* for struct ipv6hdr */

17 #include <linux/in.h> /* for IPPROTO_UDP */

18 #include <linux/udp.h> /* for struct udphdr */

19 #include <string.h> /* for memcpy() */

20

21 /*

22 * Begin defines

23 */

24 #define DNS_PORT 53

25

26 #define FRAME_SIZE 1000000000

27 #define THRESHOLD 50000

28 /*

29 * End defines

30 */

31

32 /*

33 ** Store the time frame

34 */

35 struct bucket {

36 uint64_t start_time;

37 uint64_t n_packets;

38 // uint64_t qps;

39 };

40

41 struct bpf_map_def SEC("maps") state_map = {

42 .type = BPF_MAP_TYPE_PERCPU_ARRAY,

43 .key_size = sizeof(uint32_t),

44 .value_size = sizeof(struct bucket),

45 .max_entries = 1

46 };

47

48 /*

36

49 * Store the VLAN header

50 */

51 struct vlanhdr {

52 uint16_t tci;

53 uint16_t encap_proto;

54 };

55

56 /*

57 * Store the DNS header

58 */

59 struct dnshdr {

60 uint16_t id;

61 union {

62 struct {

63 uint8_t rd : 1;

64 uint8_t tc : 1;

65 uint8_t aa : 1;

66 uint8_t opcode : 4;

67 uint8_t qr : 1;

68

69 uint8_t rcode : 4;

70 uint8_t cd : 1;

71 uint8_t ad : 1;

72 uint8_t z : 1;

73 uint8_t ra : 1;

74 } as_bits_and_pieces;

75 uint16_t as_value;

76 } flags;

77 uint16_t qdcount;

78 uint16_t ancount;

79 uint16_t nscount;

80 uint16_t arcount;

81 };

82

83 /*

84 * Helper pointer to parse the incoming packets

85 */

86 struct cursor {

87 void *pos;

88 void *end;

89 };

90

91

92 /*

93 * Initializer of a cursor pointer

94 */

95 static __always_inline

96 void cursor_init(struct cursor *c, struct xdp_md *ctx)

97 {

98 c->end = (void *)(long)ctx->data_end;

37

99 c->pos = (void *)(long)ctx->data;

100 }

101

102 #define PARSE_FUNC_DECLARATION(STRUCT) \

103 static __always_inline \

104 struct STRUCT *parse_ ## STRUCT (struct cursor *c) \

105 { \

106 struct STRUCT *ret = c->pos; \

107 if (c->pos + sizeof(struct STRUCT) > c->end) \

108 return 0; \

109 c->pos += sizeof(struct STRUCT); \

110 return ret; \

111 }

112

113 PARSE_FUNC_DECLARATION(ethhdr)

114 PARSE_FUNC_DECLARATION(vlanhdr)

115 PARSE_FUNC_DECLARATION(iphdr)

116 PARSE_FUNC_DECLARATION(ipv6hdr)

117 PARSE_FUNC_DECLARATION(udphdr)

118 PARSE_FUNC_DECLARATION(dnshdr)

119

120 /*

121 * Parse ethernet frame and fill the struct

122 */

123 static __always_inline

124 struct ethhdr *parse_eth(struct cursor *c, uint16_t *eth_proto)

125 {

126 struct ethhdr *eth;

127

128 if (!(eth = parse_ethhdr(c)))

129 return 0;

130

131 *eth_proto = eth->h_proto;

132 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

133 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

134 struct vlanhdr *vlan;

135

136 if (!(vlan = parse_vlanhdr(c)))

137 return 0;

138

139 *eth_proto = vlan->encap_proto;

140 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

141 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

142 if (!(vlan = parse_vlanhdr(c)))

143 return 0;

144

145 *eth_proto = vlan->encap_proto;

146 }

147 }

148 return eth;

38

149 }

150

151 /*

152 * Recalculate the checksum

153 */

154 static __always_inline

155 void update_checksum(uint16_t *csum, uint16_t old_val, uint16_t new_val)

156 {

157 uint32_t new_csum_value;

158 uint32_t new_csum_comp;

159 uint32_t undo;

160

161 undo = ~((uint32_t)*csum) + ~((uint32_t)old_val);

162 new_csum_value = undo + (undo < ~((uint32_t)old_val)) + (uint32_t)new_val;

163 new_csum_comp = new_csum_value + (new_csum_value < ((uint32_t)new_val));

164 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

165 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

166 *csum = (uint16_t)~new_csum_comp;

167 }

168

169 /*

170 * Parse DNS mesage.

171 * Returns 1 if message needs to go through (i.e. pass)

172 * -1 if something went wrong and the packet needs to be dropped

173 * 0 if (modified) message needs to be replied

174 */

175 static __always_inline

176 int udp_dns_reply(struct cursor *c)

177 {

178 struct udphdr *udp;

179 struct dnshdr *dns;

180 uint32_t key;

181

182 // check that we have a DNS packet

183 if (!(udp = parse_udphdr(c)) || udp->dest != __bpf_htons(DNS_PORT)

184 || !(dns = parse_dnshdr(c)))

185 return 1;

186

187 // get the starting time frame from the map

188 key = 0;

189 struct bucket *b = bpf_map_lookup_elem(&state_map, &key);

190

191 // the bucket must exist

192 if (!b)

193 {

194 //bpf_printk("!FRAME \n");

195 return -1;

196 }

197

198 // increment number of packets

39

199 b->n_packets++;

200

201

202 // @TODO evaluate this option for frame timing

203 // look at the timing every 100 packets

204 if (b->n_packets % 100 == 0)

205

206 // look at the timing of the packet a percentage of the time

207 //if (bpf_get_prandom_u32() % 100 < 50)

208 {

209 // get the current and elapsed time

210 uint64_t now = bpf_ktime_get_ns();

211 uint64_t elapsed = now - b->start_time;

212

213 // make sure the elapsed time is set and not outside of the frame

214 if (b->start_time == 0 || elapsed >= FRAME_SIZE)

215 {

216 //bpf_printk("New timeframe\n");

217 // start new time frame

218 b->start_time = now;

219 b->n_packets = 0;

220 }

221 }

222

223 //bpf_printk("n_packets: %llu\n", b->n_packets);

224

225 // @TODO refine bounce rate to fit curve

226 if (b->n_packets > THRESHOLD)

227 {

228 //bpf_printk("bounce\n");

229 //save the old header values

230 uint16_t old_val = dns->flags.as_value;

231

232 // change the DNS flags

233 dns->flags.as_bits_and_pieces.ad = 0;

234 dns->flags.as_bits_and_pieces.qr = 1;

235 dns->flags.as_bits_and_pieces.tc = 1;

236

237 // change the UDP destination to the source

238 udp->dest = udp->source;

239 udp->source = __bpf_htons(DNS_PORT);

240

241 // calculate and write the new checksum

242 update_checksum(&udp->check, old_val, dns->flags.as_value);

243

244 // bounce

245 return 0;

246 }

247 else

248 {

40

249 // pass

250 return 1;

251 }

252 }

253

254 /*

255 * Recieve and parse request

256 * @var struct xdp_md

257 */

258 SEC("xdp-dns-too-many")

259 int xdp_dns_too_many(struct xdp_md *ctx)

260 {

261 // store variables

262 struct cursor c;

263 struct ethhdr *eth;

264 uint16_t eth_proto;

265 struct iphdr *ipv4;

266 struct ipv6hdr *ipv6;

267 int r = 0;

268

269 // initialise the cursor

270 cursor_init(&c, ctx);

271 if (!(eth = parse_eth(&c, ð_proto)))

272 return XDP_PASS;

273

274 // differentiate the parsing of the IP header based on the version

275 if (eth_proto == __bpf_htons(ETH_P_IP)) {

276 if (!(ipv4 = parse_iphdr(&c))

277 || ipv4->protocol != IPPROTO_UDP

278 || (r = udp_dns_reply(&c))) {

279 return r < 0 ? XDP_ABORTED : XDP_PASS;

280 }

281

282 uint32_t swap_ipv4 = ipv4->daddr;

283 ipv4->daddr = ipv4->saddr;

284 ipv4->saddr = swap_ipv4;

285

286 } else if (eth_proto == __bpf_htons(ETH_P_IPV6)) {

287 if (!(ipv6 = parse_ipv6hdr(&c))

288 || ipv6->nexthdr != IPPROTO_UDP

289 || (r = udp_dns_reply(&c)))

290 return r < 0 ? XDP_ABORTED : XDP_PASS;

291

292 struct in6_addr swap_ipv6 = ipv6->daddr;

293 ipv6->daddr = ipv6->saddr;

294 ipv6->saddr = swap_ipv6;

295 } else {

296 return XDP_PASS;

297 }

298

41

299 uint8_t swap_eth[ETH_ALEN];

300 memcpy(swap_eth, eth->h_dest, ETH_ALEN);

301 memcpy(eth->h_dest, eth->h_source, ETH_ALEN);

302 memcpy(eth->h_source, swap_eth, ETH_ALEN);

303

304 // bounce the request

305 return XDP_TX;

306 }

307

308 char __license[] SEC("license") = "GPL";

42

C Per IP RRL prototype code
1 /*

2 * rrl-per-ip

3 * Implements a semi fine grained udp_dns_reply RRL per ip address within a time frame

4 * Jun 2020 - Tom Carpay

5 */

6

7 /*

8 * Includes

9 */

10 #include <stdint.h>

11 #include <linux/bpf.h>

12 #include <bpf_helpers.h> /* for bpf_get_prandom_u32() */

13 #include <bpf_endian.h> /* for __bpf_htons() */

14 #include <linux/if_ether.h> /* for struct ethhdr */

15 #include <linux/ip.h> /* for struct iphdr */

16 #include <linux/ipv6.h> /* for struct ipv6hdr */

17 #include <linux/in.h> /* for IPPROTO_UDP */

18 #include <linux/udp.h> /* for struct udphdr */

19 #include <string.h> /* for memcpy() */

20

21 /*

22 * Begin defines

23 */

24 #define DNS_PORT 53

25

26 #define FRAME_SIZE 1000000000

27 #define THRESHOLD 1000

28 /*

29 * End defines

30 */

31

32 /*

33 * Store the time frame

34 */

35 struct bucket {

36 uint64_t start_time;

37 uint64_t n_packets;

38 };

39

40 struct bpf_map_def SEC("maps") state_map = {

41 .type = BPF_MAP_TYPE_PERCPU_HASH,

42 .key_size = sizeof(uint32_t),

43 .value_size = sizeof(struct bucket),

44 .max_entries = 100

45 };

46

47 struct bpf_map_def SEC("maps") state_map_v6 = {

48 .type = BPF_MAP_TYPE_PERCPU_HASH,

43

49 .key_size = sizeof(struct in6_addr),

50 .value_size = sizeof(struct bucket),

51 .max_entries = 100

52 };

53

54 /*

55 * Store the VLAN header

56 */

57 struct vlanhdr {

58 uint16_t tci;

59 uint16_t encap_proto;

60 };

61

62 /*

63 * Store the DNS header

64 */

65 struct dnshdr {

66 uint16_t id;

67 union {

68 struct {

69 uint8_t rd : 1;

70 uint8_t tc : 1;

71 uint8_t aa : 1;

72 uint8_t opcode : 4;

73 uint8_t qr : 1;

74

75 uint8_t rcode : 4;

76 uint8_t cd : 1;

77 uint8_t ad : 1;

78 uint8_t z : 1;

79 uint8_t ra : 1;

80 } as_bits_and_pieces;

81 uint16_t as_value;

82 } flags;

83 uint16_t qdcount;

84 uint16_t ancount;

85 uint16_t nscount;

86 uint16_t arcount;

87 };

88

89 /*

90 * Helper pointer to parse the incoming packets

91 */

92 struct cursor {

93 void *pos;

94 void *end;

95 };

96

97

98 /*

44

99 * Initializer of a cursor pointer

100 */

101 static __always_inline

102 void cursor_init(struct cursor *c, struct xdp_md *ctx)

103 {

104 c->end = (void *)(long)ctx->data_end;

105 c->pos = (void *)(long)ctx->data;

106 }

107

108 #define PARSE_FUNC_DECLARATION(STRUCT) \

109 static __always_inline \

110 struct STRUCT *parse_ ## STRUCT (struct cursor *c) \

111 { \

112 struct STRUCT *ret = c->pos; \

113 if (c->pos + sizeof(struct STRUCT) > c->end) \

114 return 0; \

115 c->pos += sizeof(struct STRUCT); \

116 return ret; \

117 }

118

119 PARSE_FUNC_DECLARATION(ethhdr)

120 PARSE_FUNC_DECLARATION(vlanhdr)

121 PARSE_FUNC_DECLARATION(iphdr)

122 PARSE_FUNC_DECLARATION(ipv6hdr)

123 PARSE_FUNC_DECLARATION(udphdr)

124 PARSE_FUNC_DECLARATION(dnshdr)

125

126 /*

127 * Parse ethernet frame and fill the struct

128 */

129 static __always_inline

130 struct ethhdr *parse_eth(struct cursor *c, uint16_t *eth_proto)

131 {

132 struct ethhdr *eth;

133

134 if (!(eth = parse_ethhdr(c)))

135 return 0;

136

137 *eth_proto = eth->h_proto;

138 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

139 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

140 struct vlanhdr *vlan;

141

142 if (!(vlan = parse_vlanhdr(c)))

143 return 0;

144

145 *eth_proto = vlan->encap_proto;

146 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

147 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

148 if (!(vlan = parse_vlanhdr(c)))

45

149 return 0;

150

151 *eth_proto = vlan->encap_proto;

152 }

153 }

154 return eth;

155 }

156

157 /*

158 * Recalculate the checksum

159 */

160 static __always_inline

161 void update_checksum(uint16_t *csum, uint16_t old_val, uint16_t new_val)

162 {

163 uint32_t new_csum_value;

164 uint32_t new_csum_comp;

165 uint32_t undo;

166

167 undo = ~((uint32_t)*csum) + ~((uint32_t)old_val);

168 new_csum_value = undo + (undo < ~((uint32_t)old_val)) + (uint32_t)new_val;

169 new_csum_comp = new_csum_value + (new_csum_value < ((uint32_t)new_val));

170 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

171 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

172 *csum = (uint16_t)~new_csum_comp;

173 }

174

175 static __always_inline

176 int do_rate_limit(struct udphdr *udp, struct dnshdr *dns, struct bucket *b)

177 {

178 // increment number of packets

179 b->n_packets++;

180

181 // get the current and elapsed time

182 uint64_t now = bpf_ktime_get_ns();

183 uint64_t elapsed = now - b->start_time;

184

185 // make sure the elapsed time is set and not outside of the frame

186 if (b->start_time == 0 || elapsed >= FRAME_SIZE)

187 {

188 //bpf_printk("New timeframe\n");

189 // start new time frame

190 b->start_time = now;

191 b->n_packets = 0;

192 }

193

194 // @TODO refine bounce rate to fit curve

195 if (b->n_packets < THRESHOLD)

196 return 1;

197

198 //bpf_printk("bounce\n");

46

199 //save the old header values

200 uint16_t old_val = dns->flags.as_value;

201

202 // change the DNS flags

203 dns->flags.as_bits_and_pieces.ad = 0;

204 dns->flags.as_bits_and_pieces.qr = 1;

205 dns->flags.as_bits_and_pieces.tc = 1;

206

207 // change the UDP destination to the source

208 udp->dest = udp->source;

209 udp->source = __bpf_htons(DNS_PORT);

210

211 // calculate and write the new checksum

212 update_checksum(&udp->check, old_val, dns->flags.as_value);

213

214 // bounce

215 return 0;

216 }

217

218 /*

219 * Parse DNS ipv4 message

220 * Returns 1 if message needs to go through (i.e. pass)

221 * -1 if something went wrong and the packet needs to be dropped

222 * 0 if (modified) message needs to be replied

223 */

224 static __always_inline

225 int udp_dns_reply_v4(struct cursor *c, uint32_t key)

226 {

227 struct udphdr *udp;

228 struct dnshdr *dns;

229

230 // check that we have a DNS packet

231 if (!(udp = parse_udphdr(c)) || udp->dest != __bpf_htons(DNS_PORT)

232 || !(dns = parse_dnshdr(c)))

233 return 1;

234

235 // get the starting time frame from the map

236 struct bucket *b = bpf_map_lookup_elem(&state_map, &key);

237

238 // the bucket must exist

239 if (b)

240 return do_rate_limit(udp, dns, b);

241

242 // create new starting bucket for this key

243 struct bucket new_bucket;

244 new_bucket.start_time = bpf_ktime_get_ns();

245 new_bucket.n_packets = 0;

246

247 // store the bucket and pass the packet

248 bpf_map_update_elem(&state_map, &key, &new_bucket, BPF_ANY);

47

249 return 1;

250 }

251

252 /*

253 * Parse DNS mesage.

254 * Returns 1 if message needs to go through (i.e. pass)

255 * -1 if something went wrong and the packet needs to be dropped

256 * 0 if (modified) message needs to be replied

257 */

258 static __always_inline

259 int udp_dns_reply_v6(struct cursor *c, struct in6_addr *key)

260 {

261 struct udphdr *udp;

262 struct dnshdr *dns;

263

264 // check that we have a DNS packet

265 if (!(udp = parse_udphdr(c)) || udp->dest != __bpf_htons(DNS_PORT)

266 || !(dns = parse_dnshdr(c)))

267 return 1;

268

269 // get the starting time frame from the map

270 struct bucket *b = bpf_map_lookup_elem(&state_map_v6, key);

271

272 // the bucket must exist

273 if (b)

274 return do_rate_limit(udp, dns, b);

275

276 // create new starting bucket for this key

277 struct bucket new_bucket;

278 new_bucket.start_time = bpf_ktime_get_ns();

279 new_bucket.n_packets = 0;

280

281 // store the bucket and pass the packet

282 bpf_map_update_elem(&state_map_v6, key, &new_bucket, BPF_ANY);

283 return 1;

284 }

285

286

287 /*

288 * Recieve and parse request

289 * @var struct xdp_md

290 */

291 SEC("xdp-dns-too-many")

292 int xdp_dns_too_many(struct xdp_md *ctx)

293 {

294 // store variables

295 struct cursor c;

296 struct ethhdr *eth;

297 uint16_t eth_proto;

298 struct iphdr *ipv4;

48

299 struct ipv6hdr *ipv6;

300 int r = 0;

301

302 // initialise the cursor

303 cursor_init(&c, ctx);

304 if (!(eth = parse_eth(&c, ð_proto)))

305 return XDP_PASS;

306

307 // differentiate the parsing of the IP header based on the version

308 if (eth_proto == __bpf_htons(ETH_P_IP))

309 {

310 if (!(ipv4 = parse_iphdr(&c))

311 || ipv4->protocol != IPPROTO_UDP

312 || (r = udp_dns_reply_v4(&c, ipv4->saddr))) {

313

314 return r < 0 ? XDP_ABORTED : XDP_PASS;

315 }

316

317 uint32_t swap_ipv4 = ipv4->daddr;

318 ipv4->daddr = ipv4->saddr;

319 ipv4->saddr = swap_ipv4;

320

321 }

322 else if (eth_proto == __bpf_htons(ETH_P_IPV6))

323 {

324 if (!(ipv6 = parse_ipv6hdr(&c))

325 || ipv6->nexthdr != IPPROTO_UDP

326 || (r = udp_dns_reply_v6(&c, &ipv6->saddr)))

327 return r < 0 ? XDP_ABORTED : XDP_PASS;

328

329 struct in6_addr swap_ipv6 = ipv6->daddr;

330 ipv6->daddr = ipv6->saddr;

331 ipv6->saddr = swap_ipv6;

332 }

333 else

334 {

335 return XDP_PASS;

336 }

337

338 uint8_t swap_eth[ETH_ALEN];

339 memcpy(swap_eth, eth->h_dest, ETH_ALEN);

340 memcpy(eth->h_dest, eth->h_source, ETH_ALEN);

341 memcpy(eth->h_source, swap_eth, ETH_ALEN);

342

343 // Bounce

344

345 // bounce the request

346 return XDP_TX;

347 }

348

49

349 char __license[] SEC("license") = "GPL";

50

D Unknown host RRL prototype code
1 /*

2 * rrl-per-ip

3 * Implements per IP RLL within a time frame for hosts that are not known in hte

4 * Jun 2020 - Tom Carpay

5 */

6

7 /*

8 * Includes

9 */

10 #include <stdint.h>

11 #include <linux/bpf.h>

12 #include <bpf_helpers.h> /* for bpf_get_prandom_u32() */

13 #include <bpf_endian.h> /* for __bpf_htons() */

14 #include <linux/if_ether.h> /* for struct ethhdr */

15 #include <linux/ip.h> /* for struct iphdr */

16 #include <linux/ipv6.h> /* for struct ipv6hdr */

17 #include <linux/in.h> /* for IPPROTO_UDP */

18 #include <linux/udp.h> /* for struct udphdr */

19 #include <string.h> /* for memcpy() */

20

21 /*

22 * Begin defines

23 */

24 #define DNS_PORT 53

25

26 #define FRAME_SIZE 1000000000

27 #define THRESHOLD 1000

28 /*

29 * End defines

30 */

31

32 /*

33 * Store the time frame

34 */

35 struct bucket {

36 uint64_t start_time;

37 uint64_t n_packets;

38 };

39

40 struct bpf_map_def SEC("maps") state_map = {

41 .type = BPF_MAP_TYPE_PERCPU_HASH,

42 .key_size = sizeof(uint32_t),

43 .value_size = sizeof(struct bucket),

44 .max_entries = 100 // Enough for testing purposes

45 };

46

47 struct bpf_map_def SEC("maps") state_map_v6 = {

48 .type = BPF_MAP_TYPE_PERCPU_HASH,

51

49 .key_size = sizeof(struct in6_addr),

50 .value_size = sizeof(struct bucket),

51 .max_entries = 100 // Enough for testing purposes

52 };

53

54 /*

55 * Smallest storage space possible

56 */

57 struct data {

58 uint8_t unused;

59 };

60

61 struct bpf_map_def SEC("maps") known_hosts = {

62 .type = BPF_MAP_TYPE_HASH,

63 .key_size = sizeof(uint32_t),

64 .value_size = sizeof(struct data),

65 .max_entries = 100 // Enough for testing purposes

66 };

67

68 struct bpf_map_def SEC("maps") known_hosts_v6 = {

69 .type = BPF_MAP_TYPE_HASH,

70 .key_size = sizeof(struct in6_addr),

71 .value_size = sizeof(struct data),

72 .max_entries = 100 // Enough for testing purposes

73 };

74

75 /*

76 * Store the VLAN header

77 */

78 struct vlanhdr {

79 uint16_t tci;

80 uint16_t encap_proto;

81 };

82

83 /*

84 * Store the DNS header

85 */

86 struct dnshdr {

87 uint16_t id;

88 union {

89 struct {

90 uint8_t rd : 1;

91 uint8_t tc : 1;

92 uint8_t aa : 1;

93 uint8_t opcode : 4;

94 uint8_t qr : 1;

95

96 uint8_t rcode : 4;

97 uint8_t cd : 1;

98 uint8_t ad : 1;

52

99 uint8_t z : 1;

100 uint8_t ra : 1;

101 } as_bits_and_pieces;

102 uint16_t as_value;

103 } flags;

104 uint16_t qdcount;

105 uint16_t ancount;

106 uint16_t nscount;

107 uint16_t arcount;

108 };

109

110 /*

111 * Helper pointer to parse the incoming packets

112 */

113 struct cursor {

114 void *pos;

115 void *end;

116 };

117

118

119 /*

120 * Initializer of a cursor pointer

121 */

122 static __always_inline

123 void cursor_init(struct cursor *c, struct xdp_md *ctx)

124 {

125 c->end = (void *)(long)ctx->data_end;

126 c->pos = (void *)(long)ctx->data;

127 }

128

129 #define PARSE_FUNC_DECLARATION(STRUCT) \

130 static __always_inline \

131 struct STRUCT *parse_ ## STRUCT (struct cursor *c) \

132 { \

133 struct STRUCT *ret = c->pos; \

134 if (c->pos + sizeof(struct STRUCT) > c->end) \

135 return 0; \

136 c->pos += sizeof(struct STRUCT); \

137 return ret; \

138 }

139

140 PARSE_FUNC_DECLARATION(ethhdr)

141 PARSE_FUNC_DECLARATION(vlanhdr)

142 PARSE_FUNC_DECLARATION(iphdr)

143 PARSE_FUNC_DECLARATION(ipv6hdr)

144 PARSE_FUNC_DECLARATION(udphdr)

145 PARSE_FUNC_DECLARATION(dnshdr)

146

147 /*

148 * Parse ethernet frame and fill the struct

53

149 */

150 static __always_inline

151 struct ethhdr *parse_eth(struct cursor *c, uint16_t *eth_proto)

152 {

153 struct ethhdr *eth;

154

155 if (!(eth = parse_ethhdr(c)))

156 return 0;

157

158 *eth_proto = eth->h_proto;

159 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

160 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

161 struct vlanhdr *vlan;

162

163 if (!(vlan = parse_vlanhdr(c)))

164 return 0;

165

166 *eth_proto = vlan->encap_proto;

167 if (*eth_proto == __bpf_htons(ETH_P_8021Q)

168 || *eth_proto == __bpf_htons(ETH_P_8021AD)) {

169 if (!(vlan = parse_vlanhdr(c)))

170 return 0;

171

172 *eth_proto = vlan->encap_proto;

173 }

174 }

175 return eth;

176 }

177

178 /*

179 * Recalculate the checksum

180 */

181 static __always_inline

182 void update_checksum(uint16_t *csum, uint16_t old_val, uint16_t new_val)

183 {

184 uint32_t new_csum_value;

185 uint32_t new_csum_comp;

186 uint32_t undo;

187

188 undo = ~((uint32_t)*csum) + ~((uint32_t)old_val);

189 new_csum_value = undo + (undo < ~((uint32_t)old_val)) + (uint32_t)new_val;

190 new_csum_comp = new_csum_value + (new_csum_value < ((uint32_t)new_val));

191 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

192 new_csum_comp = (new_csum_comp & 0xFFFF) + (new_csum_comp >> 16);

193 *csum = (uint16_t)~new_csum_comp;

194 }

195

196 static __always_inline

197 int do_rate_limit(struct udphdr *udp, struct dnshdr *dns, struct bucket *b)

198 {

54

199 // increment number of packets

200 b->n_packets++;

201

202 // get the current and elapsed time

203 uint64_t now = bpf_ktime_get_ns();

204 uint64_t elapsed = now - b->start_time;

205

206 // make sure the elapsed time is set and not outside of the frame

207 if (b->start_time == 0 || elapsed >= FRAME_SIZE)

208 {

209 //bpf_printk("New timeframe\n");

210 // start new time frame

211 b->start_time = now;

212 b->n_packets = 0;

213 }

214

215 // @TODO refine bounce rate to fit curve

216 if (b->n_packets < THRESHOLD)

217 return 1;

218

219 //bpf_printk("bounce\n");

220 //save the old header values

221 uint16_t old_val = dns->flags.as_value;

222

223 // change the DNS flags

224 dns->flags.as_bits_and_pieces.ad = 0;

225 dns->flags.as_bits_and_pieces.qr = 1;

226 dns->flags.as_bits_and_pieces.tc = 1;

227

228 // change the UDP destination to the source

229 udp->dest = udp->source;

230 udp->source = __bpf_htons(DNS_PORT);

231

232 // calculate and write the new checksum

233 update_checksum(&udp->check, old_val, dns->flags.as_value);

234

235 // bounce

236 return 0;

237 }

238

239 /*

240 * Parse DNS ipv4 message

241 * Returns 1 if message needs to go through (i.e. pass)

242 * -1 if something went wrong and the packet needs to be dropped

243 * 0 if (modified) message needs to be replied

244 */

245 static __always_inline

246 int udp_dns_reply_v4(struct cursor *c, uint32_t key)

247 {

248 struct udphdr *udp;

55

249 struct dnshdr *dns;

250

251 // check that we have a DNS packet

252 if (!(udp = parse_udphdr(c)) || udp->dest != __bpf_htons(DNS_PORT)

253 || !(dns = parse_dnshdr(c)))

254 return 1;

255

256 // get the host from the list

257 struct data *host = bpf_map_lookup_elem(&known_hosts, &key);

258

259 // if the host is known we do not rate limit it

260 if (host)

261 {

262 // pass

263 return 1;

264 }

265

266 // get the starting time frame from the map

267 struct bucket *b = bpf_map_lookup_elem(&state_map, &key);

268

269

270 //bpf_printk("ip: %u\n", key);

271

272 // the bucket must exist

273 if (b)

274 return do_rate_limit(udp, dns, b);

275

276 // create new starting bucket for this key

277 struct bucket new_bucket;

278 new_bucket.start_time = bpf_ktime_get_ns();

279 new_bucket.n_packets = 0;

280

281 // store the bucket and pass the packet

282 bpf_map_update_elem(&state_map, &key, &new_bucket, BPF_ANY);

283 return 1;

284 }

285

286 /*

287 * Parse DNS mesage.

288 * Returns 1 if message needs to go through (i.e. pass)

289 * -1 if something went wrong and the packet needs to be dropped

290 * 0 if (modified) message needs to be replied

291 */

292 static __always_inline

293 int udp_dns_reply_v6(struct cursor *c, struct in6_addr *key)

294 {

295 struct udphdr *udp;

296 struct dnshdr *dns;

297

298 // check that we have a DNS packet

56

299 if (!(udp = parse_udphdr(c)) || udp->dest != __bpf_htons(DNS_PORT)

300 || !(dns = parse_dnshdr(c)))

301 return 1;

302

303 // get the host from the list

304 struct data *host = bpf_map_lookup_elem(&known_hosts_v6, key);

305

306 // if the host is known we do not rate limit it

307 if (host)

308 {

309 // pass

310 return 1;

311 }

312

313 // get the starting time frame from the map

314 struct bucket *b = bpf_map_lookup_elem(&state_map_v6, key);

315

316 // the bucket must exist

317 if (b)

318 return do_rate_limit(udp, dns, b);

319

320 // create new starting bucket for this key

321 struct bucket new_bucket;

322 new_bucket.start_time = bpf_ktime_get_ns();

323 new_bucket.n_packets = 0;

324

325 // store the bucket and pass the packet

326 bpf_map_update_elem(&state_map_v6, key, &new_bucket, BPF_ANY);

327 return 1;

328 }

329

330

331 /*

332 * Recieve and parse request

333 * @var struct xdp_md

334 */

335 SEC("xdp-dns-too-many")

336 int xdp_dns_too_many(struct xdp_md *ctx)

337 {

338 // store variables

339 struct cursor c;

340 struct ethhdr *eth;

341 uint16_t eth_proto;

342 struct iphdr *ipv4;

343 struct ipv6hdr *ipv6;

344 int r = 0;

345

346 // initialise the cursor

347 cursor_init(&c, ctx);

348 if (!(eth = parse_eth(&c, ð_proto)))

57

349 return XDP_PASS;

350

351 // differentiate the parsing of the IP header based on the version

352 if (eth_proto == __bpf_htons(ETH_P_IP))

353 {

354 if (!(ipv4 = parse_iphdr(&c))

355 || ipv4->protocol != IPPROTO_UDP

356 || (r = udp_dns_reply_v4(&c, ipv4->saddr))) {

357

358 return r < 0 ? XDP_ABORTED : XDP_PASS;

359 }

360

361 uint32_t swap_ipv4 = ipv4->daddr;

362 ipv4->daddr = ipv4->saddr;

363 ipv4->saddr = swap_ipv4;

364

365 }

366 else if (eth_proto == __bpf_htons(ETH_P_IPV6))

367 {

368 if (!(ipv6 = parse_ipv6hdr(&c))

369 || ipv6->nexthdr != IPPROTO_UDP

370 || (r = udp_dns_reply_v6(&c, &ipv6->saddr)))

371 return r < 0 ? XDP_ABORTED : XDP_PASS;

372

373 struct in6_addr swap_ipv6 = ipv6->daddr;

374 ipv6->daddr = ipv6->saddr;

375 ipv6->saddr = swap_ipv6;

376 }

377 else

378 {

379 return XDP_PASS;

380 }

381

382 uint8_t swap_eth[ETH_ALEN];

383 memcpy(swap_eth, eth->h_dest, ETH_ALEN);

384 memcpy(eth->h_dest, eth->h_source, ETH_ALEN);

385 memcpy(eth->h_source, swap_eth, ETH_ALEN);

386

387 // Bounce

388

389 // bounce the request

390 return XDP_TX;

391 }

392

393 char __license[] SEC("license") = "GPL";

58

	Introduction
	Related work
	Background
	Methods
	QName rewriting
	Response Rate Limiting

	Experiments
	QName rewrite
	General RRL
	Per IP RRL
	Unknown host RRL

	Results
	QName rewrite
	General RRL
	Per IP RRL
	Unknown host RRL

	Discussion
	Conclusion
	Future work
	Acknowledgements
	QName rewrite prototype code
	General RLL prototype code
	Per IP RRL prototype code
	Unknown host RRL prototype code

