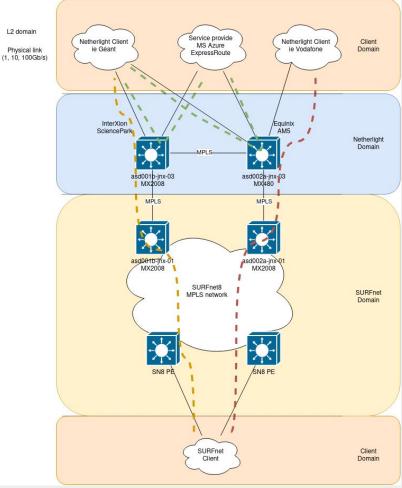
Investigative Research for an IP Peering Service for NetherLight


Assessor: Cees de Laat *Supervisors:* Gerben van Malenstein Migiel de Vos Max Mudde

Research Project 2 - #100 Arnold Buntsma Mar Badias Simó

NetherLight: open lightpath exchange

- Built and operated by SURFnet
- High bandwidth P2P & multipoint connections for ~70 clients
- Their clients are research and education networks and service providers that want to connect among them

NetherLight investigates offering a new service

- Peering Service
- Common layer 2 domain for several clients
- To allow their clients to set up **BGP peering**
- Similar to an Internet eXchange Point

RESEARCH QUESTION

How can NetherLight facilitate a state-of-the-art peering service which is flexible, secure, manageable and has a uniform setup?

- Requirements
- Options & Best practices
- Protocol behaviour
- On-boarding procedure

Methodology

Requirements

- A detailed explanation of the service
- Uniform onboarding process
- Well-manageable, Secure & Scalable
 - Uniform
 - Spoofing & Hijacking
 - Hundreds of clients
- At least one of the solutions can be implemented on the current platform

Interviews & Literature

- Most of peering services of IXPs built on top of VPLS, some EVPN
- Broadcast traffic is a problem: **ARP storms**
- Protect the peering platform: **control the types of traffic** going on the network
- Prevent propagation of wrong routing information

Generic Components for all solutions

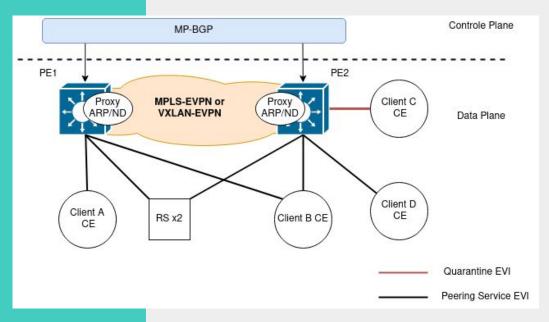
Route Server

- Scaling
 - BGP sessions
- Manageability
 - Uniform peering relations
 - Ability to block prefixes
- Security
 - Filtered Routes
 - RPKI validation

Security

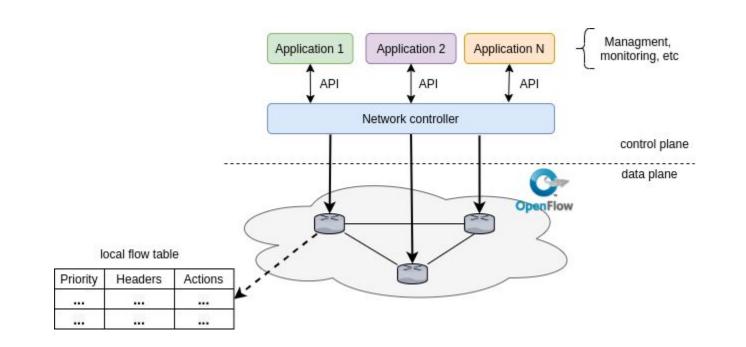
- MANRS²
- 1 MAC & IP per interface
- Whitelist EtherTypes

IP Space


- IPv4 /24 (x2)
- IPv6 /64

² https://www.manrs.org/ixps/

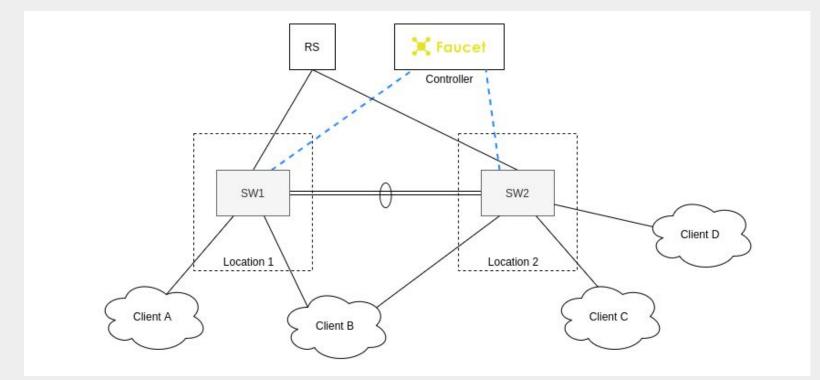
SOLUTIONS 1.1 & 1.2: MPLS-EVPN & VXLAN-EVPN


EVPN Solutions

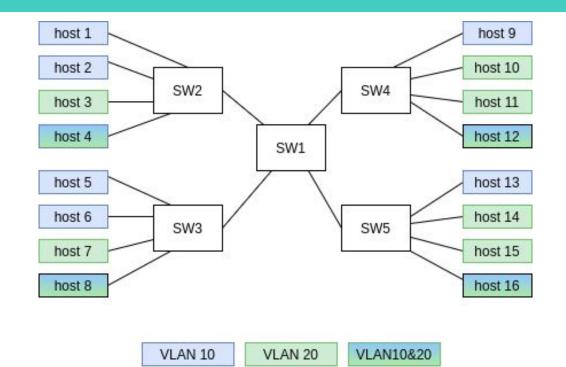
- VXLAN-EVPN vs MPLS-EVPN
- Quarantine EVI
- Single VLAN
- Management via Orchestration and Automation tools
 - Cisco NSO
- Monitoring
 - SNMP
 - sFlow
- Also includes Generic Components

SOLUTION 2: SDN / OpenFlow

OpenFlow



Benefits of OpenFlow


- Following the directives of **Umbrella rule set**
- Fine-grained control capabilities, can provide high responsiveness
- Easy network management
- We consider NetherLight an ideal place to innovate
- **Offers solutions** to peering services known problems

OpenFlow Implementation

Testing Faucet on Mininet

Programming the service

- Programmed based on Umbrella rule set
- A VLAN can be created and retagging frames is possible
- Fine-grained traffic control. **Drop anything that does not match the rules**
- No quarantine VLAN/EVI needed
- MAC address known in advance: elimination of ARP storms

Peering service with OpenFlow

Monitoring

Management

sFlow or Gauge+Faucet

Adapting IXP Manager or developing a new tool

Scalability

Theoretically, highly scalable

On- and off-boarding workflow

The client provides:

- Desired bandwidth
- Location
- MAC address(es)
- AS number(s)

NL Provides:

- VID
- IP addresses
- ASN of RS
- Configuration template

→ Off-boarding procedure is more simple :)

Comparison: EVPN vs OpenFlow

EVPN vs OpenFlow results

	Scalability	Manageability	Security	Implementation (for NL)
MPLS-EVPN	++	+	++	+
VXLAN-EVPN	++	+	++	_
OpenFlow	++	++	++	· · · · · ·

Table 1: Comparison of peering service solutions

Scalable: At least hundreds of clients. No hard limit.

Management: Clients use the service in a uniform way. Configuration errors should be eliminated and minimal management effort needed from the NL team.

Security: Clients unable to interfere with connections of other clients by for example MAC/IP spoofing and BGP hijacking.

Discussion & Conclusion

To date, NetherLight can best create a peering service by adopting the first solution (MPLS-EVPN).

As a more advanced solution over time, NetherLight should consider implementing the second solution proposed (OpenFlow) because of less management effort, fine-grained control of traffic, and vendor independency.

Future Work

- First (small) implementation of MPLS-EVPN solution
- PoC of OpenFlow solution
 - OpenFlow scalability research in production
- Research the ability to use Umbrella rule set in other OpenFlow controllers

Questions?

To date, NetherLight can best create a peering service by adopting the first solution (MPLS-EVPN).

As a more advanced solution over time, NetherLight should consider implementing the second solution proposed (OpenFlow) because of less management effort, fine-grained control of traffic, and vendor independency.

Route Servers

- Scaling
 - BGP sessions
- Manageability
 - Uniform peering relations
 - Ability to block prefixes
- Security
 - Filtered Routes
 - RPKI validation

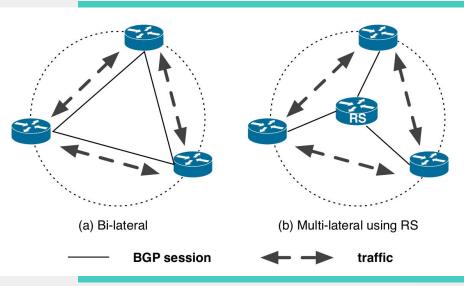
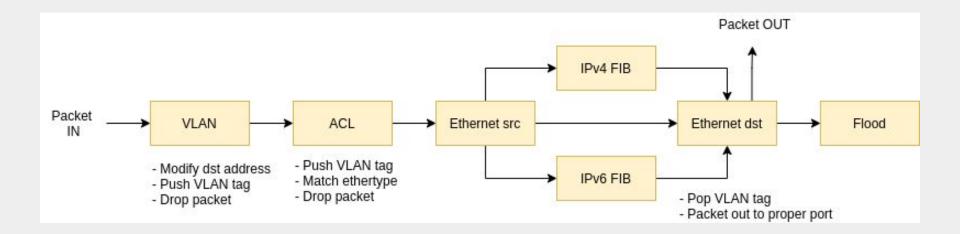



Fig. 1 Peering options (Richter, P et al. 2014)

Faucet multi table

