

Automatic Dependent Surveillance-Broadcast (ADS-B)

Tim de Boer (tim.deboer@os3.nl)

Source: https://nl.wikipedia.org/wiki/Radar, Mark Brouwer

Background

- First radar in used during WWII Primary Surveillance Radar (PSR)
- First transponders in the 70's Secondary Surveillance Radar (SSR)
 - 1030 MHz interrogation, 1090 MHz reply, pulse position modulation (PPM)
 - 4 digit "squawk" code, assigned by the ATC (Mode A)
 - added the pressure altitude (Mode C)
 - selective mode (Mode S)
 - 24 bit uniquely assigned address by ICAO
 - more relevant data available; position, speed, course
- Automatic Dependent Surveillance-Broadcast (ADS-B)
 - to improve air safety
 - periodically transmitted

Research question(s)

How can malicious broadcasts of the ADS-B be detected to protect Air Traffic Control (ATC) from Denial-of-Service (DoS) and disinformation attacks?

Sub-questions:

- What types of attacks are possible in terms of DoS and disinformation?
- In what way can historical or predictive modelling be used for the purpose of filtering disinformation signals?
- How can detection and filtering algorithms aid in signal integrity and authenticity validation?
- What kind of advantages can signal fingerprinting offer for the detection of malicious broadcasts?

Related work

Costin et al. investigated the (in)security aspects of the ADS-B protocol and demonstrated that attacks are both easy and feasible for a moderately sophisticated attacker.

Xuhang Ying et al. created a ADS-B message classifier based on a Deep Neural Network (DNN), to enhance detection of unauthorised broadcasts by using raw in-phase and quadrature components (IQ)-samples.

Wei-Jun Pan et al. looked closer into an enhancement of ADS-B and proposed signing the ADS-B messages with a public key certificate (X.509) to prevent replay attacks and verification of the authenticity of the message.

How does ADS-B work? - Transponder Format

- Preamble for synchronisation
- Downlink Format
 - Normal Mode -S Squitter uses Downlink Format 11 (DF11)
 - \circ ~ Extended Squitter uses DF17, with a extra 56-bit data block
- Capability
- 24 bit uniquely assigned address by ICAO
- Extra 56 bit field
- Cyclic Redundancy Check (CRC) to detect transmission errors

8 µs	112 µs							
	5 bits	3 bits	24 bits	56 bits	24 bits			
Preamble	Downlink Format	Capability	Aircraft Address	ADS-B Data	Parity Check			

How does ADS-B work? - Data Format

5 bits	51 bits						
Type Code	Type specific format						
5 bits	3 bits	48 bits					
Type Code (1-4)	Aircraft Type	Callsign (8 chars)					
5 bits	3 bits		22 bits	11 bits		8 bits	
Type Code (9-18)	Sub Type		Horizontal Velocity	Vertical Velocity		Difference Baro Altitude	

General format

Type Code	Content	
1 - 4	Aircraft identification	
5 - 8	Surface position	
9 - 18	Airborne position (w/ Baro Altitude)	
19	Airborne velocities	
20 - 22	Airborne position (w/ GNSS Height)	
23 - 27	Reserved	
28	Aircraft status	
29	Target state and status information	
31	Aircraft operation status	

Types of attack

- Disinformation
 - Replaying earlier recorded messages
 - Generating fake messages
 - Filtering messages
 - Altering messages
- Denial-of-Service (DoS)
 - Jamming RF-signal (white/pink noise)
 - Pollute bandwidth with disinformal messages

Lab environment

- Ettus Research USRP2
 - Ettus Research WBX daughterboard
 - NooElec 1090MHz ADS-B Antenna
- Generic computer
 - Kali Linux 2020.1a
 - GNU Radio Companion (version 3.8.1.0)
 - Gqrx (version 2.12.1-1)
 - dump1090-fa (version 3.7.0)

Signal quality

- Signal strength decreases with distance
- Free Space Path Loss formula:

 $FSPL = \left(\frac{4\pi d}{\lambda}\right)^2$

• Verify the transmitter is moving

Doppler shift

- Observed frequency changes with velocity
- Doppler shift formula: \circ 125m/s = 455 Hz shift $f_r = \left(\frac{c + y_{ra}}{c + v_{ra}}\right)^0 f_a$

Source: https://en.wikipedia.org/wiki/Digital_signature, FlippyFlink

Security enhancement

- Current message format is small
- Implementation of new standards takes decades in the aerospace industry
- ADS-B equipment expects 120µs
- Add GPS timestamp against replay attacks
 - Week number rollover

Source: https://ads-b-europe.eu/, SESAR

8 µs	112 µs					189 µs			
	5 bits	3 bits	24 bits	56 bits	24 bits	10 bits	19 bits	160 bits	
Preamble	Downlink Format	Capa bility	Aircraft Address	ADS-B Data	Parity Check	GPS Week Number	GPS Time of Week	Signature Data	

т

Conclusion

How can malicious broadcasts of the ADS-B be detected to protect Air Traffic Control (ATC) from Denial-of-Service (DoS) and disinformation attacks?

- Analyse RF-signal parameters
 - signal quality
 - doppler shift
- Sign the ADS-B messages

Discussion

- High quality receiving equipment is required
 - Clock drift in transmitter, receiver or both
- Signed ADS-B messages require longer transmission time
 - potential problems with busy airspaces
 - less frequent signing messages
 - different frequency or modulation

Future research

- What other signing methods are available?
- Are other security properties also feasible to further improve the protocol? (encryption)
- What security attacks are available for Aircraft-to-Aircraft communication? (collision avoidance)

Questions?