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Abstract—We look at the extraction of Electrical Network
Frequency (ENF) data from video. ENF data can be used in
timestamping, classically in audio. Recent research has claimed
its presence can be detected in video. We especially focus
on the properties of complementary metal-oxide-semiconductor
(CMOS) sensors and its resulting videos. The CMOS sensor
allows for a sampling rate in video that should be high enough to
prevent undersampling, and aliasing as a result, when it comes
to ENF data. We discuss the properties of a video that should
allow for the extraction of ENF although we were not able to
conclusively do so ourselves.

Index Terms—ENF, CMOS, Video, aliasing, undersampling,
timestamping

I. INTRODUCTION

The Electrical Network Frequency (ENF) is the frequency of
the alternating current of the main power grid. This frequency
is around 50Hz for the European and Asian power grid and
60Hz for the American power grid. [1] [2] Small fluctuations
in the frequency are caused through a varying amount of power
consumption by consumers. When recording this frequency
over a longer period in time, these fluctuations in frequency
become unique enough to do fingerprinting and time stamping.
[3] [4] When recording audio, there are often devices nearby
that are connected to the main power grid. These devices may
generate a so-called mains hum, which can be picked up by
microphones. The frequency of this hum is at 50Hz or 60Hz
or multiples thereof, depending on the geographical location.
This is the sound one often hears from audio systems as static
noise, for example in amplifiers. [5] [6] This is mostly used
in audio forensics to determine when the audio was recorded
or whether or not an audio file has been tampered with.

Recent studies have shown that the same can be done in re-
lation to video recordings, as described in section II. However,
this has not been replicated to the best of our knowledge. Our
research will aim to first reproduce the experiments that were
successful in obtaining ENF data from video recordings and
then discuss how its different properties such as frame rate or
length affect obtaining ENF data.

II. RELATED WORK

S. Vatansever et al describe the use of so-called superpixels
in ENF fluctuation detection in video. [7] A superpixel is a
group of pixels with similar characteristics, such as colour and
brightness. The authors describe a video analysis method that

tries to group similar neighbouring pixels into larger groups
to use them to determine if a video is appropriate for further
analysis. They do not extract or analyse the actual ENF fluctu-
ations from the videos, but merely try to differentiate between
videos that may or may not require further investigation.

D. Nagothu et al used simultaneous recordings of two audio
sources to determine whether or not a so-called false frame
injection (FFI) attack is taking place. [8] The authors use two
baselines, one being an audio recording and the other directly
from the power grid. They then make another audio recording
at or near the camera. They overlay these with each other
to determine whether or not the attacked audio differs. If the
ENF fluctuations from the audio source near the video do not
match the two baselines, they ascertain that there is an FFI
attack taking place. Although this method may prove useful
given their scenario, it still heavily relies on the assumption
that the attacked audio and the video are directly correlated.
If only the video is attacked, the authors do not provide a way
to detect it.

In the paper by R. Garg et al they discuss the use of
fluorescent light within a static video to extract ENF data. [9]
This is done in two ways. The first way is filming a white wall
that is illuminated by a fluorescent light. The second way is
taking video surveillance footage that contains a static source
of light that is visible in most of the recording. They analyse
this light by downsampling the recordings to a frequency that
matches a multiplication of the local ENF. The variance in
brightness is then sampled from the recordings and compared
to the baseline power grid ENF. They conclude that this gives
a good enough approximation over a long enough period to
be able to accurately match the ENF fluctuation with the
recordings. They do a very similar experiment using photo
diodes, which resulted in similar conclusions.

H. Su et al further elaborate on the research done by R.
Garg et al and propose using ENF as a way to synchronise
different video sources. [10] They explain how they use the
properties of the complementary metal-oxide-semiconductor
(CMOS) sensor to their advantage by extracting data per
row instead of per frame. This increases the sampling rate
significantly.

M. Huijbregtse and Z. Geradts describe how the use of a
maximum correlation coefficient is a better way to compare a
sample of ENF data to a database than the minimum squared



error. [4] They show how the length of an audio file affects
the likelihood of being able to determine the time stamp of the
recording. The larger the database becomes, the more likely
it is to find similarities within the database, which in turn
requires a longer recording to accurately timestamp. We will
be using the same method as a means to timestamp our record-
ings. They also show how the length of a recording directly
correlates with the amount of correct estimates regarding the
time stamp.

III. RESEARCH QUESTIONS

We have defined the following research question.

What requirements are there to correctly timestamp a
video recording using ENF data?

To answer this question we will have to answer the follow-
ing sub questions.

A. Is it possible to extract ENF data from video?

B. How do the properties of a video affect the presence of
ENF data in a recording?

IV. METHODOLOGY

The first requirement is a baseline of ENF data to compare
recordings against. The baseline should be gathered using at
least one of three methods, preferably two. The first option
would be to find an online source that provides the data
directly from energy providers connected to the main power
grid. This would be a reliable baseline to continue off of. [11]
The second option is to retrieve ENF values directly from a
power outlet by using a step-down transformer and a voltage
divider circuit. It is then possible to record the ENF values by
connecting the circuit to the sound card of a PC and recording
the received signal. [10] However, we do not have the correct
hardware to apply this technique and will therefore not attempt
to do this. The third option is using the audio of the recording
and analysing it for ENF signals. [4] This can then be verified
against the database and together serve as reference points.
The size of the database that we will use later on for statistics
will be highly relevant, since a larger database is more likely
to generate, for example, false positives. It is possible that,
when comparing short recordings in a large database, the issue
of self similarities becomes prevalent. We have used readily
available data for the database. [12]

We subsequently set up a testing environment like the one
described by R Garg et al. [9] We attempted to reproduce
the white wall method, where a white wall is illuminated by
a fluorescent light source. The light source is powered by
the 50Hz power grid and thus changes polarity at 100Hz. By
recording this over a large span of time we can then analyse
the resulting footage for ENF fluctuations. We have recorded
and then split one large recording into different sized smaller
recordings to get a large test set of data to work with. Figure
1 shows a frame recorded while using the white wall method.

The Cameras that were used are the Eken H9R and Canon
1100D with a Canon Zoom Lens EF-S 18-55mm 1:3.5-5.6

Fig. 1. Frame taken from recorded video demonstrating white wall method

lens. They recorded at 60 and 25 frames per second(fps)
respectively. We have focused mostly on the Canon EOS
1100D, since this camera provided the best data, with clearly
specified hardware. [13]

V. UNDER SAMPLING

When determining the frequency of a signal it is important
to have a sampling rate that is high enough to properly
extract the ENF signal from the data. When observing or
sampling a sine wave, the sampling rate should be higher
than twice the frequency of said sine wave. [14] Sampling
at such a high enough sampling rate prevents aliasing in the
resulting observed signal. Aliasing is the phenomenon where
an incorrect conclusion is drawn regarding the observed signal.
[9] [14] An example can be found in Figure 2, where the dots
are moments in time where a sample has been taken. We can
clearly see how both sine waves fit the sampled data points.
This illustrates how, given the same data, different results can
be inferred. However, it is not always possible to reach this
rate, due to the technical limitations.

VI. SAMPLING RATE IN VIDEO

Given the fact that we are attempting to observe a signal of
50Hz, we would ideally use a means of sampling that allows
for more than 100Hz sampling. Since we want to record video,
this would require a camera that records at more than 100
frames per second. Not all cameras currently in use support
such a frame rate. Rather, the most common frame rates are
25 and 30 frames per second. Due to old standards these may
vary slightly, namely 24.98 and 29.97. [9]

Cameras with more than 100 frames per second do exist
and are known as high speed cameras. These are often used
in sports and when slow-motion is required. They could prove
valuable in a proof of concept. However, they are rarely used
in security footage or home-made footage and they are not
commonly used, nor practical in the proposed use cases. [15]
[16] [17] This, combined with the nature of the research means
that we argue that the use of regular cameras has more value,
since this is representative of a real world scenario.



Fig. 2. Example of how under sampling can result in aliasing.

VII. ANTI ALIASING

When undersampling a signal aliasing occurs, as described
in Section V. Because we will be using a camera that operates
on a relatively low frame rate we can expect a large amount
of aliasing to occur in our signal when looking at the frames
as a whole. [9] The observed light source, as described in
section IV, operates on the 50Hz power grid and thus flickers
at 100Hz. The cameras that were used, operate at 25 and 60
fps. Rarg et al describe how they solve this issue by sampling
at specific frequencies. [9] However, they do not mention how
they sample at these frequencies, which are different from the
frame rate.

VIII. CMOS SENSOR

A CMOS sensor is the sensor that registers the properties
of pixels. It works unlike a traditional analog camera that uses
light sensitive film to capture an image. The traditional image
is taken by exposing the light sensitive film to light for a short
period of time. This film is exposed in its entirety for the whole
duration. [18]

A CMOS sensor, however, registers the light intensity from
the top to the bottom, per row. [19] This means that for every
frame that is being registered, every row is registered slightly
later than the one before. This means that the number of
rows registered per second is far greater than the number
of frames per second. This behaviour is the cause of the
so-called rolling shutter effect, where a fast moving object
may seem warped in the image. It increases our sampling
rate significantly, theoretically multiplying it by the number
of rows of pixels in a frame, which in our case increases the
sampling rate from 25fps to 720 ∗ 25 = 18000fps. This is

given that the sequential reading happens at a linear rate. There
may be a slight delay between the last row of one frame and
the first row of the following frame, depending on the sensor.
This may cause phase shifting, but should not be too much of
an issue when attempting to gather ENF data. [10]

The Canon EOS 1100D uses a 12.2 megapixel 22.2mm
x 14.7mm APS-C CMOS sensor. [13] CMOS sensors can
have different sizes. However, all CMOS sensors should be
sufficient to prevent undersampling. The combination of the
resolution and the size of the sensor decide the eventual
sampling rate that can be achieved, along with the frame rate.
Taking the mean value of intensity for every pixel in a row, for
every row in every frame of a video recording could produce
ENF data. An example of gathered data is shown in Figure
3. We suspect more filtering of the original video data needs
to be done in order to extract the correct ENF data, if it is
possible.

IX. TYPE OF RECORDING

The type of recording is important for our suggested method
of obtaining ENF data from video that was captured using
a CMOS sensor. The footage must contain either a lamp
or a surface area illuminated by a lamp that flickers at a
multiplication of the mains power grid frequency. One such
example would be a fluorescent lamp. This lamp or surface
area must be clearly visible for a prolonged period of time,
preferably over 240 seconds. Preferably the camera is not
being moved during this period. This allows for all other
variables to be as constant as possible, which makes it more
likely to extract the correct ENF data from the footage.



Fig. 3. Pixel intensity retrieved by taking mean values per row per frame

Fig. 4. Frame taken from a post pre-processing sample

X. FILTERING

According to literature, it is important to preprocess the
video before trying to extract ENF data. [10] The authors made
use of a blur and high-pass filter. We have done so as well,
which resulted in the still of the pre-processed video shown in
Figure 4. This should amplify the presence of ENF data and
reduce any noise that is present. The resulting video can then
be analysed.

XI. RANDOMNESS OF ENF

ENF is sufficiently random that, given a long enough sample
of audio, we can uniquely timestamp this using an ENF
database. [20] [4] Generally speaking, the shorter the sample,
the more likely it is that we find more than one candidate that
may correspond to the sample, which holds for both audio and
video. [4]

XII. CONCLUSION

Because the properties of a CMOS sensor allow for a high
enough sampling rate to prevent undersampling, we argue that
the following properties affect the collection of ENF data
from video. Because of the way in which a CMOS sensor
sequentially reads the data per row, we can say that the
sampling rate is directly affected by the size of the sensor
and the resolution. We argue that as long as the frames per
second multiplied by the number of rows in a frame allow
for a sufficient sampling rate, it should be possible to extract

ENF data from video. Logically, we theorise that the larger the
sensor and the larger the resolution, the more data there is and
thus the more likely it is that the data is correct. The length of
a recording directly correlates with the likelihood of correctly
timestamping it, where the longer the recording the higher
the chance of a correct timestamp. [20] [4] We theorise that
there should be no significant difference between ENF data
extracted from audio and that from video, when successful.
Thus the properties that hold for ENF data from audio should
also hold for video.

XIII. DISCUSSION

We were not able to entirely reproduce the research by R.
Garg et al. [9] We are of the opinion that the paper is not
clear enough in describing the process they use to collect the
ENF data from video. However, when combining the research
that was done by H Su et al, we were able to extract data that
may resemble ENF data. We were not able to conclusively
do so and timestamp this correctly. This has mainly been
due to time constraints. If one were to be aware of and try
to avoid the possibility of gathering ENF data from video,
circumventing it would be trivial. Using light that does not
flicker at a multiplication of the main power grid frequency,
using a camera that does not use a CMOS sensor or even not
filming the light for a long enough period of time would be
good ways to prevent time stamping video using ENF data.
Combining footage from multiple cameras and using ENF to
show correlation between the footage and their timestamps
may prove useful as well, without needing a reference database
for example. We have not taken into account how other factors
such as the ISO value or possible white balancing and the way
our device handles the video. These may also influence the
data and results in a meaningful way.

XIV. FUTURE WORK

For future work we would be interested to see if a tool
can be made, possibly in combination with the superpixel
based approach as proposed by S Vatansever et al. A video
could be automatically scanned to see if it would contain ENF
data and subsequently extract this data. The superpixel based
approach would allow for better analysis of moving footage,
where the regions of interest can be isolated and analysed. It
would be interesting to look at the difference and influence
that filtering and pre-processing has on the footage that is
being used. Since we theorize that it should be possible to
extract ENF data from video footage recorded using a CMOS
sensor, it would be interesting to look into how, when altering
aspects like the sensor size or resolution, this affects the data
and at what point it is no longer possible to extract useful
data. Using the maximum correlation coefficient as shown by
M. Huijbregtse and Z. Geradts it would be interesting to do
a large scale statistical research where one could accurately
determine the minimal length at which a sample can no longer
accurately be timestamped. Another interesting aspect would
be forging ENF data into footage, this might lead to incorrect
timestamping if no other information was available.
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