

Reverse-engineering CAN bus messages using OBD-II and correlation coefficients

Bram Blaauwendraad & Vincent Kieberl

Supervisors: Ruben Koeze & Sander Ubink, KPMG

What is OBD-II?

- High level protocol that provides access to status and stored error codes
 of vehicle sub-systems
- Parameter identifiers (PIDs)

PID (hex)	Description
05	Engine coolant temp.
0C	Engine RPM
0D	Vehicle speed
10	Mass Air Flow rate

Source: SAE J1979 / ISO 15031-5:2015

What is CAN?

- Controller Area Network
- Bus network: broadcast
- Saves on copper wiring costs
- CAN IDs identify message types
 - not public information
- Most CAN IDs occur regularly
- ► Meant for closed systems → insecure

Automotive IDSs

- Increasing amount of electronics in vehicles
- IDSs currently use features from traffic metadata¹
- Content-based features may improve accuracy
 - Data plausibility checks

Prior work: Kang et al.

- Automated reverse-engineering of CAN frames using OBD-II
- Matching OBD-II value to CAN data
- Process of elimination

Source: T. U. Kang, H. M. Song, S. Jeong and H. K. Kim, "Automated Reverse Engineering and Attack for CAN Using OBD-II," 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 2018, pp. 1-7, doi: 10.1109/VTCFall.2018.8690781.

Prior work: Kang et al. (2)

- Only search for one-on-one matching value
- Initial experiments show that in Audi A4 B7, translation is used
- Approach Kang et al. does not work for translated values

288 8 10ms Motor 2

```
byte0 xx=83,f2,29,43
byte1 52-a5 Kühlmitteltemperatur (0,75x Wert-48°, 0xff ist Fehler) 8 Mal -> 0x420
byte2 00 00->01->03->02->00 Bremspedal (=10 Leerlauf Bit4=ACC ?), Bremslichtschalter
-byte3 00 =0
-byte4 00 =0
byte5 (5b 58 56) 00,86,87,88,89
byte6 00 4a val (tps/maf/et al.)
-byte7 00 =0
```

Research question

To what extent can we reverse-engineer CAN messages using OBD-II interrogations and correlation coefficients when a translation is used?

Methodology: theory

- 1. Start listening on CAN bus
- 2. Do OBD-II request for supported PID
- 3. Stop listening on CAN bus
- 4. **Compute averages** for every unique CAN ID + byte index pair
- 5. Calculate Pearson Correlation Coefficient [OBDdata][CANdata]

Methodology: practical

- Audi and Hyundai
- 100 / 200 interrogations
- Testing procedure

Methodology: proof-of-concept

(

if

- Python 3
- Multithreading
 - Get CAN data asynchronously

Steps

- 1. Get supported PIDs
- 2. Get CAN and OBD data for each PID
- 3. Compute averages
- 4. Compute correlation and save to CSV

Get OBD respo	onse
response =	OBDCONN.query(obd.commands[PID_name])
OBD_response	e.is_null():
print("Erro	or: no OBD response received!")
sys.exit(-1	L)
Ddata = OBD r	response.value.magnitude

1	A	В	С	D	E	F	G
1	CAN ID (Dec) 💌	CAN ID (Hex) 💌	Index 💌	PID 💌	Correlation 🚽	OBD Data 🛛 💌	CAN Data
2	640	280	3	RPM	0.997369715	[1149.0, 1333.0, 1272.0,	[17.0, 20.0, 19.0, 19.0, 19.0, 19.0, 20.0, 19.0,
3	640	280	5	RPM	0.76934128	[1149.0, 1333.0, 1272.0,	[1.0, 30.0, 33.0, 33.0, 34.0, 34.0, 33.0, 20.0, 2
4	896	380	2	RPM	0.76102077	[1149.0, 1333.0, 1272.0,	[2.0, 32.0, 33.0, 33.0, 34.0, 34.0, 33.0, 18.0, 2
5	1416	588	4	RPM	0.733531356	[1149.0, 1333.0, 1272.0,	[105.0, 105.0, 106.0, 106.0, 107.0, 107.0, 107
6	640	280	4	RPM	0.698583493	[1149.0, 1333.0, 1272.0,	[6.0, 43.0, 51.0, 51.0, 52.0, 52.0, 51.0, 33.0, 2
7	640	280	1	RPM	0.696430727	[1149.0, 1333.0, 1272.0,	[6.0, 43.0, 51.0, 51.0, 52.0, 52.0, 51.0, 33.0, 2
В	1160	488	2	RPM	0.694699297	[1149.0, 1333.0, 1272.0,	[6.0, 43.0, 50.0, 51.0, 52.0, 52.0, 51.0, 32.0, 2
9	640	280	7	RPM	0.635676569	[1149.0, 1333.0, 1272.0,	[1.0, 43.0, 50.0, 51.0, 52.0, 52.0, 51.0, 28.0, 2
0	1100	44C	2	RPM	0.632512892	[1149.0, 1333.0, 1272.0,	[197.0, 196.0, 196.0, 196.0, 196.0, 196.0, 196
1	1160	488	1	RPM	0.630863151	[1149.0, 1333.0, 1272.0,	[1.0, 44.0, 50.0, 51.0, 52.0, 52.0, 51.0, 27.0, 2
2	896	380	3	RPM	0.609736989	[1149.0, 1333.0, 1272.0,	[35.0, 13.0, 20.0, 21.0, 22.0, 22.0, 21.0, 5.0, 5
3	1344	540	1	RPM	0.540933141	[1149.0, 1333.0, 1272.0,	[116.0, 106.0, 106.0, 107.0, 107.0, 108.0, 108
4	1504	5E0	2	RPM	0.528736185	[1149.0, 1333.0, 1272.0,	[55.0, 56.0, 57.0, 57.0, 57.0, 57.0, 57.0, 57.0,
5	1088	440	4	RPM	0.489807006	[1149.0, 1333.0, 1272.0,	[131.0, 131.0, 131.0, 131.0, 131.0, 131.0, 131
6	648	288	5	RPM	0.433755331	[1149.0, 1333.0, 1272.0,	[76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0,

Methodology: fitting

- Reverse-engineer formula used on CAN data
- When correlation > 0.9
- We assume y = ax + b
 - Fit value in 8-bit integer and allow negative values
 - E.g. COOLANT_TEMP = 0.75x 48

byte1 52-a5 Kühlmitteltemperatur (0,75x Wert-48°, 0xff ist Fehler) 8 Mal -> 0x420

- PIDs with High correlation on all tests
- Examples:

PID	CID + Byte Index (int 100 & 200)	Correlation
Audi RPM	0x280 - 3	~0.997
Audi INTAKE_PRESSURE	0x588 - 4	~0.999
Audi MAF	0x288 - 6	~0.962
Hyundai COOLANT_TEMP	0x329 - 1	~0.992
Hyundai THROTTLE_POS	0x329 - 5	~0.972

Results (2)

- PIDs with no matches (correlation < 0.9)
- Examples:
 - Audi ENGINE_LOAD
 - Audi INTAKE_TEMP
 - Hyundai AMBIENT_AIR_TEMP
 - Hyundai EVAPORATIVE_PURGE
- Potentially a combination of CAN values (e.g. 0x280-2 + 0x360-4)

Results (3)

- PIDs with ambiguous result
- Example:
 - COOLANT_TEMP on Audi matches on both coolant temperature and oil temperature
 - In certain driving conditions, these behave almost identically
 - Different testing procedure solved this problem

Result (4)

- Exact formula not found, however:
 - Close approximation when range
 is known
 - Lower resolution through averages
 - Still useful for IDS

Suspected Formula y = 0.75x - 48.0

Found Formula y = 0.84x - 65.2

Discussion

It works, however...

Practical considerations:

- What parameter are you looking for
- Fluctuations in environment variables
- Amount of CAN messages in test vehicle

Thus: not *one* optimal setup

Conclusion

- Correlation can be used to map CAN ID and byte indices to OBD values and formulas can be approximated with some limitations.
- Limitations
 - No correlation (possibly a formula)
 - Testing Procedure matters
 - 1 on 1 match will not be found (correlation = n/a)
 - Only works on one byte values (max. 255)

Future work

- Bigger sample size
 - Limited through OBD port, (security) gateways
- Conclusive proof
 - Reverse-testing
- Extensive testing procedure
- Performance