
Automated reverse-engineering of CAN messages using OBD-II and
correlation coefficients

Bram Blaauwendraad
University of Amsterdam

bram.blaauwendraad@os3.nl

Vincent Kieberl
University of Amsterdam

vincent.kieberl@os3.nl

Abstract—Intrusion Detection Systems (IDSs) for the Con-
troller Area Network (CAN) bus often rely on CAN frame
characteristics to detect intrusion, because the contents of CAN
frames are not generalizable to different vehicle makes and
models. However, the use of data plausibility checks may im-
prove accuracy of such IDSs. Research has been conducted
into mapping known On-Board Diagnostics version II (OBD-
II) parameters to CAN IDs by searching for one-on-one matches
between OBD-II values and values in CAN frames in order to
obtain knowledge about what data is stored in which CAN frame.
Nonetheless, an additional method is required for vehicles in
which OBD-II values do not directly match CAN data. In this
research, we propose a method to match CAN data to OBD-II
values using the Pearson correlation coefficient. Our results show
that we can correctly match CAN data to OBD-II parameters
on multiple vehicles with some practical limitations.

Keywords— CAN, OBD-II, reverse-engineering, Audi, Hyundai,
Pearson, Correlation, ELM327, intrusion detection, PID, IDS

I. INTRODUCTION

In recent years, more and more components of vehicles that were
previously controlled by mechanical systems have been replaced
in favor of electronic components. These electronic components in
automobiles are referred to as Electronic Control Units (ECUs),
which control various subsystems of a vehicle such as engine,
drivetrain and transmission. ECUs process signals from actuators and
sensors, and relay this information to other relevant ECUs over an
automotive network called the Controller Area Network (CAN). CAN
is a bus network, which means that frames on the CAN bus are
broadcast to all other nodes, and there is no notion of a sender or
receiver. Instead, what information is contained in a CAN frame is
identified by the CAN ID in the header, i.e., a CAN frame with a
specific ID may contain the engine coolant temperature at one specific
byte index, and the engine oil temperature at another. However, this
mapping is not standardized, meaning that which CAN ID is used
for what information is entirely at the discretion of the manufacturer
[1].

Seeing that CAN was developed in the 1980s and therefore lacks
features for security such as authentication and encryption, research
has been conducted into Intrusion Detection Systems (IDSs) for auto-
motive applications. These IDSs often use CAN frame characteristics
as a feature, as opposed to the actual content of a CAN frame, because
this content is not standardized [2, 3, 4, 5]. If it were possible to
use CAN frame content as a feature for IDSs so that, for example,
the plausibility of a certain value within that CAN frame can be
used as a feature, this might provide new opportunities for more
accurate intrusion detection within CAN bus systems in vehicles.
For this approach to be fruitful, the meaning of the data within a
CAN frame would have to be reverse-engineered for every vehicle
model. Considering that this is a time-consuming task, it would be
convenient if this can be automated. Kang et al. have conducted
research into automating the process of reverse-engineering CAN ID
meanings using the On-Board Diagnostics-II (OBD-II) interface that
is found on all cars today (see Section II for further information) [6].
This system allows mechanics to request parameters such as current

engine RPM, engine coolant temperature, etc. through the OBD-II
port located inside the vehicle. Kang et al. have used these known
requested values to search for matching values in CAN frames that
were sent at approximately the same time, hypothesizing that if a
value of a certain byte and CAN ID repeatedly matches the value that
was obtained through an OBD-II request, it can be assumed that the
requested value is indeed contained at that byte location [6]. However,
this method does not hold on all vehicle makes and models, because
some vehicle manufacturers do not store the human-readable value
in a CAN frame directly. Instead, a translation is used. For example,
in an Audi A4 B7 vehicle, to be able to store a temperature ranging
from -48 to 143 degrees Celsius, an unsigned 8-bit integer stores the
temperature as 0.75×A− 48, where A is the unsigned 8-bit integer
stored in the CAN frame. This was documented in [7], and we have
verified this source using our test vehicle, which produced results
that are in line with the translation formulas.

Considering that Kang et al.’s approach only searches for direct
one-on-one matches, values that are translated cannot be found using
this method. We therefore propose an additional method for reverse-
engineering CAN meanings using OBD-II that uses the Pearson
correlation coefficient on two data series to indicate whether a
potential match has been found. We use the correlation coefficient
because if one data series directly relies on the values of another
data series, the correlation coefficient will approximate to 1. We show
that using this approach, we can find potential matches for translated
values.

II. BACKGROUND

A. Controller Area Network (CAN)
As briefly noted in Section I, the Controller Area Network (CAN) is
a bus network that is often used in vehicles. CAN uses a twisted wire
pair that makes up a shared backbone between nodes on the network,
providing relatively high data throughput of up to 1 Mbps while pro-
viding cost efficiency and easy installation. The CAN frame header
does not provide a field for sender or receiver. Instead, all messages
are broadcast on the bus and are therefore received by every node
on the network, including the sender. Nodes utilize frame filtering to
discard the frames that are not of use to them by checking an 11-bit
header field called the CAN identifier (ID). This CAN ID uniquely
identifies a frame type on the network, and is therefore in practice
used to convey what data is stored in a message with a specific
CAN ID. The allocation of CAN IDs is not standardized, meaning
that manufacturers can create their own mapping of CAN IDs and
the byte locations in a CAN message to outline what information is
stored in what type of message within their CAN network. In practice,
this results in every vehicle manufacturer potentially using a different
CAN ID and byte index to store the engine coolant temperature, for
example. Note that manufacturers may also duplicate certain values,
i.e., the engine coolant temperature may be stored in CAN frame
with ID 0x288 byte 1, as well as in CAN ID 0x420 byte 4 [7].

Hence, the lack of generalizablility and the fact that the needed
mappings are not public information are the reasons that, at this time,
the contents of a CAN frame are not an attractive feature for IDSs. In
automotive networks, CAN frames with a specific CAN ID are often

1



recurrent, and their frequency is static. Current automotive IDSs often
use characteristics based on this principle, such as inter-frame timing,
as a feature for intrusion detection. This is based on the notion that
when frames are modified or inserted, the average interval between
two frames of the same CAN ID changes, which can be detected by
an IDS [2, 3, 4, 5].

B. On-Board Diagnostics II (OBD-II)
The On-Board Diagnostics II (OBD-II) interface is a protocol that
provides access to the status and error codes of various vehicle
sub-systems. It is mostly used by automotive mechanics in vehicle
diagnostics and emissions tests and can be accessed through the
OBD-II port that is located in most vehicles near the driver’s seat
[8]. The protocol has been mandatory in the European Union for all
gasoline cars since 2001, and since 2003 for all diesel cars [9]. Next
to emissions-related information and stored vehicle trouble codes, the
OBD-II interface provides diagnostics data that is obtained from the
engine control unit, which is an ECU that is specifically concerned
with engine operation. The Society of Automotive Engineers (SAE)
Standard J1979 defines a method of requesting so-called parameters
from the engine control unit through the OBD-II interface using
Parameter IDentification numbers (PIDs) [8]. This allows for the
interrogation OBD-II system for a specific OBD parameter from the
engine control unit, such as the engine coolant temperature. The
physical OBD-II port is comprised of 16 pins, of which 7 pins are not
standardized and are therefore left to the manufacturer’s discretion.
As OBD-II is in essence the higher level protocol, it relies on lower
level signaling protocols, of which five are standardized. One of these
signaling protocols is ISO 15765-2 CAN, which is signaled through
pins 6 (CAN-High) and 14 (CAN-Low) of the OBD-II port (see
Figure 1) [8, 10]. On many vehicles, the CAN bus is therefore directly
accessible through the OBD-II port of the vehicle. However, newer
vehicles often utilize multiple, separate CAN buses that are used for
different applications. For example, a vehicle may be equipped with
a high-speed CAN bus for the powertrain and engine, and another,
slower speed CAN bus that relays information from and to driver
comfort systems such as infotainment and windscreen wipers. Newer
vehicles therefore often contain a CAN gateway that interconnects
these CAN buses and provides the connection to the OBD-II port
as the OBD-II port is also used for manufacturer-specific diagnostics
[11]. This results in the internal vehicle CAN bus not being directly
accessible through the OBD-II port. Considering that our research
requires direct access to the vehicle’s powertrain CAN bus, our
research has been limited to older vehicle models. Note that it is
still possible to access a vehicle’s powertrain CAN bus by ’tapping
into’ the twisted pair wires that are used for CAN communication.
Because we did not want to damage our test vehicles, we have not
attempted this in our research.

III. RELATED WORK

Our research aims to extend the work of Kang et al. [6]. Their
process of automated reverse-engineering uses two methods to match
the value that is returned from an OBD-II interrogation to a value
located in CAN data that is transmitted around the time of the OBD-
II interrogation. The first method uses a direct one-on-one search,
meaning that the algorithm searches for the exact byte values that are
returned by the OBD-II interrogation, in little endian, as well as in big
endian byte order. If a match is found, the CAN frame that contains
the value is added to a list of candidate CAN frames. If, at the end
of this process, the list of candidate CAN frames contains multiple
candidates, the second method is applied to eliminate candidates until
a final candidate is left. This second method consists of repeatedly
interrogating the OBD-II system. The return value is then used to
check whether the during that interrogation recorded CAN frames of
the same CAN ID as the initial candidate still contain the value that
was returned by the OBD-II system in this interrogation at the same
byte location. This process is repeated until one candidate remains.

The byte location of the remaining candidate that has repeatedly
matched the OBD-II parameter is then regarded as related to that
OBD-II parameter. Their method therefore relies on the following
assumptions:

• If multiple candidates are found with the first method, then some
of these candidates were found by coincidence; i.e., the value
returned by the OBD-II interrogation matched a value in a CAN
frame at random.

• The probability that subsequent OBD-II interrogation values
match the same CAN frame at random is extremely low; thus, if
an OBD-II interrogation repeatedly matches a value in a CAN
message, it can be concluded that these values are related.

For each match between OBD-II parameter and CAN frame, the
researchers performed a validation by constructing a new CAN frame
with an artificial value at the byte index that matched the OBD-
II parameter, and sent this CAN frame onto the vehicle’s bus. The
researchers then observed the vehicle’s response. For example, for
the OBD-II ‘engine RPM’ parameter, the researchers observed that
when a new CAN frame was sent with an artificial value at the byte
index that matched the engine RPM, the vehicle’s RPM gauge in the
dashboard moved up and down.

IV. RESEARCH QUESTION

The main question for this research is defined as:

To what extent can we reverse-engineer CAN messages
using OBD-II interrogations and correlation coefficients when a
translation is used?

V. METHODOLOGY

In this section we will detail the approach taken in performing
this research. We will discuss the theory behind our approach, the
practical implementation, detail the design of our proof-of-concept
code, explain our method for reverse-engineering the CAN formulas
and discuss design choices and limitations of our method.

A. Theory
As briefly discussed in Section I, our research aims to extend the
approach used by Kang et al. in order to be able to discover in
what CAN frames values are stored that we can request through
the OBD-II interface when a translation on the CAN value is used
by the vehicle manufacturer. Comparable to their approach, we
interrogate the OBD-II interface for a specific parameter, and at the
same time, we record the CAN frames that are sent over the bus.
However, instead of matching the value obtained from the OBD-II
interface to values in the recorded CAN frames directly, we perform
the OBD-II interrogation and CAN recordings repeatedly. From
these OBD-II interrogations and corresponding CAN bus recordings,
we obtain two data structures. The first data structure is a list that
contains the OBD-II responded values, and thus the length of that list
corresponds to the number of performed interrogations. The second
data structure is a list of two-dimensional arrays. Each entry in this
list corresponds to a recording of the CAN frames that were sent
over the bus during one interrogation. The two-dimensional array
contains rows of CAN frames that consist of the CAN ID for that
frame and the actual data, an array of at most 8 bytes. Considering
that our objective is to discover whether a value in a CAN frame is
related to the value returned by the OBD-II interrogation, we check
whether a correlation exists over a number of interrogations between
the OBD-II values and the values that occur in a CAN frame with a
specific CAN ID at a specific byte location. As outlined in Section
II-A, CAN frames with a specific CAN ID are often recurrent,
and therefore, multiple CAN frames with the same unique CAN
ID can occur in one recording. As we use the Pearson Correlation
Coefficient (PCC) to determine whether a relation exists between

2



the OBD-II values and the data in a CAN frame, the input data
series must have the same dimensions (i.e., the sample size n must
be equal). Therefore, for each CAN frame with ID a, and therein
for each byte index b, we compute the average value of that data
within one recording. For all recordings (interrogations) together,
this yields a vector of which the length is equal to the number
of interrogations, for each pair (a, b), which we use to compute
the PCC between the OBD-II values and the CAN data. This is
illustrated in Figure 3 in the Appendix.

The PCC is computed using the paired data
{(x1, y1), ..., (xn, yn)} where xi ∈ X , yi ∈ Y and where
X = the list of values retrieved through the OBD-II interrogations,
and Y = the list of averages per interrogation for a specific CAN
ID a at byte index b within that CAN ID. The PCC can then be
computed using the following formula:

rxy =

∑n

i=1
(xi − x̄)(yi − ȳ)√∑n

i=1
(xi − x̄)2

√∑n

i=1
(yi − ȳ)2

(1)

where n is the sample size, and x̄ and ȳ are the sample means for
X and Y , respectively.

B. Experiment setup
Our experiment required us to capture data on the CAN bus and do
OBD requests at the same time. To accomplish this, we connected a
PiCAN 2 CAN bus board to a Raspberry Pi 4 model B. This board
in turn allowed us to connect a DB9 to OBD-II cable from our Pi
to the test vehicles. The PiCAN only supports reading CAN and not
OBD messages and each vehicle only has one OBD port, so to be
able to do OBD-II interrogations simultaneously we had to solder the
CAN-high, CAN-low and ground pins of the DB9 to OBD-II cable
to an ELM327 generic OBD-II microcontroller, as can be seen in
figure 1. We ran all our tests on two test vehicles, an Audi A4 B7
from 2006 and a Hyundai i10 from 2007.

Fig. 1. This schematic shows how both the PiCAN2 board and the ELM327
were connected to the same OBD port. The pinout of the ELM327 is not
shown, as it is connected on all pins and selects which ones to use based on
the specific version of the OBD protocol used by the test vehicle.

C. Proof-of-concept
The proof-of-concept was programmed in Python 3, as it is the latest
version and supports CAN and OBD libraries.1 We also incorporated
multi-threading, to be able to obtain the CAN data asynchronously
during the OBD interrogations. The code was separated into four
main phases and operated as follows:

1Our proof-of-concept code can be found on the OS3 Gitlab server. It
is available at the following url: https://gitlab.os3.nl/bblaauwendraad/rp2—
rp103.git

1) Retrieve a list of supported PIDs. This is a function of the
OBD library and avoids having to waste time and computing
power on values the test vehicle in question can not return.

2) Capture the CAN data and do an OBD interrogation simulta-
neously for the selected PID.

3) Compute the averages of each unique CAN ID, for each byte
index for each interrogation.

4) Calculate the correlation over the resulting OBD and CAN
data series where the length of these one dimensional arrays
is equal to the amount of interrogations. The result, consisting
of each CAN ID and byte index pair, their correlation to the
corresponding OBD value and the OBD and averaged CAN
data, is then saved to a CSV file.

We perform steps 2-4 for each OBD-II PID.

D. Least-squares fitting
After we had found the CAN ID and respective byte index that
correlated with the requested OBD value, we used the Scipy Python
library to fit a least-squares line function y = ax+b to the data for the
CAN ID-byte index candidates that showed a high correlation with
the OBD data, in order to be able to deduce a translation formula
from CAN to OBD. We assumed a linear y = ax + b function as
we have observed this to be the only formula used from preliminary
tests, which were in line with the formulas in [7]. We did not consider
other possible formulas, because we assume that the goal of using a
translation is not obfuscation, but that the goal is rather to be able
to fit certain human-readable values in the constraints of an 8-bit
integer.

E. Design decisions and limitations
Considering that our experiments contain many variables, we had
to make some design choices that could influence the outcome. We
further detail these decisions below and mention their limitations.

Due to the scope of this research, we opted for a simple and
practical test setup. We therefore tested our solution by connecting
our DB9 to OBD-II cable to the OBD port of the test vehicle and
launching our script. Since some and especially modern vehicles have
a (security) gateway behind the OBD port, as explained in Section
II, this approach will not always work. Although the CAN buses of
these vehicles rely on the same basic principles, we would have to
cut CAN wires in the dashboard to have access to the CAN bus.

We experimented with different testing procedures, doing our tests
when the test vehicle was just started up and after 15 minutes of
warming up, as well as stationary and on the road. We settled on
running our tests whilst driving after letting the car idle for 15
minutes. We did two experiments for each vehicle, testing with both
100 and 200 interrogations. These numbers were mostly chosen for
practical reasons, as it allowed us to get data sets that are as large
as possible whilst staying within a realistic time frame. Choosing
two different amounts of interrogations also allowed us to see the
influence of an increased amount of interrogations on the accuracy
of our method. A more in-depth analysis on the relevancy of the
procedure can be found in Sections VII and IX.

We have opted to display all CAN ID-byte index combinations
that had a correlation with the OBD data series of more than 0.9. We
believe setting a threshold is a more truthful representation than only
storing the CAN ID and byte index with the highest correlation, since
multiple CAN IDs and indices can contain the same information, as
stated in Section II. This specific value was selected by analyzing
the results of our preliminary testing and since in the real world it is
possible to have high correlation on random data and to avoid false
positives, this value had to be high. We do not expect the correlation
to be 1, since the resolution of our CAN data is lowered by taking
averages and therefore a perfect match should only occur if the data
has almost no fluctuation.

3



It is important to note that due to the proprietary nature of the
CAN bus, we can not truly claim that our findings are correct unless
we get confirmation from the manufacturer. However:

1) We found a source that corroborates our findings, as mentioned
in Section I.

2) The correlation proves that the data series correspond to each
other.

3) We have sent CAN messages back to the car and we have
drawn conclusions from the resulting events. The CAN mes-
sages we sent back were generated using values comparable
to the original frames to avoid damaging the test vehicle.

VI. RESULTS

In this section, we will elaborate on our results. We have identified
three subsets of results, PIDs with a high correlation match, PIDs
with an ambiguous result and PIDs with no match at all. Lastly, we
will also highlight some notable findings that we observed.

The data that we obtained differed between the two vehicles in the
number of CAN frames that were sent per interrogation. For the Audi
vehicle, we recorded approximately 600 frames per interrogation,
whereas the Hyundai vehicle only transmitted around 30 frames per
interrogation. Due to the implementation of our program, a lower
number of CAN frames per interrogation results in averages that
are possibly more true to the real value at the exact time of the
interrogation.

We have only selected the OBD-II PIDs that returned a continuous
value, i.e., PIDs for which a request would not return a discrete
state such as ’on’ or ’off’. The Audi vehicle supported 8 OBD-II
PIDs, while the Hyundai vehicle supported 18 OBD-II PIDs. We
have therefore obtained more results from the Hyundai vehicle.

A. High correlation
Our results show that in both vehicles, there is data from multiple
PIDs that correlates highly with data averaged from specific CAN
ID-byte index pairs in both 100 and 200 interrogations. With these
PIDs, the highest correlating CAN ID and byte index of both 100 and
200 interrogation runs are identical. In other words, the larger data
set did not yield different results for PIDs that have a high correlation
with a specific CAN ID-byte index pair. A selection of these results
is shown in Table I.

B. No match
Our results also show that there are OBD PIDs for which no match
can be found, i.e., the correlation between the OBD values and the
values from a CAN ID-byte index pair is < 0.9. These results are
outlined in Table II.

C. Ambiguous cases
As outlined in Section V, the experiments were performed once
with 100 and once with 200 interrogations. A higher number of
interrogations results in a larger data series that is used for correlation
calculation. Concerning the number of interrogations, we have made
a number of observations; these are also outlined in Table III. Firstly,
there are PIDs for which a higher number of interrogations ’filters
out’ potential false positive CAN ID-byte index candidates, i.e., a
higher number of interrogations yields a smaller number of candidate
CAN ID-byte index pairs, that, according to [7], yields less false
positive candidates than a lower number of interrogations. However,
our results show that there are also PIDs for which a higher number of
interrogations yields results containing a larger number of candidate
CAN ID-byte index pairs. Lastly, our results show that for the
Hyundai catalyst temperature PID, the run with 100 interrogations
yielded no candidates, while the run with 200 interrogations produced
a candidate with fairly high correlation, i.e., 0.95.

Fig. 2. The computed linear least-squares fitting function is shown in blue,
while the suspected formula from [7] is displayed in red.

D. Least-squares fitting
Using Scipy’s curve_fit function, we computed the optimal least-
squares line function for the coolant temperature PID in the Audi
vehicle. The coolant temperature was chosen as an example, however
this method works for all PIDs with high correlation coefficients. The
curve_fit function can be used to fit a least squared function to
data, resulting in a curve (or line) formula that best fits that data.
From [7], we know that the translation formula used is 0.75x − 48
where x represents the decimal value in the CAN frame. The optimal
fit function that Scipy returned approximated to y = 0.84x − 65.2.
An illustration is provided in Figure 2.

E. Re-sending CAN messages
To reinforce our results, we have attempted to re-send CAN messages
over the Audi vehicle’s CAN bus to observe how the vehicle
would react. We performed this for all PIDs that scored a high
correlation on the Audi (see Table I). In the majority of cases, we
observed no response from the vehicle, but for the RPM and engine
coolant temperature PIDs, we observed that respectively the RPM
gauge and the engine coolant temperature responded by going up
to approximately the value that we put in the CAN frame that we
sent. The re-sending of CAN messages to the test vehicle was only
attempted for the Audi vehicle because this vehicle was owned by
us.

VII. DISCUSSION

In our testing, we noticed fluctuations in the performance of our ap-
proach. Increasing the amount of interrogations showed both positive
effects on one PID and negative effects on the other. We also noticed
different PIDs matching to the same CAN ID-byte index. We believe
both anomalies to be due to two characteristics of our approach,
which we will discuss below.

A. Characteristic
The first characteristic is how we compute the correlation. Seeing that
multiple frames with the same CAN ID can be transmitted during
one recording, we had to compute the average of these CAN ID-
byte index pairs for each unique CAN ID and each interrogation.
This way, we acquired two data series of identical dimensions.
The more messages are sent on the CAN bus during the time of
recording, the more resolution is lost through taking these averages.

4



Vehicle PID CAN ID (Hex) Byte Index Avg Correlation
Audi Engine RPM 0x280 3 0.997
Audi Intake manifold absolute pressure 0x588 4 0.999
Audi Mass Air Flow (MAF) rate 0x288 6 0.960
Hyundai Engine coolant temperature 0x329 1 0.971
Hyundai Engine RPM 0x316 3 0.993
Hyundai Vehicle speed 0x580 7 0.998
Hyundai Calculated engine load 0x316 4 0.970
Hyundai Absolute load value 0x316 4 0.991
Hyundai Intake manifold absolute pressure 0x316 4 0.967
Hyundai Relative throttle position 0x329 5 0.991

TABLE I
A TABLE SHOWING THE PIDS WITH HIGH CORRELATION. THE CID IS THE UNIQUE CAN ID WITH THE HIGHEST CORRELATION IN BOTH 100 AND 200
INTERROGATION RUNS IN HEXADECIMAL NOTATION. THE AVERAGE CORRELATION VALUE ROUNDED TO THREE DECIMALS IS GIVEN OVER BOTH RUNS.

Vehicle OBD-II PID
Audi Calculated engine load
Audi Intake air temperature
Audi Throttle position
Hyundai Ambient air temperature
Hyundai Fuel–Air commanded equivalence ratio
Hyundai Commanded evaporative purge
Hyundai Intake air temperature
Hyundai Long term fuel trim - bank 1
Hyundai Oxygen sensor 1
Hyundai Oxygen sensor 2
Hyundai Timing advance

TABLE II
A TABLE SHOWING THE PIDS FOR WHICH NO MATCH WAS FOUND.

As a result of this occurrence, CAN ID-byte index pairs that have a
similar progression through the testing can score a very comparable
correlation. A good example of this is the speed PID on the Audi,
as it provides the correct CAN ID-byte index pair with a 100
interrogations, but finds a higher correlation for a different CAN ID-
byte index pair at 200 interrogations.

The second characteristic is our testing environment and method-
ology. During normal driving conditions, it is not an uncommon
occurrence that different PIDs have similar progression throughout
the run. E.g. both the coolant temperature and oil temperature rise
steadily after initial startup of the vehicle. This can be seen clearly
on the Audi, as it matched on (what we presume to be) both the
oil and coolant temperature CAN ID-byte indices. When we re-
ran our experiments on that test vehicle after it had warmed up
however, the oil temperature CAN ID-byte index pair no longer
displayed a correlation of over 0.9. We suspect many PIDs to have
a similar accidental correlation due to real world variables, e.g. the
intake pressure and engine load and the speed and wheel rotation.
We therefore argue that an extensive testing procedure, taking into
account the unique characteristics of each PID interrogated, could
greatly improve accuracy.

B. No matches
With regards to the PIDs which did not find a match at all, we have
three possible explanations:

• The return value for the OBD interrogation is comprised of
multiple CAN ID-byte indices. If these values are combined
through a formula, our method will by definition not be able to
find their correlation coefficient.

• For some PIDs, the return value is stored in multiple bytes, as
it is too large fit to in a single byte. The paper by Kang et al.
shows that this is the case with the fuel pressure, for example.
Detecting values across multiple byte indices was out of scope
for our research.

• Some PID values (almost) never change. This can be seen on
e.g. the timing advance PID of the Hyundai. Since there are
multiple CAN ID-byte index pairs on the CAN bus that contain
only zero’s, a perfect correlation coefficient between these two
data series will be found. Furthermore, when two data series
are exactly the same, the correlation coefficient will be n/a in
our program and not show up in the results.

The limitation that one on one values can not be found is
deliberate, as our research is an addition to the work by Kang et
al. and not a replacement. Our method is designed to find CAN ID-
byte index pairs that used translation on the original values and will
never perfectly match due to our resolution decrease on the CAN
data by calculating the averages.

C. Least-squares fitting
As can be seen by the fitting example in Section VI, we were not able
to find the exact formulas used on the CAN values. We think this is
both due to the correlation being imperfect and our resolution loss
through taking averages of the CAN data. However, the formula found
is a close approximation, especially when the expected range of the
PID in question is known. We argue that this information is therefore
still useful for IDS development, as the goal of knowing the formulas
is to be able to determine if a value is within a expected range
and changes at a expected rate. E.g. when the coolant temperature
increases from 30 (value after conversion with the found formula) to
250 in a relatively short amount of time, it would indicate that either
a sensor is defective or an attacker is inserting CAN frames on the
bus. An IDS could detect such a implausible fluctuation and trigger
an alarm.

VIII. CONCLUSION

Our research aimed to extend the approach by Kang et al. to be
able to match CAN ID-byte index pairs to OBD-II PIDs when a
translation is used in the CAN data. We argued that the correlation
coefficient between the CAN data and the OBD data can relate both
data series to each other in order to discover which CAN ID and
byte index stores data that is directly related to the OBD-II PID. Our
results have shown that, when comparing against [7], we can correctly
match CAN ID-byte index pairs to OBD-II PIDs on multiple vehicles
with some practical limitations. This research may prove useful for
future IDS development that intends to implement plausibility checks
on data as an IDS feature.

IX. FUTURE WORK

Due to both time and budgetary constraints, and practical limitations
due to the ongoing COVID-19 pandemic, we were not able to do our
research as extensively as we hoped. Furthermore, we came to many
interesting insights during our study of related work and our own
experiments, which warrant further examination. These suggestions
for future work can be found below.

5



Vehicle PID Ambiguity | int. = interrogations

Audi Engine coolant temperature 100 int.: returned some false positives (e.g., engine oil temperature)
200 int.: yielded two correct CAN ID-byte index pairs according to [7]i.

Audi Vehicle speed 100 int.: returned 8 candidates
200 int.: returned 10 candidates

Hyundai Throttle position 100 int.: returned three candidates
200 int.: resulted in one candidate

Hyundai Intake manifold absolute pressure 100 int.: returned three candidates
200 int.: yielded two candidates

TABLE III
AMBIGUOUS PIDS

A. Sample size
In this paper, we emphasize the usefulness of the correlation method
proposed because it is generalizable. We were however only able to
confirm our theories on two test vehicles, seeing as we opted to only
connect to the CAN bus over the OBD-II port as opposed to splicing
into the CAN-High and CAN-Low wires of the CAN-busses directly
to avoid damaging the test vehicles. This meant we were limited to
vehicles which have their power-train CAN bus directly connected to
the OBD port. Especially on more modern vehicles, this is no longer
the case, as they use a (security) gateway. Testing our theory on a
large amount of test vehicles from different brands, construction years
and models would greatly improve both the relevance and usefulness
for IDS development of our proposed method.

B. Proof
We were not able to conclusively prove the correctness of our
assumptions. As detailed in Section V, we assume all CAN ID and
byte index pairs with a correlation of over 0.9 correspond to the OBD
value requested. We tried to confirm our assumptions by sending
CAN frames with the same CAN IDs and altered byte values on
the CAN bus and monitoring the resulting events and comparing our
findings with findings of car enthusiasts online. This is not definitive
proof. We speculate that taking a look at the circuitry of the sensors
and actuators that are sending these messages on the CAN bus could
confirm our findings. The most reliable solution to the problem would
be getting confirmation from the manufacturer of the vehicle in
question. Obtaining this information could also be used to check the
correctness of the formulas we reverse-engineered using fitting. We
highly doubt however that these companies are willing to disclose
proprietary information and found this to be out of our scope.

C. Testing procedure
During our testing, we found that a custom testing procedure for each
PID could greatly improve the accuracy of our method. Designing
such a testing procedure would require adjusting (at least) the testing
environment, amount of interrogations and vehicle operation. For
example, in our testing, we found that it yields a more accurate result
to test the coolant temperature when the car is on the road as opposed
to stationary, and warmed up as opposed to just started. The waiting
ensures that the coolant temperature is not warming up in a linear
fashion identical to the oil temperature and the driving ensures the
value still fluctuates enough to obtain an accurate correlation. The
impact of code execution times on the result can also be tested, e.g.
by adding an artificial delay to see the influence on the results of
capturing more CAN frames per interrogation.

D. Performance
As this paper contains academic research and our code is a proof-
of-concept, performance was not considered. However, one of the
main benefits and reasons for our approach is that it helps IDS
development. We also assume our method to be generalizable which
saves IDS developers to manually obtain the CAN ID-byte index
to OBD value mapping when working with vehicles of different

manufacturers, makes and models. Therefore, a focus on improving
speed and performance of our code could prove useful. A faster
program will also result in a shorter CAN recording window, which
lessens the resolution decrease that occurs when computing averages
over the CAN data, potentially further increasing the accuracy. The
same effect could be achieved through running on more powerful
hardware.

X. ACKNOWLEDGEMENTS

We would like to thank our supervisors, Ruben Koeze and Sander
Ubink, for their assistance and guidance during this project. We are
particularly grateful to Marco Rajk for his expertise on automotive
CAN bus systems and the time he has taken to help us. We would
like to express our gratitude to Jan van Aller and Marthe de Vries
for providing one of the test vehicles.

REFERENCES

[1] CAN Specification, version 2.0. Tech. rep. Stuttgart,
Germany: Robert Bosch GmbH, 1991. URL: http://esd.
cs.ucr.edu/webres/can20.pdf.

[2] Michael R. Moore et al. “Modeling Inter-Signal Arrival
Times for Accurate Detection of CAN Bus Signal In-
jection Attacks: A Data-Driven Approach to in-Vehicle
Intrusion Detection”. In: Proceedings of the 12th An-
nual Conference on Cyber and Information Security
Research. CISRC ’17. Oak Ridge, Tennessee, USA:
Association for Computing Machinery, 2017. ISBN:
9781450348553. DOI: 10.1145/3064814.3064816. URL:
https://doi.org/10.1145/3064814.3064816.

[3] M. Gmiden, M. H. Gmiden, and H. Trabelsi. “An
intrusion detection method for securing in-vehicle CAN
bus”. In: 2016 17th International Conference on Sci-
ences and Techniques of Automatic Control and Com-
puter Engineering (STA). 2016, pp. 176–180.

[4] Kyong-Tak Cho and Kang G. Shin. “Fingerprinting
Electronic Control Units for Vehicle Intrusion Detec-
tion”. In: 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug.
2016, pp. 911–927. ISBN: 978-1-931971-32-4. URL:
https: / /www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/cho.

[5] Noräs Salman and Marco Bresch. “Design and imple-
mentation of an Intrusion Detection System (IDS) for
in-vehicle networks”. MA thesis. Chalmers University
of Technology / University of Gothenborg, 2017. URL:
https://odr.chalmers.se/bitstream/20.500.12380/251871/
1/251871.pdf.

6

http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://doi.org/10.1145/3064814.3064816
https://doi.org/10.1145/3064814.3064816
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://odr.chalmers.se/bitstream/20.500.12380/251871/1/251871.pdf
https://odr.chalmers.se/bitstream/20.500.12380/251871/1/251871.pdf


[6] T. U. Kang et al. “Automated Reverse Engineering and
Attack for CAN Using OBD-II”. In: 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall). 2018,
pp. 1–7.

[7] OpenStreetMap. Audi A4 B7 Known CAN IDs. URL:
https://wiki.openstreetmap.org/wiki/VW-CAN.

[8] SAE J1979 E/E Diagnostic Test Modes / ISO 15031-
5:2015 Road vehicles - Communication between vehicle
and external equipment for emissions-related diagnos-
tics - Part 5: Emissions-related diagnostic services.
Standard. Troy, MI, United States of America / Geneva,
Switzerland: Society of Automotive Engineers (SAE)
/ International Organization for Standardization (ISO),
Feb. 2012.

[9] Council of European Union. Directive 98/69/EC of the
European Parliament and of the Council. 1998.

[10] ISO 15765-2:2016 - Road vehicles — Diagnostic com-
munication over Controller Area Network (DoCAN) —
Part 2: Transport protocol and network layer services.
Standard. Geneva, Switzerland: International Organiza-
tion for Standardization (ISO), Apr. 2016.

[11] Fahrzeugdiagnose-, Mess- und Informationssystem VAS
5051 - Aufbau und Funktionen - Selbststudienprogramm
Nr. 202 / Vehicle Diagnosis, Measuring and Information
System VAS 5051 - Structure and Functions - Self Study
Program No. 202. Technical Report. Volkswagen AG.

7

https://wiki.openstreetmap.org/wiki/VW-CAN


XI. APPENDIX

Fig. 3. An illustration of the approach that we used to calculate the averages and obtain the Pearson correlation coefficient for each CAN ID-byte index pair.

8


	Introduction
	Background
	Controller Area Network (CAN)
	On-Board Diagnostics II (OBD-II)

	Related work
	Research Question
	Methodology
	Theory
	Experiment setup
	Proof-of-concept
	Least-squares fitting
	Design decisions and limitations

	Results
	High correlation
	No match
	Ambiguous cases
	Least-squares fitting
	Re-sending CAN messages

	Discussion
	Characteristic
	No matches
	Least-squares fitting

	Conclusion
	Future work
	Sample size
	Proof
	Testing procedure
	Performance

	Acknowledgements
	Appendix

