
Securely accessing remote sensors in

critical infrastructures.

Research project for the SNE masters programme

Pavlos Lontorfos
Supervisors: Cedric Both and Jeroen de Boer

July 5, 2020

Sensor technology has become an invaluable tool for monitoring an environment,
enabling users to identify inefficiencies within their systems and to reduce risks
related to operation and maintenance. These sensors are widely used in public
infrastructures such as bridges, tunnels, and electricity networks. This expan-
sion of their use in critical infrastructures has increased the need for secure and
scalable communication with those sensors. In this paper, I will perform theoret-
ical research as well as a series of experiments and I will build a software defined
network(SDN) infrastructure using LoRa sensors in order to examine the effects
of software defined networking on sensor networks. I will focus on the aspects
of redundancy, scalability, and security of those networks and I will evaluate the
benefits that an SDN-based architecture can have in such architecture.

1

Contents

1 Introduction 3
1.1 Research Question . 3

2 Background 3
2.1 Relevant knowledge . 3
2.2 Related Research . 6

3 Methodology 6

4 Experiments 7
4.1 Network control experiment . 8
4.2 Switch failure experiment . 8

5 Results 9

6 Dicussion 12

7 Conclussion 14

8 Future Work 15

2

1 Introduction
Critical infrastructures, such as water supply, transportation, and electricity
generation networks are essential for the functioning of a society and economy
and therefore are expected to be highly available in every situation. Hence,
they need to be protected not only from accidental failures, such as disaster
but also from malicious actors[1]. Consequently, monitoring mechanisms that
enable network operators to detect failures and attacks as early as possible must
be in place. Wireless sensors are already widely in use, but the emergence of
cloud computing, highly intelligent ’Smart’ devices, and 5G networks is expected
to increase demand for situational awareness leading proliferation of sensors,
especially in the critical components of the society[2].
Although the use of wireless sensors could solve the problem of extended mon-
itoring of the critical infrastructure, it creates two new challenges. The first
is that often the infrastructure that needs to be monitored is inaccessible, like
tunnels or underwater constructions, and a failure on the sensor network can
lead to complete loss of visibility of the asset. Understandably, redundancy of
the communication is of major importance.
The second challenge is that sensitive information about critical parts of a coun-
try’s infrastructure is transmitted over the internet. This information can at-
tract malicious actors who would like to get access to it. Due to the aforemen-
tioned scenario, a secure way of communication, as well as continuous monitor-
ing of this communication must be in place.

1.1 Research Question

In this research, I will evaluate the benefits that the use of SDN can have in a
remote sensor network. The main research question will be:
Can the use of Software Defined Networking improve the redundancy and secu-
rity of a sensor network used in critical infrastructure objects?
To answer the main question, I first need to answer the following sub-questions:

1. What benefits can an SDN-based architecture have regarding the redun-
dancy of the system?

2. What benefits can an SDN-based architecture have regarding the scala-
bility of the system?

3. What benefits can an SDN-based architecture have regarding the security
of the system?

2 Background
In this section I will provide a theoretical background of the protocols and
technologies that will be used during this research, as well as relevant work that
has been done by other researchers.

2.1 Relevant knowledge

Software-Defined Networks
Software-Defined-Networks were introduced to give the network operators greater
flexibility and agility in the services they provide. To achieve this, SDNs intro-
duce new characteristics to traditional networks. The first key feature is the sep-
aration of the control plane from the underlying network data plane for efficient

3

data transport and better control of network management and services[3][4].
Building on this idea, the next characteristic is the simplification of devices,
which are controlled from a centralized system running management and control
software. The complex logic that allows every device to behave autonomously
is moved from the switches to a centralized controller which manages the net-
work and provides basic instructions to the simplified devices on how to deal
with the incoming traffic[5]. An SDN has two distinct interfaces, the north-
bound interface which describes the area of protocol-supported communication
between the controller and applications or higher layer control programs mostly
through APIs, and the southbound interface which defines the communication
protocol between forwarding devices and control plane elements[6]. A simplified
representation can be found in figure 1.

Figure 1: Simplified view of an SDN architecture [6].

OpenFlow
Openflow is a framework through which a logically centralized controller can
communicate with and control an OpenFlow switch. It originally defined the
communication protocol in SDNs that enables the network controller to directly
interact with the forwarding plane of network devices such as switches and
routers, both physical and virtual. Each OpenFlow capable device can maintain
flow tables, which are used to perform packet lookups[7].
Network Functions Virtualization
Network functions virtualization (NFV) is a way to virtualize an entire class of
network components, such as routers, firewalls, and load balancers, that have
traditionally been run on proprietary hardware. It allows the network operators
to create new functions as software instances in a virtual machine(VM), and
deploy them in their infrastructure, or a data center, without the need for
specialized hardware[8]. As a result, the operators can easily deploy additional
virtual machines(VMs) to serve the demand, move them at will, or terminate
them when the function is no longer needed [4]. NFV supports SDN by providing

4

the infrastructure on which SDN can run.
Wireless sensor network architecture
A wireless sensor network (WSN) typically consists of a large number of low-
cost, low-power, and multi-functional sensor nodes that are deployed in a region
of interest. These sensors communicate over a short distance, usually over a
wireless medium and they collectively gather information about a specific task,
such as environment monitoring, industrial process control, home intelligence,
and more [9]. A network like this has some important design characteristics.
The most important characteristics for our case are the following:
Self-Configurability: The nodes can be placed in a region, without excessive
planning. After deployment, a node can join, leave, or fail at any time. The
rest of the sensors should be able to adapt to topology changes and node failures.
Scalability: In a sensor network, the number of sensors can vary widely. Even
in the same project, the number of nodes can increase significantly over time.
The network design should be able to handle different network sizes and scale
accordingly.
Quality of Service(QoS): In a big sensor network, it is possible to produce a lot
of traffic. Some messages though could be more important than others in terms
of delivery latency and packet loss. For example, a fire alarm message must
have a higher priority than a humidity sensor in a congested network. Thus,
network design needs to take QoS into consideration.
Security: In many applications, sensor nodes can collect and transmit sensitive
information. A sensor network should introduce effective security mechanisms to
protect the data information in the network or a sensor node from unauthorized
access or malicious attacks[10].
Wireless Mesh Networks
One of the current technologies used for wireless communication with sensors is
the Wireless Mesh Networks (WMNs) which are communication networks that
comprise radio nodes, arranged in a mesh topology. Each node is connected to
every other node in range, usually over the IEEE 802.11 protocol. Although,
this WMN can create redundant communication to nodes that connect the sen-
sor network to the rest of the infrastructure, some important issues arise. To
synchronize the communication each node creates additional traffic. Thus, in a
big network, the nodes can exhaust the bandwidth and degrade the communi-
cation. Additionally, careful placement of the gateways is important, as it can
lead to resource starvation of some nodes while others are barely used[11]. In
2013, Detti Andrea et al. published research with the benefits of an SDN-based
implementation of a WMN. They prove that the use of a centralized network
controller that can create arbitrary paths for data flows can lead to the devel-
opment of improved traffic engineering algorithms in WMNs[12]. In 2014, they
further improve their research in partitioning and merging scenarios. In detail,
they use the ad hoc routing protocol OLSR to establish basic IP connectivity
between nodes to forward the control plane, as shown in figure 2. Moreover,
the OpenFlow switches in the Wireless Mesh Routers(WMR) interact with the
OpenFlow controllers that can configure the flow table for specific data plane
flows[13]. Their research proves that a software-defined network can optimize
resource management and reduce the convergence time on WMNs.

5

Figure 2: Control and Data plane in wmSDN [13].

2.2 Related Research

In 2015, Izzat Alsmadi et al. created a research paper on the security char-
acteristics of Software Defined Networks[14]. In their research, they discuss
the security threats to SDNs according to their effects. I will evaluate if these
threats are still relevant to this case and I will analyze how we can mitigate the
risks.
In 2017, Mohamed Labraoui et al. made a research about the integration of
Wireless Mesh Networks in an SDN-based solution. In their research, they cre-
ated a self-configurable network where each node could join the wireless mesh,
and find its way to the rest of the network using key nodes, which were con-
trolled over SDN [15]
In 2017, Zhiwei Zhang et al. developed a paper that proposes an Efficient
Software-Defined Wireless Sensor Network (ESD-WSN) architecture for IoT
applications [16]. In this architecture, their goal is to establish a stable and
energy-efficient control plane to reduce the control overhead. I will examine
their architecture and I will use any beneficial for our case components.
This paper contributes to the previous research as it differentiates in the follow-
ing parts: I will examine different technologies and I will make conclusions about
the benefits that SDN can have in sensor networks used in critical infrastruc-
tures. In addition, I will execute the experiments in actual hardware instead of
a fully virtualized environment, and I will focus on LoRa sensors, using typical
sensors that can be found in critical infrastructures, such as temperature and
air quality sensors. According to my knowledge, at the time of writing, there is
no similar research publicly available.

3 Methodology
For the purpose of this research I will focus on the effects on security and
redundancy from the use of a SDN-based topology on a sensor network. I
consider the well-known software and protocols used as secure. Continuous
research on the OpenFlow protocol [17][18] shows that its security is constantly

6

evaluated, and security flaws are fixed.
Another important factor that has to be taken into consideration is that these
sensors are usually deployed in remote and inaccessible places, such as tunnels or
sewers. According to Datadigest, a major dutch provider of monitoring services
in such critical infrastructures, the average time for an on-site visit in case of
a failure, is two weeks. During this time, the monitoring of the infrastructure
could be limited or nonexistent, depending on the failure. Understandably, the
communication with the sensors should be redundant to avoid such catastrophic
scenarios.
Due to the wide variety of possible technologies that can be used to communicate
with wireless sensors, such as Wi-Fi, Narrowband-IoT(NB-IoT), Lora[19] and
more, in combination with the limited time frame of this project, I rely on
relative research to cover a few scenarios, while I will focus my experiments on
a network that uses LoRa technology to communicate with the wireless sensors.
Hardware and Software Used
For the experiments, in order to create easily reproducible results, I used only
open source software and consumer grade hardware. In more detail I used:
Two Raspberry Pi 4, with Dragino Lora/GPS HAT. The Pi’s will work both
as OpenFlow capable switches and as LoRa gateways. Additionally, I will use
a Dragino LoRa gateway with OpenWRT firmware version 19.07, which also
supports OpenFlow protocol and OpenVSwitch(OVS). I will also use five LoRa
sensors that gather environmental data and forward them to the Lora gateway.
I chose LoRa sensors that are typically used in critical infrastructures such as
humidity, temperature, and motion sensors as well as an industrial purpose
LoRa I/O controller. More specifically, I used the following sensors:

• 2 x Tabs TBHH100-868 (Temperatuire and Humidity sensor)

• Tabs TBMS100-868 (Motion sensor)

• Tabs TBHV100-868 (Air quality sensor)

• Dragino LT-22222-L (LoRa IO controller)

In addition to the aforementioned hardware I used the following open source
software:

• OpenWRT firmware[20]

• Open vSwitch[21]

• Faucet SDN controller[22]

On top of our essential infrastructure setup, I will use some additional open
source tools that will help me monitor the network easily, named Gauge and
Grafana. Gauge is an open source monitoring controller which creates an Open-
Flow connection to the switch that monitors ports and flow states, and exports
the results to a database or text log files. Grafana is a visualization and analytics
software which allows to query, visualize, alert on, and analyze our metrics.

4 Experiments
In this section, there is a detailed description of all the experiments that we
executed during the research. These experiments helped me enrich my knowl-
edge about the benefits or drawbacks that SDNs can have in a sensor network

7

infrastructure. The first experiment focus on the control over the network while
the second experiment focus on the redundancy of the communications.

4.1 Network control experiment

The Network control experiment allowed to evaluate the benefits that SDNs
can have in visibility and control over the the sensor network, as well as its
behaviour in unexpected events such as loss of the SDN controller. For this ex-
periment, I will create a SDN which consists of an OpenVSwitch, an OpenFlow
controller, three NFV instances, two LoRa gateways, and some sensors. I will
use one Raspberry Pi 3 with two USB-Ethernet adapters as the OpenVSwitch,
a Raspberry Pi 4 with an attached GPS/LoRa shield, and a Dragino LoRa
gateway. In the raspberry Pis, I will install OpenVSwitch and I will configure
it to listen to the Faucet controller[23]. In addition, I will deploy a backup
controller, using the same configuration, in a remote location. Lastly, I will
deploy three supportive virtual functions, a Dynamic Host Configuration Pro-
tocol(DHCP) server, a Network Address Translation(NAT), and BRO intrusion
detection system(IDS), in the Raspberry Pi where the switch is installed. A
graph of the topology is shown in figure 3. By using the controllers’ features as
well as TCPdump and Wireshark, I will gather the available information and
evaluate if the SDN provides better visibility and control on the sensors. This
experiment will give me an insight into the benefits or the drawbacks that an
SDN-based solution has on a sensor network.

Figure 3: The topology of the experiment 1.

4.2 Switch failure experiment

For the second experiment I will create a redundant topology inside the network
by using four virtual switches. One switch will provide a gateway to the Internet
and the backbone of our infrastructure. On a different switch I will attach the
LoRa gateway that listens to a LoRaWAN I/O controller that sends messages
every 15 seconds. The two switches communicate using intermediate switches
as can be seen in figure 4. After the communication is established, I will bring
down on of the intermediate switches in order to replicate a sudden failure of
equipment, and I will observe the behaviour of the system in such a situation.

8

This experiment will give us a better understanding on the response of the
system in case of sudden failure, how it adapts, and how the centralized control
of the SDN helps to mitigate this problem.

Figure 4: The redundant topology of the second experiment using four virtual
switches.

5 Results
Network control experiment
By centralizing the control of the network, changes over the topology were easy
to apply and control by changing the configuration file(faucet.yaml) of the con-
troller. The configuration was applied on the OVS immediately after I reloaded
the controller, which in Raspberry Pi hardware took a few seconds.
Besides, I was able to block and redirect the traffic from the LoRa gateways by
creating access lists (ACLs) and applied them to the switch. As the sensors are
in range of both gateways, by blocking the flow from one gateway, I received
and forwarded the sensor messages from the second gateway. This allowed me
to deploy additional gateways in case of failure, and enable their traffic only if
needed. Although in this case I only used one switch, it is trivial to apply the
same ACL in all the switches of the network and replicate the same behavior.
Moreover I can create ACLs to filter traffic that originates from our own sensor
equipment and drop the rest. In a traditional network setup, this would be
possible either by reconfiguring multiple switches or the LoRa gateways.
Additionally, LoRaWAN gateways operate entirely at the physical layer and,
in essence, they are LoRa radio message forwarders. Consequently, I was not
able to control the LoRa sensors individually on a network level. From the
packet analysis, I could not distinguish individual nodes because both gateways
overwrote the source address with the MAC address of the LoRa module, as
shown in figure 5. Thus, I can distinguish from which gateway a LoRa packet
originates, but I could not specify the actual sensor. A deeper analysis of the
packet revealed that the data field of the packet contains enough information
to uniquely identify a sensor. The actual data is encrypted, and the decryption

9

(a) MAC Address (b) Data Field

Figure 5: Left: Capture of a LoRa sensor packet using Wireshark. The des-
tination IP is a The Things Network address. The source MAC address is the
address of the Dragino gateway Right: The data field from the same packet.

key is in the sensor network server. In a network with limited resources, such
as a network that transmits over LTE channel[24], I can combine a virtual deep
packet inspection firewall instance and filter the output traffic according to our
needs. Although this solution requires hardware that is capable to inspect heavy
loads of traffic, inside the infrastructure.
During the experiment, I disconnected the controllers in order to simulate the
behavior of loss of connection with the controller. When I disconnected the
first one, the OVS got its configuration file from the backup controller immedi-
ately. When the switch completely lost connection to the controllers, by default,
it went to standalone mode which causes the datapath to act as an ordinary
MAC-learning switch. The OVS daemon, named ovs-vswitchd, will continue to
retry connecting to the controller in the background and, when the connection
succeeds, it discontinues its standalone behavior. During this time, I was still
able to receive LoRa messages in the network server. The log activity of the
switch shows its attempts to reconnect to the controller, as shown in figure 6.
An alternative to this behavior is the secure mode. In this case, the switch will
not set up flows on its own when the controller connection fails.
Furthermore, it was possible to redirect the traffic from all the LoRa gateways
to a secondary sensor network server in the backend of the infrastructure, by
changing the configuration file of the controller. This allowed me to change
or expand the setup or configure different sensor network servers for different
gateways. It is possible to use the northbound API of the controller to automate
this procedure [6][25] although due to time restrictions, I did not implement it.
Furthermore, a virtualized load balancing function could redirect the network
traffic to additional sensor servers when the load exceeds a specified level, or
when the sensor network server is inaccessible for any reason.
In addition, I can forward the traffic from any port to an IDS system for in-
spection. I further investigated this case and I deployed one more virtual host,
which runs a BRO instance, a passive, open-source network traffic analyzer. I
changed the controller’s configuration file to send the traffic to the IDS instance
as well. A report from BRO with IP, TCP, UDP and ICMP connection details
can be found on figure 6.
Lastly, OVS allows multiple ways for communication with the controller. By
default the controller communicates with the switch over HTTP, which has
no encryption. From my packet analysis I was able to recognize flows, routes,
MAC addresses of source and destinations and more information that gives away
information about the network topology, as shown in figure 7. Although this
is not a secure configuration, OVS supports secure southbound communication

10

(a) conn.log

(b) ovs-vswitchd.log

Figure 6: Up: Logs from the connection details captured from BRO on
VLAN100. Down: When the OVS losses connection with the controller, it
produces alerts.

with Transport Layer Security(TLS).

Figure 7: OpenFLow packet capture in plaintext.

Switch failure experiment
In this experiment, I took advantage of the controllers stacking mode. Stacking
allows decisions such as switching and routing to be made by the main controller
in the context of the whole network. First, I created four virtual switches, I
assigned them ports and I connected them to the controller. After this point,
the whole configuration of the network was done from the controller. This
time, with multiple switches, the centralized control proved to be beneficial for
troubleshooting the network.
A centralized log file with information about all the switches was created by the
controller. When I introduced a sudden failure in the network, by bringing down
BR0, I was able immediately recognize the source of failure on the network, by
getting an alert, and the process of recovering from all the switches as you can
see in figure 8. An example scenario, where this behaviour could be beneficial in
a sensor network, is shown on figure 9, where I deployed a backup LoRa gateway
and I disabled its flows to reduce traffic in the network. An application that
uses the northbound API of the controller can receive the alert message from the
controller when the primary gateway or switch fails, and take action by enabling
the backup gateway flows. As mentioned in Network control experiment, due to
time restrictions, I did not implement the controller handling application, but
I tested this behaviour manually.

11

(a) BR0 is down

(b) Alerts on SDN controller

Figure 8: Up: The new flow, after I introduced a failure in BR0. Down: Logs
from the SDN controller at the moment that i brought down the BR0 switch,
which was the root switch in the configuration.

Lastly, the centralized control gives to the controller enough knowledge of the
network to calculate a spanning tree for the network without the need for run-
ning a spanning tree protocol. After bringing down the switch BR0, from the
topology shown in figure 4, the controller tries the same path for 15 seconds.
When it fails to reconnect from the existing path, it calculates an alternative
path which uses BR1. During this time contact with the sensors in the sensor
network server was lost for 25 seconds. This means that we lost 1 or 2 messages
per sensor, which transmit every 15 seconds. At the same time, I used iPerf3, a
command-line tool used in diagnosing network speed issues, to exchange UDP
traffic between virtual host1 and virtual host2. On average, packets were lost
for 22 seconds, shown in figure 10.

6 Dicussion
In the experiments, I created a vendor-agnostic SDN environment and I tested
different scenarios and functionalities on this network. These experiments showed
that the reduced complexity from the centralized provisioning of the SDN can
improve the control over the sensors. I was able to manage the traffic from indi-
vidual flows, such as LoRa gateways, and set them different priorities and ACLs,
and forward traffic from redundant gateways on demand. A use case would be
a highly congested network where the traffic produced from the gateways where
the critical sensors are connected, such as smoke or fire alarms, have higher

12

(a) Regular function (b) After switch failure

Figure 9: If a failure to a LoRa gateway, or switch occurs, the controller can
enable an alternative flow from our backup gateways

priority over the rest of the network traffic. In addition, the knowledge of the
complete topology from the controller allows for better mitigation in case of an
unexpected hardware failure, as long as redundant communication to the con-
troller is established. Even in a catastrophic scenario, we could still reprogram
the network to forward the critical traffic from an out-of-band communication
channel, until the damage is restored.
The centralized control of the network allowed me to forward or replicate the
traffic to multiple services of the infrastructure. I could redirect the traffic to a
different sensor network server, or load balance the traffic between multiple sen-
sor network servers. The controller uses the northbound API to communicate
with third party applications which can interfere with the network behaviour.
Such functions could be load-balancers, firewalls, or sensor handling applica-
tions. In addition, NFV provides a flexible way to scale services according to
our changing demands. Because the network functions are implemented in soft-
ware, they can be easily moved to various locations in the network without
having to install new equipment, which therefore can reduce the cost of the net-
work and improve its reliability and security. I created an intrusion detection
system in a virtualized host and I redirected the traffic to this host. At the same
time, I examined the logs produced from different components of the network.
Although this functionality is common in every network, the universal knowl-
edge of the network makes it easier to monitor, and less prone to configuration
mistakes. The benefits are more clear in bigger networks with more complex
topology than those examined in this research. On the other hand, cases like
the denial of service attack on OpenFlow[26], show that additional protocols on

13

Figure 10: The results from iPerf3 test. After two seconds, I disconnected the
switch BR0 and the messages got lost for 22 seconds before an alternative path
is chosen.

the network stack, such as OpenFlow in our case, can increase the attack surface
of the network. Additionally, compromise of the SDN controller, can lead to a
complete compromise of the network, as it controls most of its components.

7 Conclussion
To substantiate my understanding, I created scenarios where unexpected fail-
ures happen in the networks, such as the loss of the network controller or a
sudden hardware failure. Additionally I could redirect the traffic to different
sensor network servers, in case of server failure. These scenarios helped me
answer the following question. What benefits can an SDN-based architecture
have as it concerns the redundancy of the system? The centralized control of
the network, in combination with the fully digital nature of the system, makes
handling redundancy and back up much easier. In addition, without the need
for proprietary components, we can reduce the cost of the hardware and create
more redundant and cost-effective solutions. In these scenarios, I used NFV to
implement functionality such as the DHCP and NAT, that would traditionally
be handled from the router. At the same time, I redirected the network traffic to
alternative sensor networks servers, and load balanced the trafic between mul-
tiple instances. I, therefore, was able to answer the following question. What
benefits can an SDN-based architecture have regarding the scalability of the sys-
tem? SDNs combined with NFV allow to scale the infrastructure according to
our needs. In addition, northbound APIs allow the automation of this procedure
from application servers, and as a result, improve the scalability of the system.
Lastly, I created ACLs that block traffic according to the needs of the network
and forwarded the traffic to an IDS. These experiments helped me answer our
third sub-question; What benefits can an SDN-based architecture have as it con-
cerns the security of the system? Although the use of software-defined networks
does not increase the security of the network per se, the universal knowledge of
the network topology in combination with its centralized control, can improve

14

monitoring, and thus, improve our capabilities on detecting possible threats in
the network and mitigate their effect. While this research provides deductive
results, the experiments and background give me an insight into the effects of
software-defined networks in critical infrastructure, which leads me to believe
that they can benefit both the redundancy of the communication as well as its
security.

8 Future Work
Software-defined networks are gaining popularity over the last years and their
market share is constantly increasing. Future research should be aimed to the
development of NFV that will manage sensor networks, giving emphasis in se-
curity and scalability of those networks.
Additionally, it would be beneficial to explore the benefits the P4 language, a
language for programming the data plane of network devices, could have in a
sensor networks, how it would increase the control of those networks, and finally
what would the impact be on the security of the communication.

References

[1] L. Buttyan, D. Gessner, A. Hessler, and P. Langendoerfer, “Application
of wireless sensor networks in critical infrastructure protection: challenges
and design options,” Ieee Wireless Communications, vol. 17, no. 5, pp.
44–49, 2010.

[2] S. B. Qaisar, S. Ali, and E. A. Felemban, “Wireless sensor networks in
next generation communication infrastructure: Vision and challenges,” pp.
790–803, 2014.

[3] A. Leon-Garcia, P. Ashwood-Smith, and Y. Ganjali, “Software Defined
Networks,” Computer Networks, vol. 92, pp. 209–210, 2015.

[4] S. Y. Zhu, S. Scott-Hayward, L. Jacquin, and R. Hill, Eds., Guide to Secu-
rity in SDN and NFV Challenges, Opportunities, and Applications , 1st ed.,
ser. Computer Communications and Networks. Cham: Springer Interna-
tional Publishing, 2017.

[5] P. Goransson, Software defined networks : a comprehensive approach ,
C. Black, Ed. Waltham, [Massachusetts: Elsevier, 2014.

[6] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Sur-
vey,” 2014.

[7] K. P. E. Haleplidis, “ Software-Defined Networking (SDN): Layers and
Architecture Terminology,” vol. 35, 2015.

[8] ETSI, “Network Functions Virtualisation Whitepaper #3,” Computer Net-
works, vol. 20, 2014.

[9] J. Zheng, Wireless sensor networks : a networking perspective , A. Ja-
malipour and J. Zheng, Eds. Piscataway, New Jersey: IEEE, 2009.

15

[10] E. Buchmann, A. Kanzaki, and V. I. Zadorozhny, “International Workshop
on Sensor Networks Technologies for Information Explosion Era (SeNTIE
2010): Preface,” p. xxxvi, 2010.

[11] A. M. Ahmed, A. H. Abdalla, and I. El-Azhary, “Gateway placement ap-
proaches in Wireless Mesh Network: Study survey,” pp. 545–547, 2013.

[12] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless Mesh Soft-
ware Defined Networks (wmSDN),” pp. 89–95, 2013.

[13] S. Salsano, G. Siracusano, A. Detti, C. Pisa, P. L. Ventre, and N. Blefari-
Melazzi, “Controller selection in a Wireless Mesh SDN under network par-
titioning and merging scenarios,” 2014.

[14] “Security of Software Defined Networks: A survey,” Computers
and Security, vol. 53, pp. 79–108, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S016740481500070X

[15] M. Labraoui, M. Boc, and A. Fladenmuller, “Self-configuration mechanisms
for SDN deployment in Wireless Mesh Networks,” in 2017 IEEE 18th In-
ternational Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2017, pp. 1–4.

[16] Z. Zhang, Z. Zhang, R. Wang, Z. Jia, H. Lei, and X. Cai, “ESD-WSN:
An Efficient SDN-Based Wireless Sensor Network Architecture for IoT
Applications,” in Algorithms and Architectures for Parallel Processing,
S. Ibrahim, K.-K. R. Choo, Z. Yan, and W. Pedrycz, Eds. Cham: Springer
International Publishing, 2017, pp. 735–745.

[17] R. Kloti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,” pp.
1–6, 2013.

[18] S. Seeber, G. D. Rodosek, G. Hurel, and R. Badonnel, “Analysis and Eval-
uation of OpenFlow Message Usage for Security Applications,” pp. 84–97,
2016.

[19] E. S. Farrell, “Low-Power Wide Area Network (LPWAN) Overview,”
vol. 43, 2018.

[20] “Openwrt firmware,” https://openwrt.org/, July 2020.

[21] L. Foundation, “Openvswitch,” https://www.openvswitch.org/, June 2020.

[22] “Faucet controller,” https://faucet.nz/, June 2020.

[23] F. foundation, Faucet controller, 2020 (accessed July 2, 2020). [Online].
Available: https://faucet.nz/

[24] J. Markkula and J. Haapola, “LTE and hybrid sensor-LTE network perfor-
mances in smart grid demand response scenarios,” pp. 187–192, 2013.

[25] C. Rocha Vasconcelos, R. C. M. Gomes, A. F. B. F. Costa, and D. Dias C.
Da Silva, “Enabling high-level network programming: A northbound API
for Software-Defined Networks,” pp. 662–667, 2017.

[26] S. Hommes, R. State, and T. Engel, “Implications and detection of DoS
attacks in OpenFlow-based networks,” pp. 537–543, 2014.

16

http://www.sciencedirect.com/science/article/pii/S016740481500070X
http://www.sciencedirect.com/science/article/pii/S016740481500070X
https://openwrt.org/
https://www.openvswitch.org/
https://faucet.nz/
https://faucet.nz/

	Introduction
	Research Question

	Background
	Relevant knowledge
	Related Research

	Methodology
	Experiments
	Network control experiment
	Switch failure experiment

	Results
	Dicussion
	Conclussion
	Future Work

