

R. van der Gaag, D. Weller

Deloitte.

Incorporating Post-Quantum Cryptography in a microservice architecture

Research Project 2

Why think about post-quantum cryptography

- W. Buchanan et. al concluded
 - Gate-based quantum computers pose a significant threat to a-symmetrical encryption (which is used in PKI)
 - Shor's algorithm
 - Likely theoretical \rightarrow practical <10 years

A-symmetric keys are used by:

- (D)TLS
- SSH
- WPA & WPA2
- DNSSec
- IKEv2 (IPSec & VPN)
- S/MIME

Research questions

What are the **implications** of **transitioning** to **post-quantum cryptography** in many-to-one **microservice architectures** where certificates are used for both **encryption** and **mutual authentication**?

Two sub questions:

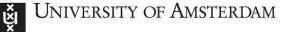
- 1. Suitable algorithms
- 2. Practical feasibility

Related work

National Institute of Standards and Technology (NIST)

- 2nd round with Post Quantum Cryptography (PQC)
 - 17 different Post Quantum Key Exchange Algorithms
 - 9 different Post Quantum Signature Algorithms
- E. Crockett et. al OpenQuantum Safe
 - Forked OpenSSH
 - Forked OpenSSL
 - 8 different Post Quantum Key Exchange Algorithms
 - 3 different Post Quantum Signature Algorithms

Related work (cont)


J. Kreps et. al - detailed insight about inner workings of Kafka

K. Sheykh Esmaili et. al - important aspects of microservices:

- Correctness Delivery guarantees & Ordering guarantees
- Availability Maximize its uptime
- Transactions Group messages into units
- Scalability Evolve with growing amount of tasks
- Efficiency
 - Latency of a packet / message
 - Throughput (number / bytes of packets per time unit)

Background

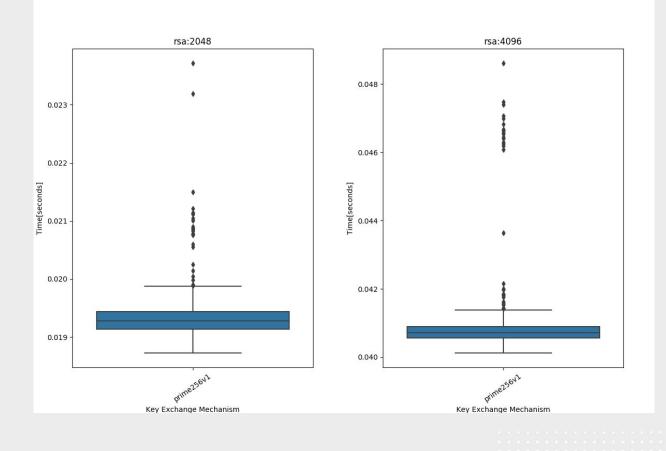
- What is Kafka?
 - Publish / subscribe mechanism
 - Developed by LinkedIn
 - Stands out in bulk messaging
 - Passive and stateless
 - Publisher (delivers data) pushes data
 - Consumer (requests data) pulles data
- What is Post Quantum Cryptography?
 - Classical key exchange relies on factorization (e.g. RSA) or logarithmic (e.g. DH and ECC) mathematical problems
 - PQC relies on other mathematical problems
 - Not yet solvable by quantum computers

Open Quantum Safe OpenSSL fork

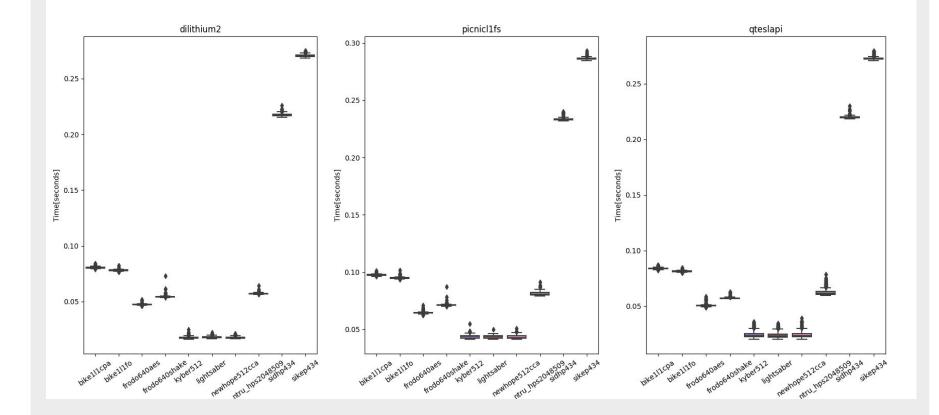
Level	Post Quantum Key Exchange Mechanisms	Post Quantum Digital Signature Algorithms
I	bike1l1cpa, bike1l1fo, frodo640aes, frodo640shake, Kyber512, newhope512cca, ntru_hps2048509, lightsaber, sidhp434, sikep434	dilithium2 picnicl1fs qteslapi
II	Sidhp503, sikep503	dilithium3
III	Bike1l3cpa, bike1l3fo, frodo976aes, frodo976shake, ntru_hps2048677, ntru_hrss701, Saber, Sidhp610, sikep610	dilithium4 qteslapiii
IV	None	None
V	frodo1344aes, frodo1344shake, kyber1024, newhope1024cca, Ntru_hps4096821, Firesaber, Sidhp751, sikep751	None

Open Quantum Safe OpenSSL fork Hybrid Algorithms

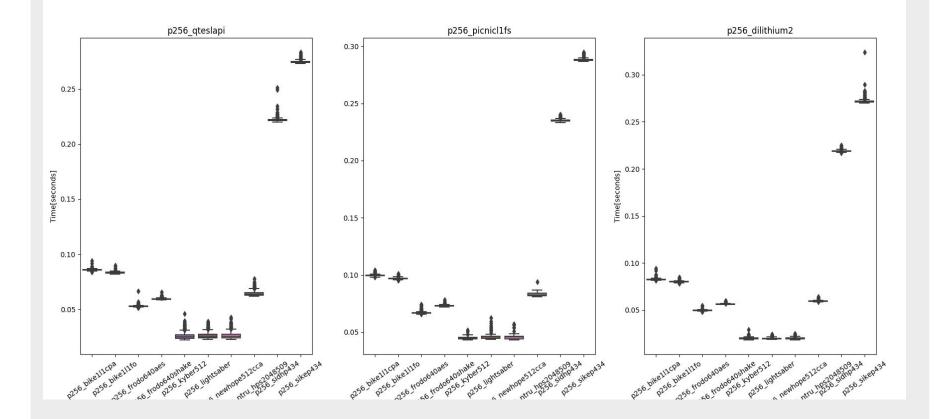
Level	Hybrid Post Quantum Key Exchange Mechanisms	Hybrid Post Quantum Digital Signature Algorithms
I	p256_bike1l1cpa, p256_bike1l1fo, p256_frodo640aes, p256_frodo640shake, p256_kyber512, p256_newhope512cca, p256_ntru_hps2048509, p256_lightsaber, p256_sidhp434, p256_sikep434.	rsa3072_dilithium2, p256_dilithium2, rsa3072_picnicl1fs, p256_picnicl1fs, rsa3072_qteslapi, p256_qteslapi
II	None	None
111	None	p384_dilithium4, p384_qteslapiii
IV	None	None
V	None	None

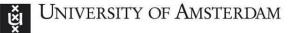


Methodology:

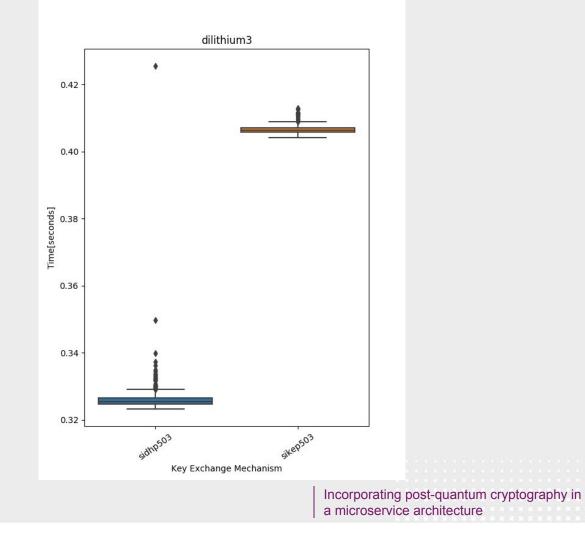

- What are the handshake differences (elapsed time, peak heap memory) between
 - Classical cryptography
 - Post-Quantum Cryptography
 - Hybrid-Post-Quantum Cryptography
- Divide the algorithms per security level (provided by NIST)

Level	Security Description
I	At least as hard to break as AES128 (exhaustive key search)
II	At least as hard to break as SHA256 (collision search)
111	At least as hard to break as AES192 (exhaustive key search)
IV	At least as hard to break as SHA384 (collision search)
V	At least as hard to break as AES256 (exhaustive key search)
	Incorporating poet quantum cryptography in

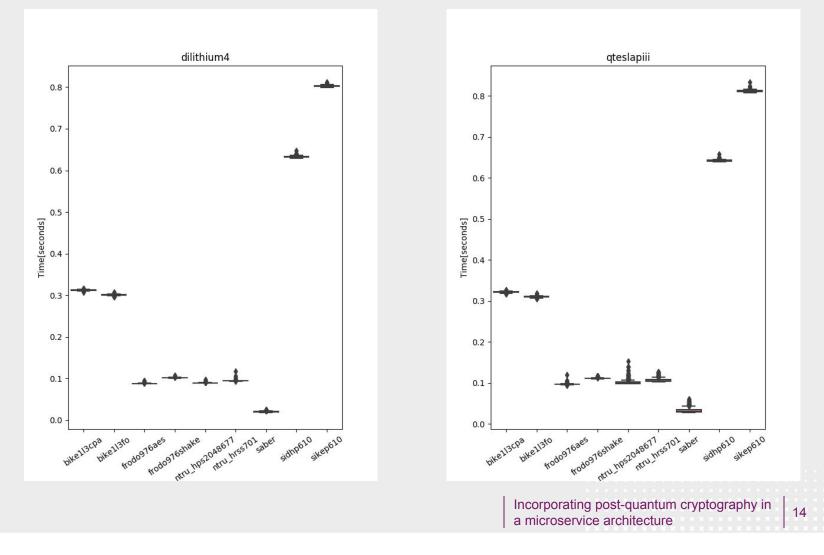

Results Classical Cryptography algorithms



Results Handshake Level 1 - PQC



Results Handshake Level 1 - Hybrid PQC



Results Handshake Level 2 - PQC

Results Handshake Level 3 - PQC

Preliminary conclusions

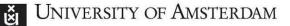
What are the **implications** of **transitioning** to **post-quantum cryptography** in many-to-one **microservice architectures** where certificates are used for both **encryption** and **mutual authentication**?

• Suitable algorithms

- L1
 - Dilithium2 Kyber512 / Lightsaber / NewHope512cca
 - Picnicl1fs Kyber512 / Lightsaber / NewHope512cca
 - qTeslapi Kyber512 / Lightsaber / NewHope512cca
- L2
 - Dilithium3 SiDHp503
- **L3**
 - Dilithium4 Saber / Frodo / NTRU
 - qTeslapiii Saber / Frodo / NTRU

Preliminary conclusions (cont)

What are the **implications** of **transitioning** to **post-quantum cryptography** in many-to-one **microservice architectures** where certificates are used for both **encryption** and **mutual authentication**?


• Practical feasibility

- Kafka relies on Java
 - PQC not yet implemented in Java Security stack
 - Using the OpenSSL fork for Kafka requires additional customization
- Using the OpenSSL fork
 - Using Hybrid for transitioning
 - Handshake time is not that much longer

Discussion

- Algorithms still in development
 - NIST Round 2 still in progress
- We did not test these algorithms in a microserver environment
 - CPU measurements not taken into account
 - Our setup was optimal, we did not test multiple concurrent sessions

Future work

- Experiment with Java Security stack
 - development of general interface for third party libraries
- Experiment with liboqs algorithms in the OpenSSL fork
 - Still in development
 - Not all are available for proper testing