
RP2 research paper
Malicious behavior detection based on CyberArk PAS logs

through string matching and genetic neural networks

July 5, 2020

Supervisors:
Deloitte: Roel Bierens and Bartosz Czaszynski

Ivar Slotboom
MSc Security and Network Engineering

University of Amsterdam
ivar.slotboom@os3.nl

Mike Slotboom
MSc Security and Network Engineering

University of Amsterdam
mike.slotboom@os3.nl

Abstract—CyberArk Privileged Access Security (PAS) is a
Privileged Access Management solution, which makes sure the
right access is being granted for each user, while monitoring
and logging user behavior. The Privileged Threat Analytics
(PTA) component of CyberArk generates security alerts based
on manually defined security configurations. This component
processes logs, but is limited in functionality as it takes samples
of the logs generated during user sessions. The result of this is
that PTA disregards additional logs generated in the PAS system.

To extend the malicious behavior detection capabilities, this
research defined 18 use cases based on a captured data set. A total
of 26 attack techniques were performed in a test environment
which were based on the MITRE ATT&CK Enterprise Matrix.
These use cases are defined as a filter in Splunk by using a
string matching approach to reliably filter out logs resulting from
malicious events. Because this approach is based on known and
manually defined models, it is prone to human error and does
not detect incidents outside of its scope.

In order to solve this issue of reliably detecting malicious
events, machine learning was applied based on genetically train-
ing a neural network using the Genann library. The bag of words
approach was used to convert a single log entry into a series of
frequencies based on each field entry in the log. Two applications
of machine learning have been applied in a Proof of Concept
(PoC): 1: Detector, which separates malicious logs from normal
behavior logs; and 2: Classifier, which matches malicious logs
with an attack type (i.e. use case) that was previously defined.

Experiments were conducted to define optimal parameters
used in the neural network. These parameters are for both the
Detector and Classifier: Four hidden layers, 20 nodes per hidden
layer, a classification threshold of 0.5. In the Detector roughly
99% of the distinguishable malicious logs could be successfully
identified as malicious, resulting in a True Positive Ratio (TPR) of

98.95% and a False Positive Ratio (FPR) of 8.01%. The classifier
was setup differently by matching a single malicious log to a
model, one match (True Positive) resulted in 16 negative results
for the other models (True Negative). This classifier scored with
34.19% TPR and 1.38% FPR, which is still a significant result.

Keywords—CyberArk, malicious behavior, string matching, ma-
chine learning, genetic neural network, bag of words

I. INTRODUCTION

Privileged Access Management is an important topic and
endless discussion in information security of modern IT
environments. Several solutions are on the market to make
sure the right access is being granted for each user, while
monitoring and logging their behavior. CyberArk Privileged
Access Security (PAS) is one of the proprietary solutions.
CyberArk PAS uses a vault to control privileged sessions
and credentials on host systems. A user can use PAS to
find passwords and connect to the correlating systems in the
environment via an intermediate session. This session is fully
recorded in the PAS system for both automatic and manual
review. Privileged Threat Analysis (PTA) is a component that
monitors the use of privileged access in the sessions based
on logs from the vault and generates threat analysis logs
and alerts out of this information[4]. However, this PTA has
limited capabilities of detecting all malicious behavior in the
CyberArk PAS system.

This research applies selected attack techniques on Cyber-
Ark PAS in the test environment and investigates the generated
logs to detect malicious behavior. These logs are used to

1

mailto:ivar.slotboom@os3.nl?subject=RP2 research paper
mailto:mike.slotboom@os3.nl?subject=RP2 research paper

determine what type of attack has been performed (i.e. use
cases).

II. BACKGROUND

A. CyberArk Architecture

In this research, CyberArk PAS solution version 11.4.0000
was used. This solution is built up from six main
components[4]. CyberArk provides a controlled environment,
where (recorded) privileged sessions can be started using the
Password Vault Web Access (PVWA).

1) Password Vault: The Password Vault is the center of
the solution. In this component, the data is stored in separate
software safes (e.g. Linux Accounts, Windows Accounts, SSH
Keys) and user actions are logged.

2) Password Vault Web Access: The PVWA is a web portal
to use the contents of the Password Vault using a browser.
Based on the assigned roles per user, this portal can be used
to log in to start and stop privileged sessions in order to watch
security events and editing security configurations.

3) Central Policy Manager: Op top of the Password Vault,
password management is done via the Central Policy Manager
(CPM) component. In the CPM, policies can be defined and
enforced to generate, change and verify passwords. This CPM
connects to the managed devices to make automatic changes.

4) Privileged Session Manager: The privileged sessions
that a user starts are maintained by the Privileged Session
Manager (PSM). This component can enforce privileged ac-
cess by connecting to the device via an intermediate device.
The user therefore logs in into the session of the PSM and the
PSM starts a session on the device. Within CyberArk PAS,
two PSM variants are available: a default Windows PSM for
graphical Windows sessions and a SSH proxy for connecting
to hosts with SSH.

5) Privileged Threat Analytics: The Privileged Threat Ana-
lytics (PTA) component of CyberArk generates security alerts
depending on the security configuration. PTA makes it possible
to generate an alert based on detected behavior in privileged
sessions and irregularities based on user behavior. For exam-
ple, it is possible to detect Golden Ticket or Pass The Hash
attacks when the additional sensors are in place.

6) PrivateArk Client: In order to administer the Password
Vault, the PrivateArk Client can be used. This is an application
that connects to the Vault and makes it possible for a privileged
user to make changes to the users and vaults as well as viewing
the contents of the vaults inside.

B. MITRE ATT&CK Matrix

The MITRE Corporation has published the MITRE
ATT&CK Enterprise Matrix, which shows techniques and
tactics that are used to attack systems[10]. The attacks are
divided into categories (e.g. Execution, Persistence and Privi-
lege Escalation) and the framework functions as a reference for
defense against attacks. This framework will be used to define
the use cases, where the attacks that could be reproduced will
be performed.

C. Splunk

Splunk is an analytics solution to collect end-point data
and summarize them through visualization and recognizing
behavioral patterns[14]. This can be used with CyberArk PAS
and/or PTA to correlate logs and pool together urgent threats,
potential risks and other forms of threats. This overview
can provide administrators or auditors the right start how to
respond, given that notifications can be setup in Splunk[14].

In this research, use cases were defined from CyberArk PAS
logs to learn from historical events in order to mitigate future
incidents. A use case is defined as a filter that captures the logs
resulting from a suspicious event. Examples of use cases are
queries in Splunk to determine patterns from a chosen attack,
which are listed in Appendix A.

D. Genetic Neural Networks

A neural network works through several layers in order to
produce an output. Its layers and their respective properties
are depicted in Figure 1 and are the following:

• Input values (i.e. Ninputs) that are inserted in the neural
network, in our case every field entry of a log.

• Hidden layers (i.e. Nhidden layers) that allows abstraction
and capturing relationships between the inputs and the
hidden layers, which consist out of nodes.

• Hidden layer nodes (i.e. Nnodes per layer) which all have a
value (that are sampled by an activation function), process
the input and mutate its value to get the best output.

• Output value (i.e. Noutputs) is the result of the neural
network.

Fig. 1. Genetic Neural Network Default Setup

Training neural networks using genetic algorithm for model
optimization is a concept promoting both a brute-force ap-
proach through mutation of the previous network[12]. The
process shown in Figure 2 starts by creating a large pool of
networks and starts assigning random weights to the nodes
during the initialization phase. Every network in this pool is a
slight mutation of one of the best scoring networks from the
previous generation if this generation is available. A mutation
is the change of a weight in the neural network and this can be

2

done randomly or controlled. A change in the weight indicates
a reset of the weight value to a random number between -1.0
and +1.0. The result of this can be minimal or significant,
depending on the impact of the weight on the output. In genetic
neural networks, these mutations are done randomly. After the
initialization process is complete, every network in the pool
gets the same classification challenge and classifies the log
entries according to their newly constructed network model.

Fig. 2. Genetic Neural Network Process (based on [12])

As soon as every network has solved their challenge, a
score is calculated based on how well each network performed
(i.e. ”fitness”). From here on, only a small number of the top
scoring networks (e.g. 16 out of the 512 pool) will be used for
the breeding process of the next generation (which are now
called ”breeders”). This 3% of the pool allows the best scoring
networks to be chosen, but also allow a variety of classification
models to be considered in the next round of the mutation[15].
This fills up the pool with new mutations based on these top
scoring networks and the training process can repeat itself. The
process stops when the solution fits, resulting in the optimum
results.

III. PROBLEM DESCRIPTION

While CyberArk PTA has the ability to identify and detect
malicious behaviour in user sessions, PTA has less capabilities
to identify misuse within the other PAS components such as
the PVWA, which could indicate people circumventing the
CyberArk PAS solution. On top of that, in order to manage
the load of the incoming syslog messages, the PTA samples
the data. This can result in attackers misusing systems without
being able to trace the activities via the CyberArk PAS system.

PTA uses a configuration that has to be assigned manually,
which means that malicious behavior can go unnoticed if the
security engineer does not take such behavior into account.
Furthermore, The output of events generated by CyberArk
PTA do not carry useful information which can be used to

make actionable decisions on incident response. This does not
help in monitoring the malicious events and in correlating the
alerts. As a result of the lack of proper analytical capabilities
and the amount of generated log data, the actions taken can
be insufficient, or be executed with a significant delay.

This research is about detecting future malicious incidents
by filtering out this behavior from the CyberArk PAS logs.
User interaction will be logged to detect malicious behavior,
regardless of intent, based on use cases and to take appro-
priate actions. Automation techniques (e.g. machine learning)
are utilized to detect malicious behavior based on previous
experiences.

IV. RESEARCH QUESTIONS

This research answers a main research question, which is
stated as follows:

How can one recognize malicious behavior based on the
logs from CyberArk PAS in both the present and future?

A. Sub research questions

There are two sub research questions to assist the main
research question. These questions are:

1) Which use cases can be defined for Privileged Access
Management to distinguish malicious behavior?

2) How can future incidents be detected by using previously
researched behavior from the CyberArk PAS logs?

V. RELATED WORK

The related work is mostly based on applicable research in
log data and correlation analysis.

Another research about log correlation has been carried out
by Abad et. al[1] in 2003. While this research is dated, it
determines the approach of anomaly detection in Intrusion
Detection Systems (IDSs) and the actions that need to be
taken to control a possible attack. Two types of approaches are
proposed: top-down from attacks to logs or bottom-up from
logs to attacks. Although this research was not focused on
Privileged Access Management (PAM), the top-down approach
is still relevant to apply in this research project, since this
makes it possible to link logs to a specific predefined attack.
Combining both approaches will give a more complete view
of the actual events happening, but is more time-intensive and
requires additional research because of their unique data sets.

Meera and Geethakumari[9] performed a research in 2016
about event correlation in cloud environments for forensic
purposes. This research was focused on analyzing cloud API
logs, but proposed a method about how to setup a correlation
algorithm to create the right events out of the available API log
information. This research proposed a correlation algorithm
to define correlation criteria to match and filter out events
based on predefined atomic conditions. This approach is useful
for this research project, as the logs have to be parsed and
correlated to identify (a series of) malicious events.

Huizinga[7] investigated in 2019 the use of machine learn-
ing to analyze the network traffic produced during a pene-
tration test. This study used a machine learning model and

3

trained it based on known inputs and outputs using supervised
learning. This technique of knowing the inputs and outputs
could be used to train a neural network to recognize malicious
user behavior in order to predict similar reoccurring behavior
in the future. The inputs can be gathered from the CyberArk
PAS and PTA logs and the outputs can be the level of severity
of the user’s actions caused by their behavior.

In January 2020, Landauer et. al[8] published a survey about
several types of log clustering approaches (e.g. Code analysis
and neural networks) and how they are used to analyze log
data manually or dynamically. This survey is useful when
examining the techniques used to generate insights out of
the CyberArk data. For instance, it is important that logs are
parsable in a machine-readable format, since human-readable
formats could contain repeated messages in different wording,
as well as artifacts such as line numbers. Furthermore, log
files are suited for dynamic clustering which allows for the
allocation of sequences (based on log lines) that could be
identified as patterns. Assuming patterns can be identified as
repeated behavior, one could identify suspicious behavior if
an action does not follow a certain pattern.

VI. METHOD

A. Test setup

The test setup was primarily aimed at identifying malicious
behavior, regardless of intent. In Figure 3 the components of
the test setup are depicted. A CyberArk Proof of Value (PoV)
environment was used to execute attacks on. This environment
was a working cluster with all of the main components of
CyberArk, as mentioned in Paragraph II-A (i.e. Password
Vault, PVWA, CPM, PSM, PTA and PrivateArk Client). Next
to the PoV environment, two servers were used to capture
syslog data from the Vault in the PoV environment using
Splunk and to perform log analytics on this captured data.

Fig. 3. Research Project Test Setup

B. Approach

The approach of this research project is divided into steps,
which are depicted in Figure 4.

Fig. 4. Research Project Approach

1) Attack selection: The attacks in the MITRE ATT&CK
Enterprise Matrix were selected in Appendix A to be per-
formed in the test setup. Additionally, attacks based on
the MITRE ATT&CK Enterprise Matrix were defined and
specifically applied to the CyberArk PAS system (e.g. attack
scenarios based on CyberArk PVWA and Password Vault).

2) Generating logs and analysis: To investigate how mali-
cious behavior is visible in the generated syslog messages, a
top-down approach was used to generate log data in the test
setup, where predefined attack techniques were selected and
performed. In the test setup, the attacks were executed three
times on both Windows (i.e. Windows Server 2016) and Linux
(i.e. Red Hat Enterprise Linux 7) if applicable and on the
CyberArk PAS system (i.e. additional attack techniques). The
syslog messages were formatted and captured in Splunk during
the attacks to make sure that per attack technique the logs can
be stored. The attacks were done multiple times and applying
these techniques resulted in logs that formed footprints of
specific attacks. The logs follow a predefined format using
a key-value pair, which is visible in Table I.

TABLE I
CYBERARK PAS LOG FORMAT

[month , day , t ime , i p a d d r e s s , unknown , t imes tamp ,
host name , fo rmat , p l a t f o r m , a p p l i c a t i o n ,
a p p l i c a t i o n v e r s i o n , e v e n t i d , even t message ,
e v e n t l e v e l , a c t , s o u r c e u s e r , system name ,
dev i ce , s o u r c e h o s t , d e s t i n a t i o n h o s t ,
d e s t i n a t i o n u s e r , s e s s i o n i d , app , r ea son , 15

a d d i t i o n a l a t t r i b u t e s u s e d b a s e d o n e v e n t]

4

Log data is composed of a timestamp and IP Address as well
as which activity has been logged. The activities are grouped
in events and the ”reason” or the message (i.e. ”msg”) are
used to indicate what the event is about. The captured data
was sanitized to homogenize the data and to ease analysis as
some data was improperly formatted. A total unbalanced data
set of 5300 logs was used in this research, which was split in
the three mentioned groups:

• 2272 Normal behavior logs (“N”): Normal behavior
was captured, where commands of Linux and Windows
System Administrators were simulated and recorded to
compare this with the attack captures. This simulation
consisted of commands and GUI actions, but were not
exhaustive as this is limited by the capabilities of the
test setup. Additionally, when the system is running idle
without performing any attacks, the CyberArk PAS solu-
tion generates logs (e.g. verifying and updating policies).
These events were captured for five hours in total.

• 2648 Suspicious logs (“S”): The ”idle normal behavior”
was used in an analysis script to filter out normal be-
havior from the log captures of the attack techniques,
where suspicious logs including malicious logs remain.
By filtering out the malicious logs, the suspicious logs
formed a data set that consisted of logs around when the
attack happened. These logs show similar content as the
malicious logs (e.g. ”date”, ”hostname”, ”source user”),
which makes it hard to differentiate.

• 380 Pure malicious logs (“M”): Logs from the attack
techniques that show definitive malicious behavior.

As can be seen from this data set, the amount of pure
malicious logs is significantly less (i.e. 14.3% compared to
the normal and suspicious logs). This shows the problem that
needs to be solved: finding a malicious log in a bulk of normal
logs, hence the name ”unbalanced” data set.

3) Defining use cases: The malicious logs were analyzed
further to identify which information serves as the best de-
scriptor of an attack. The results of this process have been
written down in Appendix B. When the logs were not showing
the characteristics of an attack or it is not distinguishable from
normal behavior (i.e. open shell), it was not possible to use
the descriptors for this particular attack. After this filtering
was done, search queries were build based on the descriptors
which can be observed in Appendix C.

a) String Matching Malicious Behavior Detection Archi-
tecture: Based on the use cases, a system can be assembled
that matches the use cases and triggers alerts based on the
malicious events. In this research, we introduce a framework
for a model matcher based on string matching. This framework
is illustrated in Figure 5 to match the logs with predefined
models.

The sanitized logs are matched with known strings in the
model matcher, which is being fed with models from the model
manager. The models are a set of predefined use cases based on
queries (e.g. the defined use cases in Appendix C). For each
attack technique, one model is being defined (e.g. a search
query in Splunk configured as a Splunk Alert).

Fig. 5. String Matching Malicious Behavior Detector Framework

When a log matches with a model, the string matcher
generates an ”Alert” event in the graphical user interface (i.e.
monitoring portal), which is used by the IT Security Team
members. Based on this event, actions can be taken, e.g.:
restrict access, investigate further or relate to earlier events.
This process could also be automated to react immediately
upon an event. By storing previous events, this information
can be added to the alert to enrich the data and to detect
patterns based on attributes (e.g. user, application and host).

The event is being forwarded as feedback to the model
manager. The feedback indicates if the model has to be
adjusted and could be logged for events in the future. It is
also possible to define new models in the model manager.
The model matcher as well as the GUI are universal concepts,
where in this research Splunk is used. This means that the
model matcher as well as the GUI can be replaced with any
kind of application or framework, given that they serve the
same purpose.

Note that this approach is static as it only uses defined mod-
els and that it requires manual interaction to function properly.
This means that there should be a security team available full-
time to act on the security event, which could introduce delays,
scalability issues and human error. An automatic approach is
needed to adapt to the rate of the logs and events coming in.

4) Automatic Behavior Detection: Automation can be used
to identify malicious behavior naturally by comparing anoma-
lous behavior with normal behavior. In order to automate the
process of detecting malicious behavior as well as making
it adapt to future malicious incidents, another approach is
needed. In this research, the application of machine learning
to solve this problem is investigated. Genetic neural networks
are trained to alert upon detecting malicious activity.

5

a) Automatic Behavior Detection Architecture: In Figure
6, we introduce a architectural framework to apply machine
learning. First, the neural network needs to be trained (i.e.
Malicious Activity Detection Trainer) with a data set based on
malicious and non-malicious events, which should be updated
periodically. As soon as the trained has finished training, its
best neural network processes incoming log messages directly
(i.e. Live Scanner). This approach of splitting the trainer from
the scanner is chosen, because of scalability and the possibility
to train from future incidents. When the trainer and scanner are
the same, it gets harder for the system to cope with classifying
loads of incoming log messages as well as training from this.

Fig. 6. Dynamic Malicious Behavior Detector Framework

When the sanitized log is found to be malicious, it is
forwarded to the Malicious Action Classifier, which tries to
classify which attack technique is being used from the pre-
defined MITRE attacks techniques listed in Appendix III.
These techniques are based on the defined use cases, which
are trained in a separate neural network (i.e. Malicious Model
Trainer). The classifier is also split from the model trainer
for the same reasons as the Live Scanner: scalability and the
possibility to train from future incidents.

5) Application of genetic neural networks:
a) The Genann library: For this research, the Genan

libraryn[16] has been used to create and train the neural
networks. The benefits of using Genann are as follows:

1) The library is minimal; only two files need to be added

into the project and the code complexity is low, since it
is focused on the core functionality of training a neural
network.

2) The library supports parallelization, meaning that multi-
ple networks could be trained at the same time in order
to decrease the amount of time required to train a pool
of networks.

3) The library is open-source and easily modifiable, mean-
ing that additional functionality could be added in if this
research requires it.

The default activation function from the Genann library is
the Sigmoid function. This activation function requires a vast
amount of clock cycles which causes a long training time. In
order to optimize the calculation process, the Rectified Linear
Units (ReLU) activation function has been implemented. Ac-
cording to our test that was run on the same CPU as that was
used for the training, the ReLU activation function performed
roughly 7.5 times as fast as the general Sigmoid function. The
test can be observed in Appendix D.

The main benefits from the ReLU activation function over
using a Sigmoid are that gradients are less likely to vanish
when values are > 0, which is good for constant learning.
A loss in gradients is an issue in machine learning where
the network model will lose precision during its classification
process. This can make it harder for a model to be trained
where results require a lot of accuracy. Secondly, ReLU is
more sparse when the node has a value of ≤ 0, which is
good for dense representations, providing better classification
results.

b) Neural network inputs: The training of the neural
network was based on the data set that was produced to
define the use cases, including normal behavior and the attack
techniques. Since the amount of fields in a CyberArk log is
the same (i.e. 39), every field can be used as an input for the
network. The field entries can be references back to Table I.

The benefit of the constant amount of input fields is that one
can create a dictionary of known field values. This technique
is also commonly called feature extraction using a ”bag of
words”[6][11]. By building this dictionary (the bag of words),
one can identify the Term Frequency (TF) and the Inverse
Document Frequency (IDF) of how often certain field values
appear in the data set. The Term Frequency entails how often
a word occurs in a document, whereas the Inverse Document
Frequency entails the inverse function of the amount of
documents in which the word occurs. By combining these,
one can specify how common or rare a specific word is. If a
word is common, the TF-IDF (calculated as TF ·IDF) will be
close to 0. If the word is rare or does not exist, the frequency
score will be (close to) 1. This allows the network model to
find anomalies in conjunction with the other network inputs.

This model had to be adapted for our application in three
ways, which were:

1) The previously mentioned documents are now consid-
ered the incoming log entries;

2) Every field value will now have their own dictionary;
and

6

3) A bag of words will now be a bag of phrases, since
fields like ”timestamp” and ”reason” can contain values
that are not words.

This means that when a log entry comes in, every log entry
will be split up into the values of the keys and each values
will calculate their TF-IDF. The values of these TF-IDFs will
then be provided as inputs for the neural network.

c) Neural network training process: To further improve
upon the use of machine learning onto the detection of
either malicious behavior or attack techniques, k-fold cross
validation[2] was implemented. This validation technique is
used as a statistical method to estimate the fitness of a neural
network. This has been implemented by first randomizing the
sanitized logs and then separating it into two sets: 75% training
set and 25% validation set. This approach uses a sliding
window to randomize both the training and validation sets by
making sure each entry is one time available in the validation
set [12]. By doing so, the training technique of a network does
not become biased by validating itself on separate log data.

By applying this 4-fold cross validation approach, the neural
network will be modeling itself in varying conditions, where
there could be different ratios between malicious and normal
behavior. The neural network will start modeling based on the
training set and will measure its performance on the validation
sets. This decreases how biased the training of the model (i.e.
the model performs excellent on the training set, but performs
poorly on new and unseen data) is [3].

d) Neural network outputs - general overview: The out-
puts determine the classification of the input sample: either
the log entry is malicious or it is not. The result is a number
between 0 (i.e. normal behavior) and 1 (malicious behavior),
which indicates the network’s confidence in its conclusion.
Based on the environment, the threshold from where the log
will be marked as malicious can vary. To evenly distribute this
value, the results < 0.5 are marked as normal behavior and
≥ 0.5 are marked as malicious by default in this research.
The conclusion can then be used to determine how well the
network is performing, which is where the fitness scoring
system comes in.

During the validation of the neural network, four indicators
that are based on the predicted and actual outcomes were
defined as follows:

• True Positive (TP): Malicious entry is successfully clas-
sified as malicious

• True Negative (TN): Normal behavior entry is success-
fully classified as not malicious

• False Positive (FP): Normal behavior entry is misclassi-
fied as malicious behavior

• False Negative (FN): Malicious entry is misclassified as
normal behavior

During the training of the network, the networks have
their own indicator counters to determine its performance.
The direct outputs of the training are the four mentioned
indicators and these values are used to calculate how well
it is performing regarding the training set and validation

set. Malicious behavior detection is based on finding some
abnormalities in a bulk of data (i.e. unbalanced data set). For
a classifier is both easy and naive to flag all data as normal
behavior, since that will results in an accuracy of over 90%.
Therefore, it is crucial that a scoring system is used to prevent
the discrimination against this unbalanced data set.

Therefore, additional calculation needs to be done to mea-
sure the correctly estimate performance of the model. The four
indicators are used to calculate the F1 Score[13]. The F1 Score
relies on the Precision and Recall scoring mechanisms that also
rely on the four indicators.

The Precision is measuring how many instances correctly
classified by the model were relevant instances (TPs). [13].
It is calculated by the ratio between the TP (i.e. how many
results were actual TP) and the total of how many results are
marked as positive (i.e. TP and FP):

Precision =
TP

TP + FP

The Recall is another ratio about ratio between correctly
classified instances and all instances which should belong to
malicious class (i.e. TP and FN):

Recall =
TP

TP + FN

By combining the Precision and Recall, the F1 score can
be calculated. This score is a balance between what is pre-
dicted to be TP and what actually is TP [13]. This prevents
discrimination on the quantity of the total malicious and non-
malicious entries, which helps to properly classify them as
either malicious or normal behavior while working with an
unbalanced training set. The F1 score is defined as follows:

F1 score = 2 · Precision ·Recall

Precision+Recall

The neural network needs indicators to train on. The F1
score is used to measure model performance, but this is not
enough to improve on previous results. As the results of an
entry is between 0 and 1, this can also be used to visualize how
accurate the answer was that was given by the neural network.
That is why we introduced an error margin score, which we
called: ”Delta score”. This score indicates how well the neural
network classifies a malicious entry as malicious and does
the same for non-malicious data. To calculate this score, an
algorithm was being followed as described in Algorithm 1.

The Delta score can be summarized as:

Deltascore = 1− TotalErrorDelta

TotalErrorDeltaSamples

When the F1 score is combined with the Delta score, the
performance of the neural network training could be measured.
As the Delta score is being introduced in this research, another
score is introduced to find a balance between the two scores.
This balance score we called the ”Training score’ and is
calculated as follows:

Trainingscore =
F1score+Deltascore

2

7

Algorithm 1: Delta Score Calculation
Result: Delta Score
errorTotal = 0.0;
for trainingEntry in trainingSet do

// trainingEntry.desiredResult is
// either 1.0 or 0.0

if trainingEntry.desiredResult == 0.0 then
errorTotal += output;

else
errorTotal += 1.0 - output;

end
end
deltaScore = 1.0 - (errorTotal / trainingSet.size());

By combining the F1 score with the Delta score, the
Training score is motivated by the gains in both regards. The
Delta score ensures that the confidence in the output is more
accurate, whereas the F1 score ensures that the classification
is correct.

6) Performance Experiments: In order to train the genetic
neural network with maximized performance, the parameters
of the network should be chosen accordingly. To start testing,
different setups were used, where we defined one setup as
reference setup. These test were run on a Dell PowerEdge
R240 Ubuntu 18.04.4 LTS server with an Intel(R) Xeon(R)
E-2124 CPU @ 3.30GHz, 16GB of memory (i.e. 2x Samsung
M391A1K43BB2-CTD) and Samsung SSD 860 hard disk.
This setup gained a correctness value of 90% in 5 minutes.

In Figure 1, this reference setup is shown, where the number
of hidden layers (i.e. Nhidden layers) is 4 and the number of nodes
per layer (i.e. Nnodes per layer) is 20. The input values (i.e. Ninputs)
are based on the rarity of the log message field, which consists
of 39 attributes. The Noutputs is 1, as this is the value given back
by the neural network if the log entry is malicious or not.

We have defined five experiments in Table II to get to the
optimum parameters and to verify the performance of these
experiments on the detector component as well as the classifier
component from Figure 6. Experiment A was only run on the
detector neural network, as the classifier had one data set.

There are more variables that can be adjusted in the setup,
but in order to test, we set fixed variables based on the
default setup. We used 16 iterations for the detector, where
one iteration is a run where every log entry has been once in
the validation set. The number of iterations for the classifier
is set to 1024 as the data set is smaller. In this setup, only
the malicious logs and the total logs per technique are used,
which is a data set of 2272 entries. Per iteration, a network
pool of 512 is initialized, where the top 16 networks mutate
with a maximum of 10 weights. This restricts randomness of
the mutation, but provided a solid learning curve in the default
setup.

In order to make these results visible, a Receiver Operating
Characteristic (ROC) curve has been produced out of these
results [5]. This curve uses the True Positive Ratio (TPR) (i.e.

TABLE II
EXPERIMENTS FOR GENETIC NEURAL NETWORK TRAINING IN TEST SETUP

ID Experiment Title Description
A Using different training

sets (only detector)
During the capturing of the data, the
malicious events (ie. ”M”) were ex-
filtrated from suspicious logs. Using
the remaining part of the suspicious
logs (i.e. ”S”) and classifying this as
normal behavior increases the normal
behavior data set (i.e. ”N”). This ex-
periment was built to compare this
extended data set (i.e. ”N+S” and
”M”) with the original data set (i.e.
”N” and ”M”).

B Using a different number
of hidden layers

The neural network can be made more
complex by adjusting the amount of
hidden layers. In this experiment, the
optimal number of hidden layers was
searched for. The values we used here
are: 1, 2, 4, 8, 12 (detector only) and
16 (classifier only).

C Using a different number
of nodes per hidden layer

The amount of nodes influences the
amount of data can be stored per
hidden layer. This parameter is related
to the amount of hidden layers and is
tested in this experiment. The values
we used here are: 10, 20 and 40

D Using different classifica-
tion thresholds

In the default setup, the classification
threshold is set to 0.5. In this exper-
iment, different thresholds are used:
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0.

E Using optimal parame-
ters from previous experi-
ments to test performance

To verify the optimal parameters, this
experiment combines the best results
of the four experiments.

the Y-axis) and the False Positive Ratio (FPR) (i.e. the X-
axis) to indicate how well the machine learning performs using
the different parameters from the experiments. The most ideal
scenario has a TPR value of 1 and a FPR value of 0 (top-
left corner in the graph), meaning that none of the TPs are
missed when classifying the malicious logs and that all normal
behavior is being classified as such. When calculating the TPR
and FPR per parameter set in the experiments and plotting it as
ROC curve, the used parameters resulting in the most top-left
point in the graph are considered the optimal parameters.

In the graph, a reference line runs linearly from TPR 0 and
FPR 0 to TPR 1 and FPR 1. If the classifier is around this line,
the classifier is not useful as it is characterized by the same
probability of classifying correctly, as classifying incorrectly.
The more the classifier is away from this line, the lower the
chance is that the classification is incorrectly.

7) Source code: The source code of this research has been
published on this GitHub page.

VII. RESULTS

A. Use cases to detect malicious behavior

The attack techniques based on the MITRE ATT&CK En-
terprise Matrix, were performed in the test setup and the syslog
messages were captured in Splunk. The syslog messages were
analyzed and use cases were defined based on the descriptors
of the attack. In Appendix C, the use cases are summed up.

8

https://github.com/f13rce/CyberArk-MaliciousLogAnalyzer/

The use cases were validated using the Splunk queries of a
live CyberArk system at a foreign bank.

B. Malicious behavior detection using genetic neural net-
works

In Appendix E, the results of the experiments from the
detector are shown. To visualize this data, the ROC curve in
Figure 7 is produced. Based on this curve, the default setup
(i.e. dataset ”N and M”, 4 hidden layers, 20 hidden layer nodes
and 0.5 classification threshold) turned out to be the optimal
parameters to use in this neural network (i.e. Experiment E).

Fig. 7. ROC Curve - Machine Learning Detector

C. Malicious behavior classification using genetic neural net-
works

The result of the experiments on the classifier are shown
in the ROC curve in Figure 8. Also in this curve, the default
parameters (i.e. 4 hidden layers, 20 hidden layer nodes and
0.5 classification threshold) were the optimal parameters to
use. The full results of the experiments are written down in
Appendix F.

D. Comparison of the F1 score to the F1 score with the Delta
score

In order to compare the benefit of the use of the Delta score,
which was introduced to improve the confidence of the result
an additional test was run using the optimal parameters. This
test as, shown in Figure 9, validated the underlying effect of
the combination of the F1 score separately from the Delta
score, as well as the F1 score in collaboration with the Delta
score.

VIII. DISCUSSION

A. Finding attack techniques in privileged sessions

Twelve use cases could be identified out of the seventeen
selected techniques as shown in Appendix B. From the nine

Fig. 8. ROC Curve - Machine Learning Classifier

Fig. 9. ROC Curve - Machine Learning with Delta score and F1 score

additional, six techniques were shown in the logs and were
distinguishable from normal behavior.

The remaining five attack techniques did either not generate
syslog information or were not identifiable as malicious. We
found that some syslog messages were not distinguishable
enough in Windows due to the fact that it resembles normal
behavior (i.e. T1) or in a session only the window title is
captured without detailed information regarding the process
name (i.e. T1, T15, T16 and T17). When an executable is run,
this is visible in the logs as a security warning or an application
that starts. In case of T15 (Input Capture), an application was
started, that opened a way to capture all key strokes in the
session, without showing this capture in the logs as it was not
part of the window title.

Using the window title of an application is valuable for
starting applications for e.g. user creation (i.e. T4) or running
commands in Command Prompt (i.e. cmd), where the com-

9

mand is shown in the window title after executing a command
(i.e. T2). However, when opening Windows Powershell, the
command is not shown in the window title, which leads to a
blind spot.

A similar event happens when a script (i.e. startup.bat in T3)
runs. The Command Prompt will start the script, but does not
show the commands in the script on the window title. This is
also the case when running scripts using the Command Prompt
as Administrator in Windows or the command line in Linux.
In the logs was found that a script ran, but that was all that
the CyberArk PAS system triggered.

B. Findings additional attack techniques in CyberArk PAS

In the additional attack techniques, three attack techniques
were not visible in the log. When a client uses the PVWA, web
session cookies could be captured (i.e. A3), without generating
logs. This result was expected as this is done on the client
outside of the CyberArk PAS system.

Disabling the security rules in the PVWA (i.e. A4), no
logs were generated in the system. These rules are used to
take actions in a session and to generate alerts, resulting in
decreasing capabilities of the system as a whole. In order to
manage the changes on the security configuration, the rights
to change this should only be given to a restricted group
administrators and the changes should be visible in the logs
to be able to detect it.

1) Circumventing the CyberArk PAS system: The CyberArk
PAS system only shows in the syslog what is happening inside
the system. When the PSM is being circumvented (i.e. in
A2 when a Remote Desktop connection is started directly,
instead of going to the PSM first), the PAS did not send syslog
messages, which leads to a gap in alerts.

The impact of this depends on how well CyberArk is
implemented in the environment. The ideal situation would be
connecting to RDP through the PSM component of the PAS
system, but this could be altered by an administrator (e.g. in
attack technique A2), allowing a user to connect directly via
RDP. It should be possible to connect to a system directly,
in case e.g. the PSM does not function properly, but this
should be restricted to a single local administrator account.
Monitoring these user accounts are crucial to minimize the
risk of this attack.

Another way of minimizing the risk for attack technique A2
is by expanding the number of different alerts that can be gen-
erated by CyberArk PAS, which lead to a better understanding
of the environment. Due to the current reporting limitations,
these events can still go unnoticed. Within the privileged
session only window titles or keystrokes are possible to record,
which limits the capabilities of in-depth monitoring.

It is still possible to use this limited information, as can
be seen in the use cases of Appendix C, but having more
detailed alerts of the actual event, without relying on what is
going on on the screen, could be a welcome addition. One
way of extending the capabilities of CyberArk is running a
service on the target host, which communicates to the Vault
when e.g. a user is connecting to the server without using the

PSM. This event should then raise some alerts that should be
visible in the syslog messages.

C. Verification of use cases in live environment

During the verification on a live system, there were no re-
sults found from the Splunk queries. This could have different
causes:

• There were no malicious events in the system that match
with the attack technique.

• The Splunk queries were too strictly defined. In order to
mitigate this, we loosened the queries and results were
shown, but these results were not found to be malicious.

• The Splunk queries were based on the test setup in
English and the language on the live system could differ,
resulting in mismatches in events (i.e. Command Prompt
is translated).

When verifying again we found that the log en-
tries were formatted differently, because an older ver-
sion was used on the production environment (i.e. version
11.2.0000 instead of 11.4.0000). Instead of |411|Window
Title|5|act="Window Title", the logs were format-
ted as |411|Window[Title|5|act="Window] includ-
ing text brackets and therefore a query based on ”act” was
not working. When we altered the queries to ”Event ID” (e.g.
411), the queries were generating results. However, the query
could also be triggered if later in the log same ID is used in
e.g. a command, which leads to a false positive in the query
results. Because the ”Event ID” is enclosed between pipes (i.e.
”|”) in the syslog message, these pipes are also included in
the search query (e.g. ”|411|”), which minimizes the chance
of false positive results on the ”Event ID” itself.

The other queries all succeeded in generating valuable
output to investigate further, except for A9 (i.e. Shutting down
Vault). This query ran, but did not show any results. This was
due to the fact that a service (i.e. NotificationEngine) was not
running on the Vault in this environment and the query only
looks at the logs that are generated by this service. In the test
environment, this service was available, so we can assume that
this query works in other environments.

Another attack technique (i.e. T8/Archive Collected Data)
did generate data, but this was not exclusively malicious. We
removed a part of the Windows query (i.e. " % Complete")
that shows a dialog when extracting or compressing informa-
tion, but in this case compressing was only necessary. When
we changed this, the results of the query were adequate.

We found during the verification of the search queries that
they depended on specific parameters (e.g. language, software
version and services) used in the test environment. These
parameters could be different in a real environment (e.g. the
client environment during verification) and therefore should
be adjusted based on what is needed to function properly.
However, the test environment included the standard CyberArk
setup running with all default services on the latest version
possible (i.e. 11.4.0000) and these use cases should therefore
be a well indicator of how it should work when updating
properly.

10

D. Experiment results detector

The TPR and FPR in Figure 7 and Appendix F were
clustered in the top-left corner of the ROC curve, away from
the reference line. This means that this detector is performing
well when classifying malicious logs successfully as well as
minimizing the amount of FPs.

The curve and Table XI also show that when using other
parameters for this neural network, the improvements in the
results were minimal. The biggest difference is using another
data set (i.e. ”N+S”) instead of only using ”N” as normal
behavior. We found that this was caused by the genetic neural
network setup used in this machine learning application. In
a couple of iterations, the classification of the detector had
significantly improved due to the selection of the top 3%,
that it stopped increasing with the same pace. It looked like
it approached the global optimum, where it was difficult to
make drastic improvements and therefore classifying the logs
mostly in a similar way. An example of this behavior is visible
when other amounts of nodes per hidden layer was tested (i.e.
Experiment C). Here, the results were the same, where only
the Delta score varied a bit. This shows that using a genetic
training approach performs well in solving the problem of
handling with an unbalanced data set, without fully depending
on the optimal parameters.

When we looked at using other classification threshold val-
ues (i.e. Experiment D), using a value of 0.8 resulted in similar
results as using 0.5 as threshold. The only difference was that
in 0.8 one TN was classified as malicious (FP). The other
values resulted in worse results. Therefore, a classification
threshold of 0.5 is found to be optimal in this situation.

The detector was able to filter out 376 (i.e. 98.95% TPR)
of the 380 malicious logs when using the N data set without
suspicious logs and 4 hidden layers, 20 nodes per hidden
layer and 0.5 classification threshold. This was the reference
setup, which turned out to be working best for this type of
classification.

The four remaining malicious logs were from the ”Notifi-
cationEngine” (i.e. Shutting down the Vault in A9) that were
hard to determine to be malicious for the neural network. We
found that the logs looked like logs from normal behavior,
where only the time and user are different. Similar events can
go unnoticed where the differences are minimal, resulting in
the fact that the results of the bag of words approach does
not show a significant anomaly. However, what we saw in
other attacks is that there were more differences than only a
user (e.g. ”host”, ”reason” and ”external id”), which made the
work easier for the detector.

The other 376 malicious logs were classified successfully
and from the 2272 normal behavior logs, 182 logs (i.e. 8.01%
FPR) were falsely marked as malicious (i.e. FP). This was
due to the fact that the bag of words approach was applied
and these logs looked like malicious behavior (e.g. editing a
file with a notepad++.exe instance in Windows), while these
logs were part of the normal behavior simulation of a system
administrator. These FPs would appear as alerts between

malicious logs in a portal as discussed in the framework and
cause noise. The amount of FPs are lower than the amount
of actual malicious logs, resulting in a system that is still
able to show malicious behavior without losing focus. Another
advantage of this detector, is that this noise (i.e. amount of
FPs) is still less than the FPs when the use cases were used in
the string matching approach. The use of this detector works
therefore well in this circumstance.

The time needed to train the neural network is an important
factor of the applicability of this solution in a live environment.
When the training takes time, it takes time to be be fully
operational. Therefore, this training time needs to be as short
as possible, while having still a reliable classification. During
the experiments, the training time of the detector was captured.
It took around 25 minutes in the reference setup to reach a
correctness score above 90%, which was still increasing after
this time. This indicates that the time to make this detector
operational is limited. When we took a small setup (i.e. 1 hid-
den layer, 10 hidden layer nodes), the correctness was above
90% after slightly more than 9 minutes, where a complex
setup (i.e. 12 hidden layers, 40 nodes per hidden layer) took
around 3.5 hours. This shows that when the complexity of the
neural network is increasing, the training times also increase
substantially, but that in a couple of minutes decent results
could be reached. Another observation of this is that when the
complexity of a neural network increases, the performance
does not necessarily increase.

E. Experiment results classifier

In comparison to the detector model, it is more difficult for
the classifier to reach a True Positive Rate close to 1 as can
be seen in Figure 8. This is mainly caused by the fact that
every single log entry is not a single yes or no question, but
rather 17 of them at the same time. One TP should result in
16 TNs, which is a different application than the detect or.
Due to this high amount of TNs, the scores where lower than
when the question is boolean. The classifier scored with 331
TPs (i.e. 34.19% TPR) and 637 FNs (i.e. 1.38% FPR) still
significant. Since the sample ratio of the pure malicious logs
per technique is significantly lower than the ratio of normal
logs versus pure malicious logs, it is to be expected that this
result is different than the detector.

The results in Table XII in Appendix D show that the use
of other parameters influence the outcome of the model more
than that was the case in the detector experiments. Using
the parameters of the reference setup gave the best results
overall, where in some experiments the TPR was better than
the reference, but had a worse FPR or vice versa. For example,
in Experiment B, the use of two hidden layers instead of four
gave a higher TPR (i.e. 0.3471 over 0.3419), but resulted in a
worse FPR (i.e. 0.0189 over 0.0138). In the same experiment,
using 16 hidden layers resulted in a better FPR, but gave a
worse TPR than the reference setup. This indicates that when
other parameters are used, the workings of the neural network
change.

11

Using different classification thresholds results in varying
values for the classifier. Using a threshold of 0.1 resulted in a
higher TP value, but due to a higher FPR, this threshold value
is not optimal. A value of 0.7 gave the lowest FPR, but lacked
a good TPR value. In this situation, the 0.5 classification value
that was used in the reference setup gave the optimal results.

When we looked into the logs that were misclassified in
the optimal setup, it turned out that some logs could be linked
to multiple models. If the logs look similar and the classifier
chooses one of the other models to match, this behavior is
inevitable. In order to solve this misclassification, the models
that are used should contain logs that are exclusively linked
to this model or the classifier should be adjusted to show the
multiple models that a log can be linked to with a confidence
score. This way, when an alert is being triggered in the Portal,
it should be clear what is happening or what could happen
based on this log.

The use of the portal is also part of the training phase of
this classifier, as the data set should be periodically updated
with new logs and the portal being used as a way to optimize
the training by editing how the system operates when using a
portal.

F. Influence of using Delta score next to F1 score

When comparing the differences of the results in Figure 9, it
is clear that the Delta score has a positive underlying effect on
the F1 score. Using different classification thresholds results
in a smaller FPR, except for the 0.4 threshold, indicating that
log entries are classified more accurately. The reasoning for
this is that the Delta score can improve in smaller fractions,
indicating the building of momentum of the F1 score. In
other words, as the Delta score improves, the chance of an
improvement of the F1 score is higher, making this Delta score
part of the success of this machine learning application.

IX. CONCLUSION

In this research, the following research question is an-
swered: How can one recognize malicious behavior based on
the logs from CyberArk PAS in both present and future? Two
sub questions are formulated to answer this, regarding defining
use cases based on the CyberArk PAS logs and providing
a method to detect future incidents based on previously
researched behavior.

In order to define use cases, attack techniques from the
MITRE ATT&CK Enterprise Matrix were used create attacks
on the CyberArk PAS Proof of Value (PoV) environment. Sev-
enteen attack techniques were defined for simulating malicious
behavior in privileged sessions via the CyberArk Privileged
Session Manager (PSM) and nine additional techniques were
created to attack the other components of CyberArk PAS.

The attacks were performed and use cases were defined
as search queries based on the output logs of the CyberArk
Vault. Next to these attack techniques, normal behavior was
simulated to create system administrator behavior logs without
malicious events. The logs were sanitized and filtered to
become data sets of normal behavior, malicious behavior and

suspicious behavior (i.e. the captured logs from the attacks
with malicious behavior filtered out).

An architectural framework has been introduced, using
models based on the use cases to perform string matching
on the incoming logs and classifying them as malicious if the
logs match. An alert could be raised and interaction can take
place to act on this by the IT security team of an organization.
This approach works on pre-defined use cases and is therefore
not agile enough to adjust to unknown future incidents.

To be able to adapt to changes in behavior and to prepare
for future unknown incidents, an architectural framework for
malicious log classification was proposed. In this framework,
genetic neural networks are applied, which is a machine
learning technique. The same data sets were used to train the
neural network for normal behavior and malicious behavior
with a bag-of-words approach. To test the performance as well
as the optimal parameters of this application of genetic neural
networks, experiments were defined and performed.

The optimal parameters are the following for both Detector
and Classifier: Four hidden layers, 20 nodes per hidden layers,
a classification threshold of 0.5. In the Detector around 99%
of the distinguishable malicious logs could be successfully
identified as malicious, resulting in a True Positive Ratio
(TPR) of 98.95 % and a False Positive Ration (FPR) of 8.01%.
The classifier was setup differently, where by matching the
malicious log to a model, one match (i.e. TP) resulted in 16
negative results for the other models. This classifier scored
with 34.19% TPR and 1.38% FPR still significantly, where
logs could sometimes be matched to multiple models.

X. FUTURE WORK

Other machine learning techniques can be applied and
compared to improve upon the capabilities of machine learning
upon detecting malicious logs. The use cases are not exhaus-
tive and additional use cases can be defined in future research.

Another topic that remained untouched is how the CyberArk
PAS system can be extended. Due to the limited test setup, it
was not possible to edit the alerting system or define new
alerts. This research depends on the data that was sent and if
this data will be expanded, the application of the solution will
also be more valuable.

Furthermore, additional research could be done regarding
the feed forward system from Figures 6 and 5. Having an
additional loop where the machine learning model could learn
from its previous classification could mean that no more user
interaction is required to train the model to identify normal
behavior. By reducing the requirement of human input, the
training process will be less prone to human error.

Another future point of focus to attempt pattern recognition
based on multiple logs instead of a single log. While our
networks have been trained on behavior (which includes
patterns) of normal behavior, identifying both short and long-
term patterns could provide additional information on how a
malicious action was performed. This could provide security
engineers more detailed information on how to resolve a
security issue whenever a malicious log has been detected.

12

REFERENCES

[1] Cristina Abad, Jed Taylor, Cigdem Sengul, William Yurcik, Yuanyuan
Zhou, and Ken Rowe. Log correlation for intrusion detection: A proof
of concept. In 19th Annual Computer Security Applications Conference,
2003. Proceedings., pages 255–264. IEEE, 2003.

[2] Jason Brownlee. A gentle introduction to k-fold cross-validation.
https://machinelearningmastery.com/k-fold-cross-validation/. Accessed
on June 23rd 2020.

[3] Jason Brownlee. Overfitting and underfitting with machine learn-
ing algorithms. https://machinelearningmastery.com/overfitting-and-
underfitting-with-machine-learning-algorithms/. Accessed on June 23rd
2020.

[4] CyberArk. Privileged access security solution architecture. https:
//docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/
PASIMP/Privileged-Account-Security-Solution-Architecture.htm.
Accessed on May 27th 2020.

[5] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[6] Thiago S Guzella and Walmir M Caminhas. A review of machine
learning approaches to spam filtering. Expert Systems with Applications,
36(7):10206–10222, 2009.

[7] Tiko Huizinga. Using machine learning in network traffic analysis
for penetration testing auditability. https://rp.delaat.net/2018-2019/p39/
report.pdf. Accessed on June 2nd 2020.

[8] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas
Rauber. System log clustering approaches for cyber security applica-
tions: A survey. Computers & Security, 92:101739, 2020.

[9] G Meera and G Geethakumari. Event correlation for log analysis in
the cloud. In 2016 IEEE 6th International Conference on Advanced
Computing (IACC), pages 158–162. IEEE, 2016.

[10] MITRE. Matrix - enterprise — mitre att&ck. https://attack.mitre.org/
beta/matrices/enterprise/. Accessed on June 3rd 2020.

[11] Javaid Nabi. Machine learning — text processing.
https://towardsdatascience.com/machine-learning-text-processing-
1d5a2d638958. Accessed on June 2nd 2020.

[12] RC Rowe and Elizabeth A Colbourn. Neural computing in product
formulation. Chem Educator, 8:1–8, 2003.

[13] Koo Ping Shung. Accuracy, precision, recall or f1? https://
towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9.
Accessed on June 22nd 2020.

[14] Splunk. Security, siem and fraud — security solutions — splunk. https:
//www.splunk.com/en us/cyber-security.html. Accessed on May 27th
2020.

[15] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman,
Kenneth O. Stanley, and Jeff Clune. Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks
for reinforcement learning. CoRR, abs/1712.06567, 2017.

[16] Lewis Van Winkle. Github - codeplea/genann: simple neural network
library in ansi c. https://github.com/codeplea/genann. Accessed on June
22nd 2020.

13

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Privileged-Account-Security-Solution-Architecture.htm
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Privileged-Account-Security-Solution-Architecture.htm
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Privileged-Account-Security-Solution-Architecture.htm
https://rp.delaat.net/2018-2019/p39/report.pdf
https://rp.delaat.net/2018-2019/p39/report.pdf
https://attack.mitre.org/beta/matrices/enterprise/
https://attack.mitre.org/beta/matrices/enterprise/
https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958
https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://www.splunk.com/en_us/cyber-security.html
https://www.splunk.com/en_us/cyber-security.html
https://github.com/codeplea/genann

APPENDIX

A. Selected Attack Techniques

In Table III, the attack techniques are selected based on the MITRE ATT&CK Enterprise Matrix[10]. The techniques have
gotten an identifier (i.e. ID), where the IDs prefixed with ’T’ were selected to be performed. The attacks were executed on
Linux and Windows where applicable.

TABLE III
ATTACK TECHNIQUES FROM MITRE ATT&CK ENTERPRISE MATRIX

Relevant MITRE Categories: Initial Access, Execution, Defense Evasion, Collection, Persistence, Privilege Escalation, Credential Access and Impact.

ID MITRE Technique Title MITRE Category Approach in Proof of Concept
T1 Phishing Initial Access Creating a phishing link and make a user click on it. The target is a website requiring

user credentials.
T2 Command-Line Interface Execution Fill in elevated commands and create a script to perform administrative actions on

a system.
T3 User Execution Execution Create a malicious binary to perform actions when the user clicks on it.
T4 Create Account Persistence Create a local user account, local administrator account and domain account via

CLI.
T5 File and Directory Permissions

Modification
Defense Evasion Change permissions with an administrator on a file and document to be writable

for unprivileged users and change the contents of the file by an unprivileged user,
which has gained access now.

T6 Indicator Removal on Host Defense Evasion Have the user or a script alter log files and remove them altogether.
T7 Modify Registry Defense Evasion Have the user edit a registry key manually or by using a script.
T8 Archive Collected Data Collection Compress (e.g. ZIP or tarball) file(s) to make it ready for copying or uploading.
T9 Data from Local System Collection Use a script and use search function on the system to scan the entire local machine

for ”confidential” files.
T10 Data from Network Shared Drive Collection Use a script and use search function on the system to scan a network attached drive

for ”confidential” files.
T11 Data from Removable Media Collection Use a script and use search function on the system to scan removable media such

as USB sticks for ”confidential” files.
T12 Boot or Logon Initialization Scripts Persistence, Privilege

Escalation
Have a service or application run when the machine boots.

T13 Abuse Elevation Control Mecha-
nism

Privilege Escalation,
Defense Evasion

Edit sudoers file on a Linux system to prevent asking for a password when running
a sudo command.

T14 Impair Defenses Defense Evasion Have the user change firewall rules on a system.
T15 Input Capture Credential Access,

Collection
Using a script to capture keystrokes and mouse movement.

T16 Steal Web Session Cookie Credential Access Using a script to fetch cookies from the browser’s saving location.
T17 Data Encrypted for Impact Impact Writing a script to encrypt files using a shared key, similarly to what ransomware

does.

TABLE IV
ATTACK TECHNIQUES IN CYBERARK PAS AND PVWA

ID Title Approach in Proof of Concept
A1 Suspicious password harvesting in

PVWA
Open devices in PVWA and show passwords of multiple devices in a short time.

A2 Circumventing PSM Open a direct RDP session with Domain Admin credentials, without using the PVWA to circumvent being
recorded and logged.

A3 Capture client session cookies Gather session cookies from Chrome to hijack PVWA session. Based on Steal Web Session Cookie.
A4 Deactivating security configuration

rules
Login into PVWA and disable security configuration rules to remain under the radar when executing malicious
events.

A5 Tempering with stored data in
Vault

Login into PrivateArk Vault, open files, delete recording and edit file. This is based on Indicator Removal on
Host

A6 Suspicious password harvesting in
Vault

Open Vault with PrivateArk Client and then show and copy passwords of multiple devices and multiple vaults
in a short time.

A7 Adding user manually to CyberArk
PVWA

If a PVWA user has rights to add a user and assign privileges, this user can be used to perform privileged
actions through PVWA. This is based on Create Account.

A8 Change user manually in CyberArk
PVWA

If a PVWA user has rights to change and delete a user, this should be visible to detect malicious activities.

A9 Shutting down Vault When the Vault has been shutdown, this can indicate a service outage or a change in the configuration. Both
activities could be marked as potentially malicious.

14

https://attack.mitre.org/beta/tactics/TA0001/
https://attack.mitre.org/beta/tactics/TA0002/
https://attack.mitre.org/beta/tactics/TA0005/
https://attack.mitre.org/beta/tactics/TA0009/
https://attack.mitre.org/beta/tactics/TA0003/
https://attack.mitre.org/beta/tactics/TA0004/
https://attack.mitre.org/beta/tactics/TA0006/
https://attack.mitre.org/beta/tactics/TA0040/
https://attack.mitre.org/beta/techniques/T1566/
https://attack.mitre.org/beta/techniques/T1059/
https://attack.mitre.org/beta/techniques/T1204/
https://attack.mitre.org/beta/techniques/T1136/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1112/
https://attack.mitre.org/beta/techniques/T1560/
https://attack.mitre.org/beta/techniques/T1005/
https://attack.mitre.org/beta/techniques/T1039/
https://attack.mitre.org/beta/techniques/T1025/
https://attack.mitre.org/beta/techniques/T1037/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1562/
https://attack.mitre.org/beta/techniques/T1056/
https://attack.mitre.org/beta/techniques/T1539/
https://attack.mitre.org/beta/techniques/T1486/
https://attack.mitre.org/beta/techniques/T1539/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1136/

B. Recognized malicious behavior from attack techniques

The result of the syslog analysis are included in Table V, Table VI, and Table VII. In these tables the malicious behavior
per technique is written down as well as the descriptor of how the attack is distinguishable in the log. If the attack could not
be properly categorized, the descriptor is marked as ”N/A”.

TABLE V
MALICIOUS BEHAVIOR FROM ATTACK TECHNIQUES

ID MITRE Technique Title Malicious behavior identified Identified descriptor for attack in test setup
T1 Phishing Not visible, as the logs only show

the web browser being started.
N/A

T2 Command-Line Interface Logs on Linux visible for editing,
changing execution rights and run-
ning executable. On Windows only
running commands the command
line ”cmd.exe” was visible, which
could indicate to be a weak de-
scriptor. Using Powershell did not
show any commands in the logs.

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s
[” . sh ”] o r [” chmod ”] o r [” chown ”] o r [” . py ”] o r
[” py thon ”] o r [” . / ” and ” . sh ”] o r [” wget ”] o r [”
c u r l ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” cmd . exe ” and ”Command Prompt −”] o r [” cmd . exe ”
and ”C:\\Windows\\ sys tem32\\cmd . exe ”] o r [”
A d m i n i s t r a t o r : Command Prompt −”] o r [”
A d m i n i s t r a t o r : Window P o w e r s h e l l ”] o r [” . b a t ”] OR

[” . ps1 ”] o r [” . py ”] o r [” py thon ”]

T3 User Execution Only executed on Windows as
command line execution is covered
in Linux in T2 and file execution
was visible

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” . exe ”] o r [” Malware ”] o r [” S e c u r i t y Warning ”]

T4 Create Account Account creation visible on com-
mand line (Linux and Windows)
and GUI on Windows

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”
u s e r a d d ”] o r [” passwd ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” n e t u s e r ” and ” / add ”] o r [” n e t l o c a l g r o u p ” and
” / add ”] o r [”mmc . exe ” and ” P r o p e r t i e s ”] o r [”mmc .
exe ” and ”New O b j e c t ”] o r [”mmc . exe ” and ” S e l e c t
”]

T5 File and Directory Permis-
sions Modification

Attack visible in logs on command
line and GUI Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”

chmod ”] o r [” nano ”] o r [” v i ”] o r [” vim ”]
Windows : ” e v e n t i d ” i s [” 4 1 1] and ” r e a s o n ” c o n t a i n s

[” d l l h o s t . exe ” and ” P r o p e r t i e s ”] o r [” d l l h o s t . exe
” and ” S e l e c t User ”] o r [” d l l h o s t . exe ” and ”
P e r m i s s i o n s ”] o r [” d l l h o s t . exe ” and ” Advanced
S e c u r i t y S e t t i n g s ”]

T6 Indicator Removal on
Host

Attack visible in logs on Linux,
not distinguishable on Windows as
only the title of cmd is shown with-
out command (i.e. del) and only a
pop up is shown when permanently
deleting.

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”
rm ”] o r [” sed ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” D e l e t e ”]

T7 Modify Registry Only possible in Windows and at-
tack is visible. Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s

[” r e g e d i t . exe ”] o r [” R e g i s t r y E d i t o r ”] o r [” cmd .
exe ” and ” r e g ”]

15

https://attack.mitre.org/beta/techniques/T1566/
https://attack.mitre.org/beta/techniques/T1059/
https://attack.mitre.org/beta/techniques/T1204/
https://attack.mitre.org/beta/techniques/T1136/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1112/

TABLE VI
MALICIOUS BEHAVIOR FROM ATTACK TECHNIQUES (CONTINUED)

ID MITRE Technique Title Malicious behavior identified Identified descriptor for attack in test setup
T8 Archive Collected Data Visible in logs on both systems,

but only using the native archiving
wizard in Windows or applications
(e.g. 7Zip).

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”
z i p ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” 7 zG . exe ”] o r [” z i p ”] o r [” Compress ”]

T9 Data from Local System Only visible in logs that a script
was being run and a command was
executed. In Windows, the location
was not visible, which results in an
inaccurate descriptor.

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”
f i n d ” and ” / ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” e x p l o r e r ” and ” Se a r c h R e s u l t s ”]

T10 Data from Network
Shared Drive

Only visible in Windows log that
a script was being run, but not
distinguishable from T9

N/A

T11 Data from Removable
Media

Only visible in Linux log that a
script was being run and a find
command was executed

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”
f i n d ” and [[” / mnt ”] o r [” / mount ”]]

T12 Boot or Logon Initializa-
tion Scripts

Visible in logs of both systems.
However, it is not visible what is
being done exactly (i.e. Only file
and folders mentioned in logs that
could indicate malicious behavior).

Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s
[” / e t c / r c . d / r c . l o c a l ”] o r [” r c . d ”] o r [” r c . l o c a l
”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[” e x p l o r e r . exe ” and ” S t a r t u p ”] o r [” e x p l o r e r ” and

” Se a r c h R e s u l t s ”]

T13 Abuse Elevation Control
Mechanism

Visible in logs on Linux (i.e. Win-
dows out of scope) Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”

v i s u d o ”]

T14 Impair Defenses Visible in logs on both systems, but
limited to native firewalls Linux : ” e v e n t i d ” i s [” 3 6 1 ”] and ” r e a s o n ” c o n t a i n s [”

i p t a b l e s ”] o r [” d i s a b l e f i r e w a l l d ”] o r [” e n a b l e
f i r e w a l l d ”]

Windows : ” e v e n t i d ” i s [” 4 1 1 ”] and ” r e a s o n ” c o n t a i n s
[”mmc . exe ” and ”Windows F i r e w a l l ”] o r [”mmc . exe ”
and ” Rule Wizard ”] o r [”mmc . exe ” and ” F i r e w a l l ”
and ” P r o p e r t i e s ”]

T15 Input Capture Visible in logs on Windows (i.e.
Linux out of scope), but only Se-
curity Warning (i.e. covered in T3)
when running the executable. How-
ever, not distinguishable as attack
because of an inaccurate descriptor.

N/A

T16 Steal Web Session Cookie Visible in logs on Windows (i.e.
Linux out of scope), but only Se-
curity Warning (i.e. covered in T3)
when running the executable. How-
ever, not distinguishable as attack
because of an inaccurate descriptor.

N/A

T17 Data Encrypted for Impact Partly visible in logs on both sys-
tems: only unzipping and Security
Warning (i.e. covered in T3) when
running the executable. However,
not distinguishable as attack be-
cause of an inaccurate descriptor.

N/A

16

https://attack.mitre.org/beta/techniques/T1560/
https://attack.mitre.org/beta/techniques/T1005/
https://attack.mitre.org/beta/techniques/T1039/
https://attack.mitre.org/beta/techniques/T1039/
https://attack.mitre.org/beta/techniques/T1025/
https://attack.mitre.org/beta/techniques/T1025/
https://attack.mitre.org/beta/techniques/T1037/
https://attack.mitre.org/beta/techniques/T1037/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1562/
https://attack.mitre.org/beta/techniques/T1056/
https://attack.mitre.org/beta/techniques/T1539/
https://attack.mitre.org/beta/techniques/T1486/

TABLE VII
RECOGNIZED ATTACK TECHNIQUES IN CYBERARK PAS AND PVWA

ID Title Malicious behavior identified Identified descriptor for attack in test setup
A1 Suspicious password har-

vesting in PVWA
Visible in logs, but counter needed to measure how many
times this alert has been triggered in a certain time frame. ” e v e n t i d ” i s [” 2 9 5 ”] and ”msg”

c o n t a i n s [” Show Password ”] o r
[” Copy Password ”]

A2 Circumventing PSM Not visible in log N/A
A3 Capture client session

cookies
Not visible in log N/A

A4 Deactivating security con-
figuration rules

Not visible in log N/A

A5 Tempering with stored
data in Vault

Visible in logs, but hard to identify as this corresponds with
normal behavior with retrieving and storing files. ”suser” and
”shost” should be considered to make it distinguishable.

[” e v e n t i d ” i s [” 5 0 ”] o r [” 5 1 ”] o r
[” 5 2 ”] and ” cs2 ” c o n t a i n s [”
PSMRecordings ”]] o r [[” e v e n t i d
” i s [” 0 ”] o r [” 1 ”] o r [” 7 3 ”]
o r [” 1 4 2 ”] o r [” 1 4 5 ”] o r
[” 1 4 8 ”] o r [” 1 4 9 ”] o r [” 1 5 4 ”]
o r [” 1 5 5 ”] o r [” 1 7 0 ”] o r
[” 1 8 3 ”] o r [” 1 8 8 ”] o r [” 1 8 9 ”]
o r [” 1 9 8 ”] o r [” 2 7 2 ”]] and ”
s h o s t ” i s n o t ”<PSM IP a d d r e s s
>”

A6 Suspicious password har-
vesting in Vault

Visible in logs, but hard to identify as this corresponds with
normal behavior with retrieving and storing files. ”suser” and
”shost” should be considered to make it distinguishable. A
counter is needed about how many times this alert has been
triggered in a certain time frame and the IP address of the
PSM should be excluded to prevent normal behavior from
being marked as malicious. The field ”msg” should be empty
to prevent messages from A1.

” e v e n t i d ” i s [” 2 9 5 ”] and ”msg” i s
[” ”] and ” s h o s t ” != ”<PSM IP
a d d r e s s >”

A7 Adding user manually to
CyberArk PVWA

Visible in logs, but ”suser” and ”shost” should be considered
to make it distinguishable. ” e v e n t i d ” i s [” 1 8 0 ”] o r [” 2 6 5 ”]

A8 Change user manually in
CyberArk PVWA

Visible in logs, but ”suser” and ”shost” should be considered
to make it distinguishable. ” e v e n t i d ” i s [” 1 8 4 ”]

A9 Shutting down Vault Visible in logs, but only as a LogOff action from user
”NotificationEngine”. ” e v e n t i d ” i s [” 8 ”] and ” s u s e r ” i s

[” N o t i f i c a t i o n E n g i n e ”]

17

C. Splunk queries based on recognized malicious behavior

In Table VIII and Table IX the identified descriptors are converted to queries. These queries could be used in Splunk to filter
the events related to the attack techniques. If the descriptor was ”N/A” in Appendix B, the attack technique is not defined in
the tables. In Table IX users are mentioned (i.e. PasswordManager) in two queries (i.e. A5 and A6), which are standard users
of the PSM in the test setup. If this user deviates in another environment, this query should be adjusted.

TABLE VIII
SPLUNK QUERIES FROM ATTACK TECHNIQUES

ID MITRE Technique Title Splunk query
T2 Command-Line Interface ((act="Keystroke logging" OR "|361|") AND (".sh" OR "chmod" OR "chown" OR

".py" OR "python" OR ("./" AND ".sh") OR "wget" OR "curl")) OR ((act="Window
Title" OR "|411|") AND (("cmd" AND "Command Prompt -") OR ("cmd" AND
"C:\\Windows\\system32\\cmd.exe") OR "Administrator: Command Prompt -" OR
"Administrator: Window Powershell" OR ".bat" OR ".ps1" OR ".py" OR "python"))
NOT VaultMonitor

T3 User Execution (act="Window Title" OR "|411|") AND (".exe" OR "Malware" OR "Security
Warning") NOT VaultMonitor

T4 Create Account ((act="Keystroke logging" OR "|361|") AND ("useradd" OR "passwd")) OR
((act="Window Title" OR "|411|") AND ("net user" AND "/add" OR "net
localgroup" AND "/add" OR "mmc.exe" AND "Properties" OR "mmc.exe" AND "New
Object" OR "mmc.exe" AND "Select")) NOT VaultMonitor

T5 File and Directory Permis-
sions Modification

((act="Keystroke logging" OR "|361|") AND ("chmod" OR "nano" OR "vi"
OR "vim")) OR ((act="Window Title" OR "|411|") AND (("dllhost.exe" AND
"Properties") OR ("dllhost.exe" AND "Select User") OR ("dllhost.exe" AND
"Permissions") OR ("dllhost.exe" AND "Advanced Security Settings"))) NOT
VaultMonitor

T6 Indicator Removal on
Host

((act="Keystroke logging" OR "|361|") AND (("rm ") OR ("sed "))) OR
((act="Window Title" OR "|411|") AND ("Delete")) NOT VaultMonitor

T7 Modify Registry (act="Window Title" OR "|411|") AND (("regedit.exe") OR ("Registry Editor")
OR ("cmd.exe" AND "reg")) NOT VaultMonitor

T8 Archive Collected Data ((act="Keystroke logging" OR "|361|") AND ("zip")) OR ((act="Window Title" OR
"|411|") AND ("7zG.exe") OR ("zip") OR ("Compress")) NOT VaultMonitor

T9 Data from Local System ((act="Keystroke logging" OR "|361|") AND (("find" AND " /"))) OR
((act="Window Title" OR "|411|") AND ("explorer" AND "Search Results")) NOT
VaultMonitor

T11 Data from Removable
Media

(act="Keystroke logging" OR "|361|") AND (("find" AND (" /mnt") OR ("
/mount")))

T12 Boot or Logon Initializa-
tion Scripts

((act="Keystroke logging" OR "|361|") AND (("/etc/rc.d/rc.local") OR ("rc.d")
OR ("rc.local"))) OR ((act="Window Title" OR "|411|") AND (("explorer.exe"
AND "Startup"))) NOT VaultMonitor

T13 Abuse Elevation Control
Mechanism

(act="Keystroke logging" OR "|361|") AND (("visudo")) NOT VaultMonitor

T14 Impair Defenses ((act="Keystroke logging" OR "|361|") AND (("iptables") OR ("disable
firewalld") OR ("enable firewalld"))) OR ((act="Window Title" OR "|411|")
AND (("mmc.exe" AND "Windows Firewall") OR ("mmc.exe" AND "Rule Wizard") OR
("mmc.exe" AND "Firewall" AND "Properties"))) NOT VaultMonitor

TABLE IX
SPLUNK QUERIES FROM ADDITIONAL ATTACK TECHNIQUES

ID MITRE Technique Title Splunk query
A1 Suspicious password har-

vesting in PVWA
(act="Retrieve password" OR "|295|") AND msg=*Password* NOT VaultMonitor|
bucket _time span=30s | stats count by suser,shost | search count>2

A5 Tempering with stored
data in Vault

((act IN ("Store File", "Retrieve File","Delete File") OR "|50|" OR "|51|"
OR "|52|") AND cs2="*PSMRecordings*") OR ((act IN ("Delete File", "Delete
Folder", "Delete Safe", "Delete Location")) OR "|0|" OR "|1|" OR "|73|" OR
"|142|" OR "|145|" OR "|148|" OR "|149|" OR "|154|" OR "|155|" OR "|170|"
OR "|183|" OR "|188|" OR "|189|" OR "|198|" OR "|272|") NOT VaultMonitor AND
suser!=PSMApp_COMP01 AND suser!=PVWAAppUser

A6 Suspicious password har-
vesting in Vault

(act="Retrieve password" OR "|295|") NOT msg="*" NOT VaultMonitor AND
suser!=PSMApp_COMP01 AND suser!=PVWAAppUser | bucket _time span=30s | stats
count by suser,shost | search count>2

A7 Adding user manually to
CyberArk PVWA

(act IN ("Add User", "Add Group Member") OR "|180|" OR "|265|") NOT
VaultMonitor

A8 Change user manually in
CyberArk PVWA

(act="Delete User" OR "|184|") NOT VaultMonitor

A9 Shutting down Vault (act="LogOff" OR "|8|") AND suser="NotificationEngine"

18

https://attack.mitre.org/beta/techniques/T1059/
https://attack.mitre.org/beta/techniques/T1204/
https://attack.mitre.org/beta/techniques/T1136/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1222/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1551/
https://attack.mitre.org/beta/techniques/T1112/
https://attack.mitre.org/beta/techniques/T1560/
https://attack.mitre.org/beta/techniques/T1005/
https://attack.mitre.org/beta/techniques/T1025/
https://attack.mitre.org/beta/techniques/T1025/
https://attack.mitre.org/beta/techniques/T1037/
https://attack.mitre.org/beta/techniques/T1037/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1548/
https://attack.mitre.org/beta/techniques/T1562/

D. Activation function performance test

In Table X a performance comparison between two activation functions (i.e. Sigmoid and ReLU) have been performed. The
two functions were given 10.000 samples to process. The Sigmoid function took around 16 minutes and 10 seconds, whereas
the ReLU function needed less time (i.e. 2 minutes and 9 seconds) to finish.

TABLE X
ACTIVATION FUNCTION PERFORMANCE TEST

1 / / R e q u i r e s C++11 or l a t e r
2 / / N e c e s s a r y i n c l u d e s
3 # i n c l u d e <i o s t r e a m>
4 # i n c l u d e <chrono>
5 # i n c l u d e <c s t d i n t >
6

7 / / A c t i v a t i o n f u n c t i o n s
8 do ub l e s igmoid (do ub l e a)
9 {

10 r e t u r n 1 . 0 / (1 + exp(−a)) ;
11 }
12

13 do ub l e r e l u (do ub l e a)
14 {
15 i f (a < 0) r e t u r n a ∗ 0 . 0 1 ;
16 r e t u r n a ;
17 }
18

19 / / Main
20 i n t main (i n t 3 2 t aArgC , c h a r ∗ apArgV [])
21 {
22 s t a t i c c o n s t e x p r i n t 3 2 t s a m p l e S i z e = 10000 ; / / T o t a l s amples
23 i n t 3 2 t s t a r t S a m p l e = −(s a m p l e S i z e / 2) ; / / S t a r t i n t h e n e g a t i v e , upwards t o p o s i t i v e
24

25 / / T e s t t h e Sigmoid f u n c t i o n
26 a u t o s i g m o i d S t a r t = s t d : : ch rono : : h i g h r e s o l u t i o n c l o c k : : now () ;
27 f o r (i n t 3 2 t i = 0 ; i < s a m p l e S i z e ; ++ i)
28 {
29 s igmoid (s t a r t S a m p l e + i) ;
30 }
31 a u t o s igmoidEnd = s t d : : ch rono : : h i g h r e s o l u t i o n c l o c k : : now () ;
32

33 / / T e s t t h e RelU f u n c t i o n
34 a u t o r e l u S t a r t = s t d : : ch rono : : h i g h r e s o l u t i o n c l o c k : : now () ;
35 f o r (i n t 3 2 t i = 0 ; i < s a m p l e S i z e ; ++ i)
36 {
37 r e l u (s t a r t S a m p l e + i) ;
38 }
39 a u t o r e l u E n d = s t d : : ch rono : : h i g h r e s o l u t i o n c l o c k : : now () ;
40

41 / / P r i n t r e s u l t s
42 s t d : : c o u t << ” Time e l a p s e d (Sigmoid) : ” << s t d : : ch rono : : d u r a t i o n c a s t <s t d : : ch rono : : nanoseconds >(

s igmoidEnd − s i g m o i d S t a r t) . c o u n t () << s t d : : e n d l ;
43 s t d : : c o u t << ” Time e l a p s e d (RelU) : ” << s t d : : ch rono : : d u r a t i o n c a s t <s t d : : ch rono : : nanoseconds >(r e l u E n d −

r e l u S t a r t) . c o u n t () << s t d : : e n d l ;
44

45 r e t u r n 0 ;
46 }
47

48 / / Ou tpu t (f o r m a t t e d) a s nanoseconds :
49 / / Time e l a p s e d (Sigmoid) : 970200
50 / / Time e l a p s e d (RelU) : 129200

19

E. Experiment Results Detector

Table XI provides the results of the detector experiments, based on the last iteration. One iteration consists of a sliding
window of four parts, hence the 25% validation set.

TABLE XI
EXPERIMENT RESULTS FROM VALIDATION SET OF DETECTOR IN TEST SETUP

Reference setup: 2272 Normal Behavior logs (N), 2648 suspicious logs (S), 380 malicious logs (M), 4 hidden layers, 20 nodes per hidden layer, Threshold 0.5
Exp. Hidden

layers
Hidden
layer
nodes

Data
sets

Threshold TP TN FP FN F1
Score

Delta
Score

Training
Score

TPR FPR

A 4 20 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801
A 4 20 N+S, M 0.5 251 4556 364 109 0.513 0.9236 0.7183 0.6972 0.074
B 1 20 N, M 0.5 372 2090 182 8 0.7962 0.9281 0.8621 0.9789 0.0801
B 2 20 N, M 0.5 372 2090 182 8 0.7962 0.9284 0.8623 0.9789 0.0801
B 4 20 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801
B 8 20 N, M 0.5 372 2085 187 8 0.7919 0.9265 0.8592 0.9789 0.0823
B 12 20 N, M 0.5 376 2087 185 4 0.7988 0.9287 0.8638 0.9895 0.0814
C 4 10 N, M 0.5 376 2090 182 4 0.8015 0.9298 0.8657 0.9895 0.0801
C 4 20 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801
C 4 40 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801
D 4 20 N, M 0.0 380 0 2272 0 0.2506 0.9284 0.5895 1.0 1.0
D 4 20 N, M 0.1 372 2085 187 8 0.7919 0.9265 0.8592 0.9789 0.0823
D 4 20 N, M 0.2 372 2085 187 8 0.7919 0.9265 0.8592 0.9789 0.0823
D 4 20 N, M 0.3 319 2092 180 61 0.7259 0.9091 0.8175 0.8395 0.0792
D 4 20 N, M 0.4 372 2071 201 8 0.7803 0.9212 0.8508 0.9789 0.0885
D 4 20 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801
D 4 20 N, M 0.6 369 2090 182 11 0.7924 0.9272 0.8598 0.9711 0.0801
D 4 20 N, M 0.7 369 2090 182 11 0.7924 0.9272 0.8598 0.9711 0.0801
D 4 20 N, M 0.8 376 2089 183 4 0.8009 0.9288 0,8648 0.9895 0.0805
D 4 20 N, M 0.9 372 2085 187 8 0.7919 0.9265 0.8592 0.9789 0.0823
D 4 20 N, M 1.0 372 2090 182 8 0.7962 0.9284 0.8623 0.9789 0.0801
E 4 20 N, M 0.5 376 2090 182 4 0.8015 0.9299 0.8657 0.9895 0.0801

F. Experiment Results Classifier

The results of the classifier experiments are presented in Table XII based on the last iteration. One iteration consists of a
sliding window of four parts (4-fold cross validation), hence the 25% validation set.

TABLE XII
EXPERIMENT RESULTS FROM VALIDATION SET OF CLASSIFIER IN TEST SETUP

Reference setup: 376 entries malicious (training set and validation set), 17 models (techniques), 4 hidden layers, 20 nodes per hidden layer, Threshold 0.5
Exp. Hidden

layers
Hidden layer
nodes

Threshold TP TN FP FN F1
Score

Delta
Score

Training
Score

TPR FPR

B 1 20 0.5 285 15311 177 683 0.3985 0.7287 0.5636 0.2944 0.0114
B 2 20 0.5 336 15196 292 632 0.4211 0.7301 0.5756 0.3471 0.0189
B 4 20 0.5 331 15275 213 637 0.4379 0.7903 0.6141 0.3419 0.0138
B 8 20 0.5 276 15200 288 692 0.3603 0.7051 0.5327 0.2851 0.0186
B 16 20 0.5 258 15321 167 710 0.3704 0.7532 0.5618 0.2665 0.0108
C 4 10 0.5 241 15279 209 727 0.3398 0.7158 0.5278 0.249 0.0135
C 4 20 0.5 331 15275 213 637 0.4379 0.7903 0.6141 0.3419 0.0138
C 4 40 0.5 268 15289 199 700 0.3735 0.7885 0.581 0.2769 0.0128
D 4 20 0.0 968 0 15488 0 0.1111 0.8221 0.4666 1.0 1.0
D 4 20 0.1 348 15037 451 620 0.3939 0.7898 0.5918 0.3595 0.0291
D 4 20 0.2 319 15076 412 649 0.3752 0.7675 0.5713 0.3295 0.0266
D 4 20 0.3 319 15283 205 649 0.4277 0.7978 0.6128 0.3295 0.0132
D 4 20 0.4 291 15223 265 677 0.3816 0.7288 0.5552 0.3006 0.0171
D 4 20 0.5 331 15275 213 637 0.4379 0.7903 0.6141 0.3419 0.0138
D 4 20 0.6 239 15289 199 729 0.3399 0.7171 0.5285 0.2469 0.0128
D 4 20 0.7 228 15327 161 740 0.336 0.7923 0.5641 0.2355 0.0104
D 4 20 0.8 303 15300 188 665 0.4154 0.6816 0.5485 0.313 0.0121
D 4 20 0.9 132 15315 173 836 0.2073 0.7715 0.4894 0.1364 0.0112
D 4 20 1.0 208 15305 183 760 0.306 0.7419 0.5239 0.2149 0.0118
E 4 20 0.5 331 15275 213 637 0.4379 0.7903 0.6141 0.3419 0.0138

20

	Introduction
	Background
	CyberArk Architecture
	Password Vault
	Password Vault Web Access
	Central Policy Manager
	Privileged Session Manager
	Privileged Threat Analytics
	PrivateArk Client

	MITRE ATT&CK Matrix
	Splunk
	Genetic Neural Networks

	Problem Description
	Research questions
	Sub research questions

	Related work
	Method
	Test setup
	Approach
	Attack selection
	Generating logs and analysis
	Defining use cases
	Automatic Behavior Detection
	Application of genetic neural networks
	Performance Experiments
	Source code

	Results
	Use cases to detect malicious behavior
	Malicious behavior detection using genetic neural networks
	Malicious behavior classification using genetic neural networks
	Comparison of the F1 score to the F1 score with the Delta score

	Discussion
	Finding attack techniques in privileged sessions
	Findings additional attack techniques in CyberArk PAS
	Circumventing the CyberArk PAS system

	Verification of use cases in live environment
	Experiment results detector
	Experiment results classifier
	Influence of using Delta score next to F1 score

	Conclusion
	Future work
	References
	Appendix
	Selected Attack Techniques
	Recognized malicious behavior from attack techniques
	Splunk queries based on recognized malicious behavior
	Activation function performance test
	Experiment Results Detector
	Experiment Results Classifier

