
1

Advanced Persistent Threat detection for
Industrial Control Systems

Research Project 2
SNE Master

University of Amsterdam

Steffan Roobol: sroobol@os3.nl
Dominika Rusek: drusek@os3.nl

July 5th, 2020

F

Abstract—In recent years there has been a surge of Advanced Persis-
tent Threat (APT) type of attacks on Industrial Control systems. Many
organizations lack visibility into the ICS network events, preventing
the defenders from taking an appropriate response. In this research,
we design a Proof of Concept (PoC) application for manufacturing
environments, based on the open source IDS Zeek, that analyses the
network traffic and detects potential adversary techniques from the ICS
MITRE ATT&CK framework. This PoC was evaluated using a data set
containing 12 adversary techniques. The evaluation shows that it has a
low ratio of False Negatives (with a True Positive Rate of 0.945), but a
higher rate of False Positives (with a Positive Predictive Value of 0.750).
The Matthews Correlation Coefficient (MCC) for the PoC application
is in a range between 0.7 and 0.8, which indicates a strong positive
relationship between the predicted values of our PoC and the actual
values in the data set. The techniques from the ICS MITRE framework
are mapped to the ICS Killchain to provide perspective where in the
adversary campaign the technique can be placed. Our research shows
that providing such a perspective can help interpreting an analysis of
anomalies in ICS networks.

Keywords - ICS, IDS, Zeek, ICS MITRE ATT&CK, anomaly detec-
tion, threat hunting, ICS Killchain

1 INTRODUCTION

Defending Industrial Control Systems (ICS) against a wide
range of adversaries is becoming a challenge due to in-
creasing interconnectivity with IT systems, which expands
possible attack paths. As Andy Greenberg described in his
book “Sandworm”, in recent years adversary groups like
nation-state attackers are shifting their attention towards
the industrial systems, as these shape the way we live in
modern society [1]. From energy grids, bridges, airports,
and other critical infrastructure to the manufacturing of
goods we use every day, we are surrounded by ICSs.

ICS is a general term that encompasses several types
of industrial systems such as Programmable Logic Con-
trollers (PLC), Distributed Control Systems (DCS), or Su-
pervisory Control and Data Acquisition (SCADA), which
all have strategic significance due to potentially serious

consequences in case of malfunctions. As stated by Green-
berg, we are in a new era of cyber war, where hackers can
cripple other nations by attacking their industrial control
infrastructure and hence impacting the lives of the civilians
[1].

The highest priority of the ICSs is their availability and
the safety of the people, which is a key difference from
IT networks. Before deployment in production, hardware
and software needs to be extensively tested to meet a va-
riety of safety standards, which takes substantial amounts
of time. As a consequence, industrial systems very often
have no built-in or outdated security mechanisms such as
encryption, authentication, or authorisation. Furthermore,
the industrial systems are vastly different from the tradi-
tional IT infrastructure because of different communication
patterns, the use of proprietary protocols and real-time
processing of automation and control systems. Due to a
lack of security controls, gaining visibility into what is
happening on the network and being able to act upon
it, is thus an important defense measure. However, ICS
environments tend to have very limited visibility and log
aggregation capabilities, which would allow the detection
of and control over what is happening on the internal
networks, as researched by Dragos [2]. If monitoring is
in fact in place, very often it is purely an enterprise-
based detection mechanism, which focuses on level three
and above of the Purdue model (explained in detail in
Section 2.2) and is thus not suitable for monitoring the
industrial communications below those levels [3]. There are
various efforts in the industry to improve the status quo,
however, proposed monitoring solutions are either highly
academic and difficult to implement in practice, or they are
commercial solutions with high licence costs.

The lack of visibility leads to a large dwell time, which
in the case of ICS networks can be above ninety days [4].
The dwell time is the time between an adversary gaining
access to the network and when they are detected and the

mailto:sroobol@os3.nl
mailto:drusek@os3.nl


2

access is severed. Usually, the detection happens too late,
and by that time, the physical control systems are already
damaged. Following the cyber security principle of “As-
sume you are compromised”, this research is an attempt to
improve visibility into ICS networks, by creating a Proof of
Concept application (named PoC application in this paper),
which is built on top of open source monitoring solutions
[5]. The goal of the PoC is that it can be easily deployed
in an industrial environment and is highly modular to
accommodate for specific industrial environment use cases.
In doing so, this research enables site engineers to pave
the way towards monitoring and proactive hunting for
sophisticated adversaries within their networks.

This paper is structured as follows: Section 2 presents
research efforts in the area of monitoring, detecting
anomalies and threat hunting in ICS, Section 3 focuses on
describing our research methodology, while Section 4 and
5 present the design and implementation choices of the
PoC. Next, Sections 6 and 7 present the results and discuss
their practical application, followed by the conclusion in
Section 8. Finally, Section 9 suggests future work that could
expand upon our research.

The main research question for this project is defined as
follows:

How can network analysis be used to discover the
potential presence of Advanced Persistent Threats
(APT) in Industrial Control Systems (ICS)?

To support the main research question the following sub-
questions have been defined:

• What are the network-based attack techniques used
by APT groups documented in the ICS MITRE
ATT&CK framework?

• How can existing monitoring solutions be improved
upon to automate the detection of APT techniques
in ICS networks?

• How can the detected techniques be mapped to the
ICS Killchain to recognise the stage of adversary
campaign?

2 RELATED WORK AND BACKGROUND

2.1 Intrusion Detection Systems

Due to the criticality and complex requirements of In-
dustrial Control Systems (ICS), a lot of research is being
done in the area of intrusion detection solutions specific to
those environments. Mitchell and Chen held a survey on
different intrusion detection systems (IDS) for ICS [6]. They
categorised IDSs based on two design dimensions: their
data sources and the implemented detection techniques.
For the data sources, they differentiated between host-
based data and network-based data [6]. For the detection
techniques, they distinguished misuse based techniques, fo-
cusing on detecting signatures of malicious traffic, anomaly
based techniques and comparing a system’s behaviour to
its normal behaviour.

Some widely known open source IDSs are Snort, Suri-
cata and Zeek (formerly known as Bro). Shah et al. eval-
uated the performance of two of them: Snort and Suricata
[7]. Both tools are signature-based and alert only on known
malicious traffic. To overcome the limitation of a signature-
based solution, they developed a machine learning plu-
gin for Snort. Gustavsson used Zeek to extract features
from network captures and analysed them with machine
learning algorithms in order to detect malicious traffic on

IT networks [8]. Drakos implemented a series of policies
in Zeek based on several network intrusion scenarios to
detect Advanced Persistent Threats (APTs) on university
networks [9].

Research has also been done to expand upon existing
IT tools to provide support for ICS protocols. For instance,
Snort has been expanded with generic ICS static signatures
[10]. In addition to this, Zeek has also been customised
by researchers to tailor it to ICS networks. Lin et al. have
created DNP3 protocol parsers and Zeek policies to detect
packets validating the semantics [11]. Udd et al. have taken
another approach to extend Zeek in order to tailor it for
industrial environments [12]. Their approach was to create
automatic whitelisting and anomaly detection for the IEC
60870-5-104 protocol.

2.2 Threat hunting

Threat hunting in ICS has not been researched as ex-
tensively as threat hunting within IT environments. For
instance, the well known and widely used MITRE ATT&CK
Enterprise framework documents tactics and techniques
used by adversaries and it is under constant development
by a range of threat intelligence and security specialists [13].
The ICS version of the framework has been published in
January 2020, after going through a community review [14].
It adds techniques used by adversaries worldwide, based
on the public incident reports detailing attacks against ICS
[15]. It allows to understand and distribute knowledge
about adversary behaviours in industrial systems, which in
turn can help with keeping industrial environments secure
and operational.

For the purpose of this research, we define threat hunt-
ing as the process of proactive and iterative searching
through networks on the lower levels of the Purdue model
(level 0 to 2) to detect potential malicious presence, evading
existing (if any) security solutions [3]. It should be noted
that threat hunting activities require that a human (e.g. an
analyst) interprets the results provided by any software in
use [16].

The Purdue model classifies level 0 as the physical
process levels, which consist of devices such as sensors and
actuators. It classifies level 1 as a basic control level with
devices such as PLCs, which are responsible for process
control in industrial control systems. Level 2 is the area
supervisory control, with devices such as Human Machine
Interfaces (HMIs) that provide an interface to interact and
control the PLCs from level 1.

Attacks on ICSs can be roughly divided into two types:
indirectly targeted (accidental) and deliberate [17]. An ex-
ample of adversary groups carrying out deliberate attacks
are APTs. These are stealthy threat actors, defined by their
long-lasting presence in compromised environments, typi-
cally a nation state sponsored group or groups performing
targeted intrusions for specific goals. APTs often gain initial
access via IT systems, however the enterprise domain is out
of scope for this research.

In order to help defenders with deliberate attackers, the
ICS Killchain framework was created by Michael Assante
and Robert M. Lee [18]. It is based on the original Cyber
Killchain from Lockheed and it assists defenders in visu-
alizing and understanding adversary steps [19]. It consists
of two stages; the goal of Stage 1 is getting access to the
network, collecting information, gaining persistence and
developing capabilities, whereas the goal of Stage 2 is the
execution of targeted attack [18].



3

3 METHODOLOGY

3.1 Network based adversary techniques

The ICS MITRE ATT&CK framework specifies 81 unique
techniques used by adversaries on ICS networks (level 0-
2 of the Purdue model), along with various data sources
that allow for the detection of those techniques [3]. The
techniques represent “how” an adversary achieves its ob-
jective. The framework retains an abstraction level, which is
an attempt to encompass multiple products while provid-
ing a level of technical specificity, making the techniques
applicable for various ICS environments [15].

The focal point of our research was the first eight tactics
from the framework [14]: Initial Access, Execution, Per-
sistence, Evasion, Discovery, Lateral Movement, Collection
and Command & Control. The Inhibit Response Function,
Impair Process Control and Impact were not taken into
consideration, because they list adversary goals and the
impact they make on the industrial systems. In our method,
we wanted to detect an attacker’s presence and enable
the defenders to stop them before they are able to reach
those goals. Furthermore, we focused on the techniques
that can be detected with network-based data sources such
as network captures. Any host-based data sources and/or
attack techniques were therefore out of scope. Table 7 in
Appendix 10 specifies the techniques in scope.

3.2 Manufacturing testbed

We used an ICS testbed created and maintained by the
Industrial Control & Communication Competence Center
(IC4) [20]. The testbed represents a manufacturing envi-
ronment and consists of an office network segment and
three industrial network segments with hydraulic presses,
a furnace for baking tiles, and dosing equipment. The sim-
ulation of ICS operations is performed with scripts carrying
out actions such as read/writes to the PLCs and setting up
connections to equipment on regular intervals.

The testbed contains various industrial devices such as
PLCs, Human Machine Interfaces (HMIs), Input/Output
devices, industrial switches and routers. Four industrial
protocols are in use: Modbus, ProfiNET, Siemens S7comm,
and EtherCAT. A full overview of the devices located in the
manufacturing testbed is located in Table 8 in Appendix 11.

3.2.1 Data collection

We obtained VPN access to the manufacturing testbed in
order to capture the network traffic. To gain visibility in
all network segments (traffic passing through physical and
virtual switches), we simultaneously captured traffic on
two machines and merged it afterwards.

First, network traffic was captured during ninety min-
utes of normal operation. We call this our “baseline”, which
we used to get acquainted with the industrial protocols,
to understand the environment, and to develop and test
our PoC. Then, we performed the second network capture
during which attacks were carried out. In order to prevent
research bias, we did not create our own scripts to attack
the environment. Instead, we used readily available scripts
created by the researchers from Howest University College,
Ghent University, and the IC4 research group [21]. Table
10 in Appendix 12 provides an overview of the attacks
performed.

3.3 Proof of Concept design

We adhered to the following design principles while cre-
ating and evaluating the PoC application to detect adver-

sary techniques on the network. The PoC created for this
research works on network captures, which are inserted
to the application periodically (e.g. every 10 minutes). The
tool has been designed to be modular, allowing for easy
modifications and enhancements and therefore making it
possible to deploy it in other industrial environments as
well.

3.3.1 Data processing

Figure 1 shows the data flow of our PoC and the compo-
nents needed to process the data. The input we used are
network captures, which can be processed by the “Data
Logging Module”, consisting of four main components of
the Zeek platform.

First in the “Data Logging Module” are the protocol
analysers. Zeek supports a set of parsers for commonly
used protocols [22]. These include both Modbus and DNP3,
which are widely used in industrial environments. The
common protocol parsers are loaded by default on a Zeek
instance. In addition to these protocol parsers, we used
Zeek Package Manager to install ICS specific protocol
parsers [23, 24]. Among those were protocol parsers for
Bacnet, CIP, COTP, ENIP, S7comm, and ProfiNET. New pro-
tocol parsers can also be created with the Spicy framework
and added to Zeek [25]. However, this was out of scope for
our research.

Secondly, we extended the existing parsing and logging
functionality of Zeek by creating custom logging logic us-
ing the event-driven scripting language that Zeek provides.
Out of the box, Zeek provides a large number of scripts,
but they do not cover ICS specific use cases [26]. For that
purpose, we wrote our own scripts, covering the scope of
the techniques from the ICS MITRE ATT&CK framework.

Next is the Zeek Logging Framework, which allows
for storing network metadata from packet captures so
that it can be searched, indexed, queried, and reported.
There are three abstractions of the Logging Framework:
Streams, Filters, and Writers. The log stream corresponds
to a single log, e.g. http.log shows HTTP activity. Filters
allow for determining which information gets written out,
while Writers define the output format. Finally, each script
we wrote takes advantage of the Zeek Notice Framework,
which allows for raising notices and/or logging notices
when called in a Zeek event or hook. Those notices are
written to a file called notice.log. We tested our event
scripts on publicly available network captures to ensure
that notices would be raised on the right events [27, 28,
29, 30].

Both the notice.log file and the other .log files were
used as input for the “Anomaly Mapper” seen in 1, for fur-
ther processing. For the implementation of the “Anomaly
Mapper”, we created a web application written in ASP.NET
Core 2.1 using C# 7.1. This PoC application can take the log
files compressed in a .zip archive, and parses each log file to
a collection of data objects. The application then selects all
data objects belonging to the notice.log file, and maps them
to other data objects that occurred at the same timestamp
for the same connection UID. Then, both these data objects
are subjected to a set of pre-defined rules, which are ex-
plained in Section 5. The output is a mapping of the events
that happened on the network to the adversary techniques
from the ICS MITRE ATT&CK framework.

The dotted line on Figure 1 indicates how the applica-
tion should be used when deployed in a production envi-
ronment. It indicates that searching for potential presence
of adversaries on the network is an iterative process and



4

Fig. 1: PoC design used to search for potential adversary techniques on ICS networks.

that after obtaining and analysing the results, new scripts
could be written and the application could be replayed or
even expanded upon. This of course implies a human pres-
ence, which is absolutely necessary for any threat hunting
activity, as the software is only meant as a support system
for the analysts.

3.3.2 Evaluation

Our PoC application was evaluated against the second data
set from the manufacturing testbed containing various ad-
versary techniques. We used a confusion matrix to perform
the evaluation. Two classes - Regular vs Anomaly - were
plotted against the Actual and the Predicted Condition.
This leads to four categories of results: detected malicious
traffic (True Positive), undetected malicious traffic (False
Negative), legitimate traffic that the tool detects as ma-
licious (False Positive), and legitimate traffic for which
no detection is made (True Negative) [7]. As we investi-
gated network traffic, the amount of regular, non-malicious
events can rise very quickly. This means that the amount
of True Negatives was much higher than the other three
values of the confusion matrix, indicating an unbalanced
data set. Predictive values that could be calculated based
on the values from a confusion matrix would therefore
not provide any meaningful insights. That is why we did
not attempt to determine the amount of True Negatives,
and why we did not provide a Negative Predictive Value,
specificity or accuracy of our tool.

We did determine the amount of False Negatives of our
experiment, to show the important network events that
were missed by our PoC application. In addition to this,
we calculated other relevant rates, which provide insights
into the performance of our tool. The Positive Predictive
Value (PPV) indicates the precision of the tool, showing
how often an event is an anomaly, given that it is predicted
as such. The True Positive Rate (TPR) or sensitivity shows
the chance that an anomaly would be picked up by our tool
and marked as an anomaly. Finally, since the actual value of
the True Negatives was not calculated, we determined the
Matthew’s Correlation Coefficient (MCC) for two possible
values of the True Negatives to determine a range of how
well our PoC application performs as a binary classifier.

3.4 ICS Killchain mapping

Discovering potential adversary techniques present on the
network is helpful, but further insight is needed to under-

stand what the technique means, what could be its conse-
quence on the production systems and what kind of other
techniques can be expected on the network. Most of the
time, techniques form a part of an adversary campaign. The
network-based adversary techniques from the ICS MITRE
framework have been mapped to various stages of the ICS
Killchain to provide those insights [18].

4 DATA LOGGING MODULE

The “Data Logging Module” is responsible for flagging
potentially suspicious communication and logging it for
purposes of further investigation. Before explaining the
module, we provide a detailed description of ICS protocols
supported by the PoC application.

4.1 Supported ICS protocols

Our PoC application supports the Modbus and S7 Commu-
nication (S7comm) industrial protocols. The “Data Logging
Module” contains parsers for other ICS protocols as listed
in Section 3.1, which allows for future expansion of the
application, but no custom Zeek scripts were written to
raise notices for these protocols.

4.1.1 Siemens S7 protocol

S7comm is a Siemens proprietary protocol used by the
SIMATIC S7 products, which includes PLC models from
the S7-300/400 line and the newer generation from the S7-
1200/1500 line. The protocol is used for PLC programming,
exchanging data between PLCs, PLC data access by ICS
systems, and diagnostic purposes [31]. There is no official
specification available, however, there have been efforts to
reverse engineer and model the Siemens S7 protocol [32, 33,
34].

There are two protocol versions: the standard one (pro-
tocol ID 0x32) and the new S7comm Plus (protocol ID
0x72) [34]. The new version is used in the S7-1200/1500
family of PLCs. Both versions of S7comm Plus are even less
documented than the standard version of S7comm [34]. The
devices in the manufacturing testbed are from the S7-1200
family and hence use both versions.

There are three types of roles a device can take in
Siemens communication: the client, the server, or a peer
[33]. In the client-server communication model, the HMI
(client) initiates the communication by sending a query,
and the PLC (server) responds by sending a response or by
taking the action e.g. write operation specified in the query.



5

In peer-to-peer communication, the devices can exchange
unsolicited data once the connection is established. S7 com-
munication to and from a specific PLC is highly periodic
[33]. In our network setup, the client-server communication
model is present.

Figure 2 shows the structure of the protocol. S7comm
runs on port 102/TCP, ISO-TPKT is used as a transport
service (specified in RFC 1006 [35]) and ISO 8073 COTP
(specified in RFC 905 [36]) is used as a connection-oriented
transport protocol and contain the device type and ad-
dresses. S7comm is encapsulated in COTP.

Fig. 2: S7comm protocol structure.

Each S7Comm packet consists of a header, a parameter part
specifying which PLC variable should be accessed, and
an optional data part (can be either Read Request, Read
Response, Write Request or Write Response). The header
includes the Protocol ID, ROSCTR (Remote Operating Ser-
vice Control), the parameter length, the data length, the
function code, and the item field.

A list of common S7comm function codes is shown
in Table 1. S7comm also supports the use of user data
subfunctions, which allow to read out PLC CPU values, for
example Read SZL (0x01). SZL stands for System Zone
List, which is a memory area containing the diagnostic data
and system state containing for instance the level of CPU
protection [37]. The codes listed in Table 1 are searched for
and used in the rule set of the PoC application.

Value Function code
0x00 CPU services
0xF0 Setup communication
0x04 Read Variable
0x05 Write Variable
0x1A Request download
0x1B Download block
0x1C Download ended
0x1D Start upload
0x1E Upload
0x1F End upload
0x28 PI-Service
0x28 PLC Control
0x29 PLC Stop

Table 1: Job Request/Ack-Data function codes of S7 proto-
col [38].

4.1.2 Modbus TCP

Modbus is a data communication protocol, used for real-
time distributed control. It is royalty-free and over time has
become a de facto standard protocol for ICS environments
[39]. There are several versions of the Modbus protocol, but
the devices in the manufacturing testbed use Modbus TCP.
It is an application layer protocol using port 502/TCP.

Modbus employs a master-slave communication model.
The master device initiates the transaction (sends queries)
and slaves respond by supplying the information or per-
forming the requested action [39]. Only one device can
be designated as a master (usually the HMI) and the
remaining devices act as slaves (e.g. PLCs). It does not
have long-term session semantics [39]. The protocol uses
separate query-response sequences, however, the connec-
tion between the master and the slave is embedded in

a single TCP connection. Depending on the PLC design,
it can either accept a single TCP connection or allow for
multiple concurrent connections on port 502.

The data model of Modbus is based on four primary
tables:

• Discrete Input, single bit, read-only, data can be
provided by the I/O system

• Coils, single bit, read-write, alterable by an applica-
tion program

• Input Registers, 16-bit, read-only, data can be pro-
vided by the I/O system

• Holding Registers, 16-bit, read-write, alterable by an
application program

A Modbus frame consists of the Application Data Unit
(ADU), which encapsulates the Protocol Data Unit (PDU).
The PDU has two fields: the payload and a function code.
The payload field is limited to 252 bytes and it contains
parameters that are specific to the function code used. The
function code is a one-byte integer in the range of 1 to 127,
but the Modbus standard specifies 19 of them [40]. There
are three types of function codes: public, user-defined, and
reserved. The public function codes are our focus because
they are not implementation-specific. Table 2 shows the
public function codes that can be used to access data.

Function name Function code
Read Discrete Inputs 2
Read Coils 1
Write Single Coils 5
Write Multiple Coils 15
Read Input Registers 4
Read Holding Register 3
Write Single Register 6
Write Multiple Holding Registers 16
Read/Write Multiple Registers 23
Mask Write Register 22
Read FIFO queue 24
Read File record 20
Write File record 21

Table 2: Modbus public function codes used for data access
[40].

4.2 Custom Zeek event scripts

As discussed in Section 3.1, our focus is on the 24 tech-
niques from the ICS MITRE framework that can be detected
on the network level with packet captures and/or network
protocol analysis as data source. For each technique, the ICS
MITRE framework provides a description and a procedure
example as seen in the collected incident response reports.
We took that data as our point of reference when creating a
list of network activities we should monitor for in order to
efficiently design our PoC and spot suspicious behaviour
on the network. The full overview of tactics, techniques,
and what to monitor in order to spot them is shown in
Table 7 in Appendix 10.

We used that information while creating custom Zeek
scripts that allowed us to flag potential techniques ob-
served on the network. As the first step in our process,
they produce a large number of False Positives and they
are later inserted into the “Anomaly Mapper” for further
processing. The mapping between the technique and the
script used to detect it, is shown in Table 12 in Appendix
13. The code base is located in a Github repository [41]. The
correct working of the scripts depends heavily on the Zeek
protocol parser. All of them can be loaded simultaneously
and run on a network capture to produce log files.



6

All the scripts we have written are specifically tailored to
ICS environments and they can be roughly divided into two
categories: ICS protocol related and other scripts. The ICS
protocol related scripts are: modbus_logging.zeek,
s7comm_cotp_logging.zeek and
http_user_agent.zeek. The choice to log the
HTTP user agent might not seem obvious, however, the
PhoenixContact devices use the user agent MicroBrowser
from SpiderControl, which is a web HMI solution.
Phoenix HMI sends HTTP GET/POST requests to the
PLC to read/write to the device using the MicroBrowser
user agent and therefore it is important to register this
communication. To understand the data exchange we also
use http_post_body.zeek, which allows us to capture
the data sent over HTTP POST requests.

We analyzed the baseline traffic of Modbus, S7comm,
and HTTP requests from PhoenixContact devices to under-
stand the communication patterns and we leveraged the
fact that ICS is a static environment by embedding whitelist
rules in the scripts to flag only unknown communication.
As a result, when running the aforementioned scripts on a
network capture, all communication using either Modbus,
S7comm is sent to the notice.log file. Additionally, any
HTTP requests using the MicroBrowser user agent, that
do not originate or go to one of the listed IP addresses
is logged in notice.log as well. Each entry includes
the GMT timestamp, the UID, source and destination IP
address, source and destination port, protocol used, notice
message and action to be taken.

The other scripts do not have whitelists built in. The
arp_spoofing.zeek script logs the ARP traffic and while
doing so, builds an internal ARP cache, which is then
used to determine when MAC/IP associations change.
It intends to evaluate whether a MiTM attack is hap-
pening. The goal of common_ports.zeek is to regis-
ter the use of common ports, as listed in ICS MITRE
ATT&CK as the ones often used by adversaries. The
ftp_portable_executable.zeek attempts to establish
whether there are any executable files sent over the net-
work. This is done by creating hooks for FTP Request,
FTP Reply and for the type of file transferred. Further-
more, we log successful and failed attempts to establish
RDP, SSH, VNC, and Telnet communication. All of these
protocols are used actively in industrial environments and
could be a means to get access to, as well as control
industrial equipment such as a PLC. Moreover, for VNC we
also log the client version, which allows determination of
which version is used. The smb_logging.zeek script logs
SMBv1 and SMBv2 commands sent over the network. As
stated in the ICS MITRE framework, SMB is often used as a
platform to spread malware or perform lateral movements.
The purpose of the tcp_scan_detection.zeek script
is to detect potential network scanning activities, which
could indicate the presence of an adversary. Since ICS
environments are very static and the equipment is fragile, a
site engineer would never issue scanning of the industrial
network.

5 ANOMALY MAPPER

The next step in our PoC is the “Anomaly Mapper”, which
applies a set of rules to the logs extracted with the “Data
Logging Module” to further eliminate False Positives. The
output is a list of techniques, which were spotted in the
network capture. The code base with detailed comments
explaining the thought process can be found on Github [41].

Figure 3 in Appendix 14 contains a flowchart of the steps
taken by the application during its operation.

For the industrial protocols, we created a one-to-many
mapping between the S7comm and Modbus function codes
and the techniques from the ICS MITRE ATT&CK frame-
work. They are shown in Table 13 and Table 14 of Ap-
pendix 15 respectively. Based on the function code seen
in the logs, the program can determine which technique
is used. S7comm functions correspond to eight various
techniques from the framework, whereas the Modbus func-
tion codes map to two. The CPU services and Setup
Communication functions from the S7comm protocol are
not mapped to any of the techniques. This is due to the lack
of publicly available information about the exact working
of the CPU services command. Additionally, there are
other subfunctions such as Read SZL, which are used to
read out the CPU values. Setup Communication only
indicates the start of the communication between two hosts
and hence does not correspond to any of the techniques.

The HTTP POST parameters used by the Phoenix-
Contact devices to communicate via MicroBrowser are
not publicly disclosed. The request that we observed
in the baseline traffic of the manufacturing environment
is uri:/cgi-bin/ILRReadValues.exe, which retrieves
the model and the function of the device, as well as the
process parameters. We have thus mapped those requests
to the “Role identification” and “Point & tag identification”
techniques.

For filtering out False Positives in RDP, VNC, SSH, and
Telnet communication, we have applied two rules: out-
of-working hours and failure/success ratio of the login
attempts. The first one specifies that all the traffic using the
aforementioned protocols should be flagged if it happens
outside of 7-19 business working hours. The failure/success
ratio is set to flag if at least 3 failed attempts are seen before
a successful login. The flagged events are mapped to the
Command-Line Interface technique.

For FTP traffic, we log connections containing default
credentials and/or executable files. These are mapped to
the Default credentials technique and three others: System
firmware, Module firmware, and Remote file copy. We also
flag any other executable files shared on the network. In
addition to this, the use of common ports is filtered by a
rule triggering on a mismatch in protocols, e.g. if HTTP
traffic is sent over a different port than 80 or 8080. Creating
correct rules for the SMB protocol is a field of research on
its own, but as specified in the ICS MITRE we only look at
the Remote file copy [42]. The SMB connection is flagged if
we see the following write options: File Write, Pipe Write,
and Print Write [43].

The rule for the DNS tunneling is based on the SANS
research conducted by Farnham and Atlasis [44]. If the
length of the query is larger than 52, the Shannon entropy
is higher than 4.0 and we spot at least 16 queries within
30 seconds, then we mark the communication as DNS
tunneling,which is classified by the ICS MITRE framework
under the “Connection Proxy” technique. Lastly, all ARP
spoofing attempts flagged by the corresponding Zeek event
script are marked by the application as a MiTM adversary
technique.

The output from the “Anomaly Mapper” is a reduced
list of adversary techniques on the network. They include
the technique used, the tactic, the timestamp and the source
and destination IP address (for network scanning only the
source IP address). Some events correspond to more than



7

one technique, which means that for the same event we
have several entries with the same timestamp. These were
put in a group of techniques and considered as one entry.

6 RESULTS

6.1 PoC detection performance

To verify the detection performance of our PoC, we eval-
uated it against the data sets from the manufacturing
environment. When simulating the adversary techniques,
the launch of WannaCry did not result in the generation of
any network traffic.

When evaluating the PoC against the data set containing
the attacks, we obtained 160 distinct alerts about techniques
used. Those techniques covered 10 out of 12 adversary
techniques that were used on the manufacturing testbed.
The PoC did not detect the start/stop PLC attempt nor the
WannaCry attack. To assess the detection performance of
our PoC, we created a confusion matrix, as shown in Table
3.

Actual
Total population Anomaly Regular

Predicted Anomaly 120 40
Regular 7 N/A

Table 3: Confusion matrix detailing the anomalies predicted
by our PoC and the actual anomalies.

The matrix shows that the PoC produced a total amount
of 160 alerts (adversary techniques). From this number, 120
were correctly detected as an anomaly (adversary technique
used on the network). These are our True Positives. There
were 40 False Positives in our output and 7 packets were
not detected by the tool (False Negative). Based on the val-
ues from the confusion matrix, we calculated the Positive
Predictive Value and True Positive Rate shown in Table 4.
The PPV has a value of 0.750, whereas the TPR is 0.945. Due
to the fact that our dataset is unbalanced and due to the
effort required to calculate the amount of True Negatives,
we determined the range of the MCC value. The MCC
value was first calculated by assuming the amount of True
Negatives is equal to the amount of True Positives, which
would result in an MCC of 0.695; secondly when assuming
the amount of True Negatives is equal to the amount of
packets in the network capture (2,841,495), which would
result in an MCC of 0.842.

Rates Value
Positive Predictive Value (PPV) 0.750
True Positive Rate (TPR) 0.945
Matthews Correlation Coefficient (MCC) 0.695 ≤ MCC ≤ 0.842

Table 4: The values of the selected rates calculated from the
confusion matrix.

6.2 Mapping techniques to ICS Killchain

This section provides an analysis on how the network-
based techniques from ICS Mitre correspond to the ICS
Killchain as explained in Section 2. Table 15 in Appendix
16 provides the full overview.

The Exploit of the public facing applications technique
belongs to Stage 1: Cyber Intrusion Phase (Delivery), which
has the goal of obtaining initial access to the internal
network. Once on the network, an adversary attempts to
establish command and control capabilities which belong
to Stage 1: Management & Enablement (C2). The following

three techniques can be mapped to this phase: Standard
application layer protocol, Commonly used ports and Con-
nection proxy.

Stage 1: Sustainment, entrenchment, development & ex-
ecution (Act) encompasses a variety of techniques with the
goal of collecting information, gaining persistence and per-
forming lateral movements. These are: Control device iden-
tification, Network service scanning, Detecting operating
mode, Detecting operating state, Point & tag identification,
Role identification, Program upload, Default credentials,
Remote file copy, Module & System firmware and MiTM.

In Stage 2 of the ICS Killchain, the attacker uses the
knowledge obtained in Stage 1 to launch a targeted at-
tack. Command line interface, Execution through API and
Program download techniques are part of the Stage 2: ICS
Attack (Deliver and Install/Modify) phase.

The techniques from ICS Mitre that correspond to Stage
2: Execute ICS Attack are Rogue Master Device, Spoof
reporting messages, Utilize/change operating mode and
Changing the program state. They all could result in actual
damage to the industrial equipment.

7 DISCUSSION

7.1 Analysis of the results

The number of techniques logged in our PoC application’s
output is 160 and is therefore higher than the amount
of techniques we performed. This is because carrying out
an adversary technique generates multiple packets on the
network, which get logged as separate entries in the output.

Our results show that the TPR of our PoC application is
0.945, having only seven False Negatives out of 127 actual
anomalies. This indicates that the application performs well
at marking actual anomalies as anomalies, and misses only
a small fraction of the adversary techniques we simulated
on the network. Furthermore, the results show a PPV of
0.750, which indicates that the 25 percent of the events
marked as anomalies by our PoC are not actually anoma-
lies. This shows that the PoC application can still benefit
with further tuning to reduce the amount of False Positives,
as such an amount creates extra work for human analysts.

The two possible values calculated for the MCC were
0.695, assuming the amount of True Negatives was equal
to the amount of True Positives, and 0.842 when assuming
the amount of True Negatives was equal to the amount
of packets in the network capture. Given that the amount
of anomalous events in the network capture is very low
compared to the amount of packets, it is unlikely that the
amount of non-anomalous events is equal to the amount of
anomalous events, as this would constitute a total of about
300 events in about 3 million packets. It is therefore more
likely that the true value of the MCC is higher than the
lower bound of the calculated range. This would mean that
the MCC for our PoC application is at least higher than
0.7, which indicates a strong positive relationship between
the predicted values of our PoC and the actual values in
the data set. The calculated values of the TPR and MCC
show that our PoC application is a good starting point as a
binary classifier to detect anomalous network events in our
manufacturing testbed, but the amount of False Positives
should be lowered.

Out of the 160 detected techniques, 120 were marked
as techniques we carried out and 40 were falsely catego-
rized as attacker techniques. These False Positives can be
explained as follows. First of all, on the network we used
for capturing our packets, a script was running that created



8

an SSH connection every minute. For SSH connections, we
created the rule that any connection set up outside of office
hours (Monday - Friday, 7AM - 7PM) would be marked as
a technique. As the script was running while we performed
our attacks, the application detected those SSH connections
as well. This resulted in 25 of the False Positives.

Furthermore, 14 False Positives were caused by the ARP
spoofing detection script we used for Zeek. The script
keeps track of ARP requests and replies that have been
sent in the packet capture and marks any unsolicited ARP
replies sent over the network as anomalous. The amount
of truly anomalous ARP replies was six, so this approach
warrants further tuning. Additionally, one False Positive
was generated by the use of HTTPS over port 80. Our PoC
marks any mismatch of protocols over a commonly used
port as anomalous, and while the use of HTTPS over port
80 is unconventional, it does not match with any of the
attacks we performed on the network.

The stop/start CPU PLC command was not detected by
our PoC, even though the commands for altering the PLC
outputs and memory were detected. These three attacks
were issued using the same script created by the researchers
from the IC4 research group against the Siemens S7-1200
PLC [21]. This family of Siemens PLCs supports both
the standard and new S7comm protocol version. After
in-depth analysis of the attack script, we noticed that in
order to modify the program state, a function code Write
variable is used. This function code is sent as part of the
S7comm PDU, which in turn is encapsulated in a COTP
packet. The stop/start CPU command, on the other hand,
is issued using the new S7comm protocol version. Nei-
ther Wireshark nor the Zeek S7comm and COTP protocol
parsers are able to parse the newer S7comm protocol. As a
consequence, our application is also not able to extract the
function codes and map it to any corresponding ICS MITRE
ATT&CK techniques. This is an excellent example of how
complex ICS protocols can be and that the protocol support
of our PoC should be enhanced in the future.

Secondly, our PoC could not detect the WannaCry attack
we carried out. When performing the attack, the malware
did not generate any of the network packets that are ex-
pected to be seen with WannaCry. Therefore, both the Zeek
parsers and the “Anomaly Mapper” could not pick up any
events, because there were none to be seen.

When mapping the events that the PoC detected in
the network captures to the ICS MITRE framework, we
noticed that the Collection tactic appeared more frequently
than the other ICS MITRE tactics. This can be explained
by the scripts we used to simulate the attacks. Before
making changes to a PLC, such as altering the program
state, the scripts perform a read on the PLC to collect I/O
values. We furthermore found that basing mapping rules
on specific ICS protocol commands makes distinguishing
between attacking techniques and adversary goals fairly
easy, which provides extra insight based on the protocol
command used. Also, as the ICS MITRE techniques are
not sequential, the mapping to the ICS Killchain helps
with the determination at what stage an attacker is in their
campaign.

7.2 Limitations

Our research methodology is based on the techniques speci-
fied by the ICS MITRE ATT&CK framework. It is important
to point out that those techniques are in turn based on doc-
umented public incident response reports detailing attacks
against industrial systems. The framework does not contain

data from incidents that either have not been discovered
(due to lack of monitoring and/or security controls), or
if discovered have never been publicly disclosed. For in-
stance, the energy sector is more mature in terms of security
controls, which also leads to incidents being detected faster
than in other industrial sectors. This introduces a bias in
the framework and thus in our approach because we only
search for known techniques.

It is also important to reflect on the possibility that
there could be two or more different attackers in the in-
dustrial environment at the same time. The approach we
took allows to determine techniques being used on the
environment and can attribute them to the tactics from the
ICS MITRE framework, but we do not decide whether the
techniques are part of one adversary campaign or more.
This would require more advanced means of analyzing the
network, e.g. the use of forensics, host-based event analysis,
or even malware reverse engineering. One of the challenges
of our research was obtaining the right data set. Because
the data sets from actual ICS adversary campaigns are not
publicly available, we had to simulate the techniques in
a controlled environment. One of the drawbacks of this
approach is the timing of the attacks performed. APT
campaigns could span over days or even months, during
which various techniques are performed. Since the attack
simulation was performed in a shorter time span, the time
between the techniques could not be taken into consider-
ation while developing the detection rules. On the other
hand, even though an APT could spend months preparing
and gathering the information, certain actions like the PLC
code download will be a one-time event.

Our PoC was built to discover 24 techniques from
the ICS MITRE ATT&CK framework. In our simulation,
however, we were able to cover only a subset of those. Our
intention was to cover at least one technique from each
tactic except the initial access, as this often happens via the
IT segment. The attacks we performed are just examples of
the type of attacks that could happen on the network and
be classified in a certain category of techniques.

We should also reflect upon the vast landscape of ICS
protocols and its variations. There are three steps required
to support a new protocol in our PoC. First is writing the
Zeek protocol parser, then creating a Zeek event script
to flag certain events, and lastly inserting the logic into
the “Anomaly Mapper” to filter out False Positives. For
Modbus and S7comm we have accomplished all of those
steps. For ProfiNET we have completed the first two steps.
It should be noted that even if a protocol parser is available,
that does not mean that it is able to parse the specific
variation of the protocol present in the environment, as we
could see with the S7comm Plus.

Despite the fact that we attempted to make the PoC as
adaptive to various manufacturing environments as possi-
ble, there are certain things that need to be taken into con-
sideration before deploying it in production. One of them
is establishing a baseline of static, allowed communication
between HMIs and PLCs. Another aspect is verifying which
protocols are in use in the environment. The same applies
to the configuration of the working hours, which could
differ from the manufacturing testbed. This could require
additional time spent on understanding the environment
and adjusting the application.

8 CONCLUSION

In order to answer our main research question, we first
need to elaborate on the sub-questions. The first one is



9

focused on the attack techniques used by the APT groups.
In our research we took the ICS MITRE ATT&CK frame-
work as the reference and selected the techniques that can
be discovered by means of network captures or network
protocol analysis. Based on the recommendations from
the literature, we have also focused on discovering those
techniques that allow detection of an attacker’s presence
before they are able to reach the stage where damage can
be inflicted on the industrial systems.

The second sub-question was about finding and im-
proving existing monitoring solutions to accommodate for
the detection of the APT techniques. Based on the results
from the literature review, we have decided to use the Zeek
platform, which allows for customization due to its script-
ing language. We built upon Zeek by writing event scripts
tailored to ICS networks, to trigger on suspicious events.
We then created our own parser engine, the “Anomaly
Mapper”, in order to further analyze anomalies, to rule
out False Positives and to map them to the adversary
techniques from the ICS MITRE. Our results show that the
PoC application performed well as a binary classifier with
a Matthews Correlation Coefficient range between 0.7 and
0.85 and a True Positive Rate nearing 0.95. On the other
hand, the False Positive Rate should be improved to lessen
the amount of required manual verification of the output.

The last sub-question was about mapping the ICS
MITRE techniques to various stages of the ICS Killchain.
We have provided an in-depth analysis of the correlation
between the network-based events from the ICS MITRE
framework to the ICS Killchain adversary campaign stages,
which puts the techniques used by adversaries in perspec-
tive.

To answer our main question “How can network analy-
sis be used to discover the potential presence of Advanced
Persistent Threats (APT) in Industrial Control Systems
(ICS)?”, we can conclude that it is possible to improve
upon open source tools to detect anomalies in ICS networks
and flag them as potential adversary techniques. Further
development of the PoC application is required to improve
its detection performance and support more ICS protocols.

Our approach allows defenders to deploy the tool in
their industrial networks, start gaining more visibility into
the network events and begin with threat hunting activi-
ties.

9 FUTURE WORK

As part of future work, further enhancements of the PoC
are necessary. New protocol parsers should be written to
accommodate the wide variety of different ICS protocols in
use. For instance, S7comm Plus, EtherCAT and ProfiNET
should be supported. The rules of the PoC should also be
expanded and improved upon to decrease the amount of
False Positives, by fine tuning detection rules. Furthermore,
the PoC should be evaluated against different industrial
environments. Support for host-based events should be
added in order to cover all techniques from the ICS MITRE
ATT&CK framework.

REFERENCES

[1] Andy Greenberg. The Story of Sandworm, the Kremlin’s
Most Dangerous Hackers. URL: https://www.wired.
com / story / sandworm - kremlin - most - dangerous -
hackers/. (accessed: 02.06.2020).

[2] Dragos. 2019 Year in Review, Lessons learnt from
the front line of ICS cybersecurity. URL: https :
/ / www . dragos . com / wp - content /
uploads / Lessons Learned from the Front Lines
of ICS Cybersecurity.pdf?hsCtaTracking=ea40a828-
084b - 4ee9 - a0fc - 0908864d3f8e % 5C % 7C4eafb14d -
2e38-44e0-9e6d-08c2aea4a480. (accessed: 05.06.2020).

[3] Purdue Enterprise Reference Architecture. URL: https :
/ / en . wikipedia . org / wiki / Purdue Enterprise
Reference Architecture. (accessed: 01.06.2020).

[4] Rob T. Lee Robert M. Lee. SANS 2018 Threat Hunting
Survey Results. URL: https://www.sans.org/media/
analyst - program / Multi - Sponsor - Survey - 2018 -
Threat-Hunting-Survey.pdf. (accessed: 02.06.2020).

[5] Yuri Diogenes and Erdal Ozkaya. Cybersecurity - At-
tack and Defense Strategies: Infrastructure security with
Red Team and Blue Team tactics. Packt Publishing Ltd,
2018.

[6] Robert Mitchell and Ing-Ray Chen. “A survey of
intrusion detection techniques for cyber-physical sys-
tems.” In: ACM Comput. Surv 46 (2014), pp. 2–30.

[7] Syed Ali Raza Shah and Biju Issac. “Performance
comparison of intrusion detection systems and ap-
plication of machine learning to Snort system”. In:
Future Generation Computer Systems 80 (2018), pp. 157–
170.

[8] Vilhelm Gustavsson. Machine Learning for a Network-
based Intrusion Detection System: An application using
Zeek and the CICIDS2017 dataset. 2019.

[9] Panagiotis Drakos. “Implement a security policy and
identify Advance persistent threats (APT) with ZEEK
anomaly detection mechanism”. In: (2020).

[10] Jeyasingam Nivethan and Mauricio Papa. “Dynamic
rule generation for SCADA intrusion detection”. In:
2016 IEEE Symposium on Technologies for Homeland
Security (HST). IEEE. 2016, pp. 1–5.

[11] Hui Lin et al. “Adapting Bro into SCADA: building a
specification-based intrusion detection system for the
DNP3 protocol”. In: Jan. 2013.

[12] Robert Udd et al. “Exploiting bro for intrusion detec-
tion in a SCADA system”. In: Proceedings of the 2nd
ACM International Workshop on Cyber-Physical System
Security. 2016, pp. 44–51.

[13] The MITRE Corporation. ATT&CK Matrix for Enter-
prise. URL: https : / / attack . mitre . org/. (accessed:
31.05.2020).

[14] The MITRE Corporation. ATT&CK® for Industrial
Control Systems. URL: https : / / collaborate . mitre .
org / attackics / index . php / Main Page. (accessed:
31.05.2020).

[15] Jacob Steele Otis Alexander MIsha Belisle. MITRE
ATT&CK® for Industrial Control Systems: Design and
Philosophy. Tech. rep. 2020.

[16] David Szili. SANS Building and Maturing YourThreat
Hunting Program. URL: https : / / www . sans . org /
media/analyst-program/building-maturing-threat-
hunting-program-39025.pdf. (accessed: 01.07.2020).

[17] Kevin E Hemsley, E Fisher et al. History of industrial
control system cyber incidents. Tech. rep. Idaho Na-
tional Lab.(INL), Idaho Falls, ID (United States), 2018.

[18] Michael J Assante and Robert M Lee. “The industrial
control system cyber kill chain”. In: SANS Institute
InfoSec Reading Room 1 (2015).

[19] Eric M Hutchins, Michael J Cloppert and Rohan M
Amin. “Intelligence-driven computer network de-

https://www.wired.com/story/sandworm-kremlin-most-dangerous-hackers/
https://www.wired.com/story/sandworm-kremlin-most-dangerous-hackers/
https://www.wired.com/story/sandworm-kremlin-most-dangerous-hackers/
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://www.dragos.com/wp-content/uploads/Lessons_Learned_from_the_Front_Lines_of_ICS_Cybersecurity.pdf?hsCtaTracking=ea40a828-084b-4ee9-a0fc-0908864d3f8e%5C%7C4eafb14d-2e38-44e0-9e6d-08c2aea4a480
https://en.wikipedia.org/wiki/Purdue_Enterprise_Reference_Architecture
https://en.wikipedia.org/wiki/Purdue_Enterprise_Reference_Architecture
https://en.wikipedia.org/wiki/Purdue_Enterprise_Reference_Architecture
https://www.sans.org/media/analyst-program/Multi-Sponsor-Survey-2018-Threat-Hunting-Survey.pdf
https://www.sans.org/media/analyst-program/Multi-Sponsor-Survey-2018-Threat-Hunting-Survey.pdf
https://www.sans.org/media/analyst-program/Multi-Sponsor-Survey-2018-Threat-Hunting-Survey.pdf
https://attack.mitre.org/
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://www.sans.org/media/analyst-program/building-maturing-threat-hunting-program-39025.pdf
https://www.sans.org/media/analyst-program/building-maturing-threat-hunting-program-39025.pdf
https://www.sans.org/media/analyst-program/building-maturing-threat-hunting-program-39025.pdf


10

fense informed by analysis of adversary campaigns
and intrusion kill chains”. In: Leading Issues in Infor-
mation Warfare & Security Research 1.1 (2011), p. 80.

[20] Industrial Control & Communication Competence Center.
URL: https : / / www. ic4 . be / ?lang = en. (accessed:
06.06.2020).

[21] Tijl Deneut. ICSSecurityScripts. URL: https : / /
github.com/tijldeneut/ICSSecurityScripts. (accessed:
06.06.2020).

[22] Zeek. Protocol Analyzers. URL: https://docs.zeek.org/
en/current/script- reference/proto- analyzers.html.
(accessed: 22.06.2020).

[23] Zeek. Zeek Package Manager. URL: https://docs.zeek.
org/projects/package- manager/en/stable/index.
html.

[24] Zeek. Zeek packages. URL: https : / / zeek . org /
packages/. (accessed: 22.06.2020).

[25] Spicy. Spicy — Generating Parsers for Protocols & Files.
URL: https : / / docs . zeek . org / projects / spicy / en /
latest/.

[26] Zeek. Zeek Script Index. URL: https://docs.zeek.org/
en/current/script-reference/scripts.html.

[27] Wireshark Wikipedia. Sample Captures. URL: https://
wiki.wireshark.org/SampleCaptures.

[28] Netresec. Publicly available PCAP files. URL: https://
www.netresec.com/?page=PcapFiles.

[29] malware-traffic-analysis.net. PCAPS for tutorial on ex-
porting objects. URL: https://www.malware- traffic-
analysis.net/training/exporting-objects.html.

[30] PCAPAnalysis.com. Pcap analysis. URL: https : / /
www.pcapanalysis.com/.

[31] Gilbert Peterson and Sujeet Shenoi. Advances in Dig-
ital Forensics XIV: 14th IFIP WG 11.9 International
Conference, New Delhi, India, January 3-5, 2018, Revised
Selected Papers. Vol. 532. Springer, 2018.

[32] Thomas Wiens. S7comm Wireshark dissector.
URL: https : / / sourceforge . net / projects /
s7commwireshark/.

[33] Amit Kleinman and Avishai Wool. “Accurate mod-
eling of the siemens s7 scada protocol for intrusion
detection and digital forensics”. In: The Journal of
Digital Forensics, Security and Law: JDFSL 9.2 (2014),
p. 37.

[34] Ma Liang Cheng Lei Li Donghong. The spear to break
the security wall of S7CommPlus. URL: https://www.
blackhat . com/docs/eu- 17/materials/eu- 17- Lei -
The-Spear-To-Break%5C%20-The-Security-Wall-Of-
S7CommPlus-wp.pdf. (accessed: 29.06.2020).

[35] D.Cass M.Rose. ISO Transport Service on top of the TCP
Version: 3. URL: https://tools.ietf.org/html/rfc1006.
(accessed: 22.06.2020).

[36] Network Working Group. ISO Transport Protocol Spec-
ification ISO DP 8073. URL: https ://tools . ietf .org/
html/rfc905. (accessed: 22.06.2020).

[37] N Ben Aloui. “Industrial control systems dy-
namic code injection”. In: Cybersecurity Labs, DCNS
Toulon, Toulon, France (grehack. org/files/2015/Grehack%
202015% 20-% 20Paper% 20-% 20Industrial% 20Con-
trol% 20Systems% 20Dynamic% 20Code% 20Injection.
pdf) (2015).

[38] Gyorgy Miru. S7comm protocol constants. URL: http :
/ / gmiru . com / resources / s7proto / constants . txt.
(accessed: 22.06.2020).

[39] Niv Goldenberg and Avishai Wool. “Accurate mod-
eling of Modbus/TCP for intrusion detection in

SCADA systems”. In: International Journal of Critical
Infrastructure Protection 6.2 (2013), pp. 63–75.

[40] Modbus Organisation. Modbus Application Protocol
Specification V1. 1b3. 2012.

[41] Steffan Roobol. ICSMitreAnomalyParser. URL: https://
github.com/StefRoo/ICSMitreAnomalyParser.

[42] Ikram Ullah. “Detecting Lateral Movement Attacks
through SMB using BRO”. MA thesis. University of
Twente, 2016.

[43] Microsoft. Copy File (Local to Remote). URL: https://
docs .microsoft . com/en- us/openspecs/windows
protocols / ms - smb / 01bf5dbe - 2d51 - 45e1 - b88f -
8d6afac1ab98. (accessed: 29.06.2020).

[44] Greg Farnham and A Atlasis. “Detecting DNS tunnel-
ing”. In: SANS Institute InfoSec Reading Room 9 (2013),
pp. 1–32.

https://www.ic4.be/?lang=en
https://github.com/tijldeneut/ICSSecurityScripts
https://github.com/tijldeneut/ICSSecurityScripts
https://docs.zeek.org/en/current/script-reference/proto-analyzers.html
https://docs.zeek.org/en/current/script-reference/proto-analyzers.html
https://docs.zeek.org/projects/package-manager/en/stable/index.html
https://docs.zeek.org/projects/package-manager/en/stable/index.html
https://docs.zeek.org/projects/package-manager/en/stable/index.html
https://zeek.org/packages/
https://zeek.org/packages/
https://docs.zeek.org/projects/spicy/en/latest/
https://docs.zeek.org/projects/spicy/en/latest/
https://docs.zeek.org/en/current/script-reference/scripts.html
https://docs.zeek.org/en/current/script-reference/scripts.html
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.malware-traffic-analysis.net/training/exporting-objects.html
https://www.malware-traffic-analysis.net/training/exporting-objects.html
https://www.pcapanalysis.com/
https://www.pcapanalysis.com/
https://sourceforge.net/projects/s7commwireshark/
https://sourceforge.net/projects/s7commwireshark/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-To-Break%5C%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-To-Break%5C%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-To-Break%5C%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-To-Break%5C%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://tools.ietf.org/html/rfc1006
https://tools.ietf.org/html/rfc905
https://tools.ietf.org/html/rfc905
http://gmiru.com/resources/s7proto/constants.txt
http://gmiru.com/resources/s7proto/constants.txt
https://github.com/StefRoo/ICSMitreAnomalyParser
https://github.com/StefRoo/ICSMitreAnomalyParser
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/01bf5dbe-2d51-45e1-b88f-8d6afac1ab98
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/01bf5dbe-2d51-45e1-b88f-8d6afac1ab98
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/01bf5dbe-2d51-45e1-b88f-8d6afac1ab98
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/01bf5dbe-2d51-45e1-b88f-8d6afac1ab98


11

10 APPENDIX: NETWORK-BASED TECHNIQUES IN SCOPE

Tactic Technique Explanation Monitoring mechanism
Initial access Exploit public facing applica-

tions
Exploiting devices with direct
communication to the Internet
or IT

Monitor port 80, 8080, 443, 8443

Execution Change program state Change the state of the program
on control device

Monitor function codes of Mod-
bus, S7comm

Execution Command line interface Used to interact with systems
and execute commands

Monitor Telnet, RDP, VNC, SSH

Execution Execution through API API calls can be used to engage
functions on a device

Monitor HTTP(S)

Execution Man in the middle Intercept the traffic with the pur-
pose of blocking, logging, modi-
fying or injecting traffic

Monitor for ARP, DNS and IP
spoofing

Persistence Module firmware Install malicious or vulnerable
firmware onto modular hard-
ware devices

Monitor for binary files, portable
executable, files transferred over
FTP

Persistence Program download Load malicious program logic
on a device

Monitor for uploading pro-
grams to PLC from an outside
IP address

Persistence System firmware Install malicious or vulnerable
firmware onto devices

Monitor for binary files, portable
executable, files transferred over
FTP

Evasion Rogue master device Impersonate master device to
communicate with a slave

Monitor for uploading pro-
grams to PLC from inside IP ad-
dress

Evasion Spoof reporting messages Modify reporting messages to
not reflect the actual state of the
operation

Monitor for ARP spoofing

Evasion Utilize/change operating mode Put controllers in alternate mode
of operation

Monitor function codes of Mod-
bus, COTP, S7comm

Discovery Control device identification Determine the make and model
of the device

Monitor function codes of Mod-
bus, COTP, S7comm

Discovery Network service scanning Host and service discovery on
the network

Monitor for TCP scanning

Lateral movement Default credentials Usage of default credentials on
control devices

Monitor authentication over
FTP and VNC

Lateral movement Remote file copy File copy between the systems Monitor for SMB file transfer
Collection Detect operating mode Determine current operating

state of PLC
Monitor for gathering informa-
tion about current PLC state e.g
stop/prog/run/remote/invalid

Collection Detect program state Determine current state of a pro-
gram on a PLC

Monitor for gathering informa-
tion about current state of a
program on a PLC e.g. run-
ning/halted/paused/exception

Collection Point & tag identification Determine inputs, memory loca-
tions, outputs

Monitor for scanning I/O of the
PLC

Collection Program upload Download project file from a
PLC to gather information

Monitor for file download from
the PLC using outside IP ad-
dress



12

Collection Role identification Determine role of a device Monitor for scanning I/O of the
PLC

Command and control Commonly used port Use of common ports to blend in
with normal network activity

Monitor commonly used ports
in ICS: TCP/22, TCP/80,
TCP/443, TCP/UDP/53,
TCP/UDP/5353, TCP/8080,
TCP/23, UDP/161, TCP/502,
TCP/102, TCP/2000,
TCP/44818

Command and control Connection proxy Use of proxy to direct network
traffic between systems

Monitor for DNS tunneling

Command and control Standard application layer pro-
tocol

Command and control capabili-
ties over commonly used proto-
cols

Monitor HTTP(S), RDP, Telnet,
Modbus

Table 7: Selected techniques from ICS MITRE ATT&CK framework and corresponding monitoring mechanisms.



13

11 APPENDIX: INDUSTRIAL EQUIPMENT INVENTORY

Function Model IP address
Router eWON Flexy 201 10.20.1.1
Switch Beckhoff CU2008 N/A
PLC Beckhoff CX9020 10.20.1.10
HMI Beckhoff CP6606 10.20.1.11
I/O Island Rockwell 5096-L306ER/A CompactLogix 5380 10.20.1.30
PLC Mitsubishi FX5U-32M 10.20.1.112
PC Win7 OPC UA 10.20.1.15
PC Win10 OPC UA 10.20.1.25
Router Siemens S623 10.20.2.1
Router IXON IXRouter 3 172.20.2.2
Switch Siemens XB208 10.20.2.5
PLC Siemens S7-1200 10.20.2.10
HMI Siemens KTP400 10.20.2.11
I/O Island Siemens IM151-3 10.20.2.20
PLC Siemens S7-1500 123.145.120.102/29
PLC Phoenix ILC 390 PN 10.20.3.10
HMI PhoenixContact WP 06T 10.20.3.11
I/O Island PhoenixContact IL PN BK 10.20.3.20
PLC Schneider TM241CE40R 10.20.30.149
PLC PLCnext 10.20.3.120

Table 8: Industrial equipment inventory from the IC4 manufacturing testbed.



14

12 APPENDIX: TECHNIQUES PERFORMED ON THE MANUFACTURING TESTBED

Action Technique Tactic Target Execution date GMT +2
ARP spoofing MiTM Execution 10.20.2.5 2020-06-27 15:28
Establishing SSH session Command Line Interface Execution Siemens Scalance Indus-

trial Switch, 10.20.2.5
2020-06-27 15:31

Establishing SSH session Command Line Interface Execution Kali Linux 10.20.20.22 2020-06-27 15:31
Establishing RDP session Command Line Interface Execution Beckhoff Win7, 10.20.1.15 2020-06-27 15:32
Altering outputs (scans
device beforehand)

Change Program State Execution S7-1200 PLC, 10.20.2.10 2020-06-27 15:34

Altering memory (scans
devices beforehand)

Change Program State Execution S7-1200 PLC, 10.20.2.10 2020-06-27 15:35

Uploading executable
file

Module Firmware, Sys-
tem Firmware, Remote
file copy

Persistence, Lateral
movement

Phoenix Contact PLC,
10.20.3.10

2020-06-27 15:36

Stop/start CPU
PLC (scans device
beforehand)

Utilize/Change Program
Mode

Evasion S7-1200 PLC, 10.20.2.10 2020-06-27 15:38

TCP scan Network Scanning Discovery Industrial network seg-
ment, 10.20.1.0/24

2020-06-27 15:39

WannaCry Exploitation of Remote
Services, External Re-
mote Services, Remote
File Copy

Lateral movement Beckhoff Win7, 10.20.1.15 2020-06-27 15:51

Device scanning Detect Operating Mode,
Control Device Identifi-
cation

Collection S7-1200 PLC, 10.20.2.10 2020-06-27 15:51

DNS tunneling Connection proxy Command and control From 10.20.20.22 to re-
mote server

2020-06-27 15:52

Table 10: Detailed overview of the techniques performed on the manufacturing testbed.



15

13 APPENDIX: TECHNIQUES WITH CORRESPONDING CUSTOM ZEEK SCRIPT(S) TO DETECT IT

Zeek script Technique
arp spoofing.zeek Man in the middle, Spoof reporting messages
common ports.zeek Exploit public facing applications, Execution through API, Com-

monly Used Port, Standard application layer protocol
dns spoofing.zeek Man in the middle
dns tunneling.zeek Connection proxy
ftp portable executable.zeek Module firmware, System firmware, Default credentials
http user agent.zeek Change program state
http post body.zeek Change program state, Role identification, Point & tag identification
modbus logging.zeek Change program state, Program download, Rogue master device,

Utilize/change operating mode, Control device identification, Detect
operating mode, Detect program state, Point & tag identification,
Program upload, Role identification

rdp logging.zeek Command line interface, Standard application layer protocol
s7com cotp logging.zeek Change program state, Program download, Rogue master device,

Utilize/change operating mode, Control device identification, Detect
operating mode, Detect program state, Point & tag identification,
Program upload, Role identification

smb logging.zeek Default credentials, Remote file copy
ssh logging.zeek Command line interface
tcp scan detection.zeek Network service scanning
telnet logging.zeek Command line interface, Default credentials, Standard application

layer protocol
vnc logging.zeek Default credentials

Table 12: Custom Zeek scripts used to detect techniques used on the network.The code is uploaded to Github [41].



16

14 APPENDIX: FLOWCHART OF ANOMALY MAPPER PROGRAM FLOW.

Fig. 3: Flowchart explaining the Anomaly Mapper operation.



17

15 APPENDIX: ANOMALY MAPPER - FUNCTION CODE MAPPING TO ICS MITRE FRAMEWORK

Function name Technique

Read Variable
Point & tag identification,
Detect program state,
Role identification

Write Variable Change program state
Request download

Program downloadDownload block
Download ended
Start upload

Program uploadUpload
End of upload
PI Service

Utilize or change operating modePLC Control
PLC Stop
Read SZL Detect operating mode

Table 13: One-to-many mapping between the S7comm function codes and the techniques from ICS MITRE framework.

Function name Technique
Read discrete inputs

Point & tag identification

Read coils
Read input registers
Read holding register
Read FIFO queue
Read file record

Read/Write multiple registers Point & tag identification,
Change program state

Write single coil

Change program state
Write multiple coils
Write single registers
Mask write register
Write file record

Table 14: One-to-many mapping between the Modbus public function codes and the techniques from ICS MITRE
framework



18

16 APPENDIX: ICS MITRE FRAMEWORK MAPPING TO ICS KILLCHAIN

ICS MITRE technique ICS Killchain phase
Exploit public facing application Cyber Intrusion (Delivery)
Standard application layer protocol

Management & Enablement (C2)Commonly used ports
Connection proxy
Control device identification

Sustainment, entrenchment, development & execution (Act)

Network service scanning
Detecting operating mode
Detecting operating state
Point & tag identification
Role identification
Program upload
Default credentials
Remote file copy
Module firmware
System firmware
MiTM
Command line interface

ICS Attack (Deliver and Install/Modify)Execution through API
Program download
Rogue Master Device Execute ICS AttackSpoof reporting messages
Utilize/change operating mode
Changing program state

Table 15: One-to-many mapping between the ICS MITRE ATT&CK framework and the ICS Killchain.


	Introduction
	Related work and background
	Intrusion Detection Systems
	Threat hunting

	Methodology
	Network based adversary techniques
	Manufacturing testbed
	Data collection

	Proof of Concept design
	Data processing
	Evaluation

	ICS Killchain mapping

	Data Logging Module
	Supported ICS protocols
	Siemens S7 protocol
	Modbus TCP

	Custom Zeek event scripts

	Anomaly Mapper
	Results
	PoC detection performance
	Mapping techniques to ICS Killchain

	Discussion
	Analysis of the results
	Limitations

	Conclusion
	Future work
	Appendix: Network-based techniques in scope
	Appendix: Industrial equipment inventory
	Appendix: Techniques performed on the manufacturing testbed 
	Appendix: Techniques with corresponding custom Zeek script(s) to detect it
	Appendix: Flowchart of Anomaly Mapper program flow.
	Appendix: Anomaly Mapper - Function code mapping to ICS MITRE framework
	Appendix: ICS MITRE framework mapping to ICS Killchain

