
Incentivize decentralized WiFi roaming through
VPN on home routers

Master thesis Security and Network Engineering, University of
Amsterdam

Sander.Lentink@os3.nl Peter.Boers@surfnet.nl

2019-12-05

Abstract
It is infeasible for most consumers to safely share their internet con-

nection through an open Wi-Fi. This research explores the possibility of
dynamically whitelisting VPN endpoints on Wi-Fi networks by providing
a client’s VPN endpoint details in the 802.1x identity. This reduces the
liability concerns of Wi-Fi Access Point (AP) providers and forces clients
accessing these APs to use a VPN, which will increase their privacy. We
modified a RADIUS server to implement our proposed protocol and verified
it through a Proof of Concept (PoC).

1 Introduction
Mobile devices use multiple wireless solutions, with Wi-Fi being “the best tech-
nology for Mobile Data Offloading (MDO)” (Gupta and Rohil 2012). Providing
internet access through free wireless has been seen as politeness towards guests,
but concerns around security, violating terms or possible abuse for illegal con-
tent prevent individuals from providing open wireless networks (Schneier 2008).
Larger entities who want to provide wireless services face different challenges.
There are laws in place that prevent municipalities from providing “free WiFi”
(Chamberlain 2019) and telecommunications companies lobby to prevent new
projects (Gurley and O’Shaughnessy 2019).

When it comes to users accessing Wi-Fi networks, many are unaware of privacy
risks (Consolvo et al. 2010). Those who are aware of the risks, place trust in the
Wi-Fi provider or take extra security measures.

We can remove this trust issue between both parties when accessing clients
tunnel traffic via their home location (Sastry, Crowcroft, and Sollins 2007). This
restricts the traffic passing the Wi-Fi provider to VPN traffic and creates privacy
for the client.

The goal of this research is to develop a protocol that allows secure Wi-Fi sharing.

1



1 INTRODUCTION 2

________ ___________
|Client | |foreign| |internet| |Client's |
| ______| | AP | | (WAN) | |home AP |
| |VPN | |_______| |________| |__________ |
| |Client|------------------------>|VPN server||
|_|______| |¯¯¯¯¯¯¯| |¯¯¯¯¯¯¯¯| |__________||

Figure 1: Client connects to VPN server at home location

When clients connect to an AP, all their traffic goes to their own VPN tunnel
endpoint, as shown in fig. 1.

1.1 Research question
To understand the research question(s), an example overview is given in fig. 2,
where the client connects to an AP using a VPN.

Figure 2: Client connects to VPN endpoint via foreign AP

• Can we design a protocol using existing protocols available on commercially
off the shelf (COTS) clients that eliminates the need for trust between
client and Wi-Fi provider by using a VPN tunnel?

1. How can the VPN endpoint details be communicated from the sup-
plicant to the authentication server?

2. What modifications or configurations will enable an authentication
(802.1x) server to set network policies based on a VPN endpoint?

3. Which network policies are of interest to this protocol?

4. Can we verify this protocol through a Proof of Concept (PoC)?

1.2 Related work
When it comes to regular APs, the AP operator is able to see the traffic of
the clients it facilitates, giving the client less privacy and the operator more
control on the network content. In the context of Open Wireless, the EFF states
“that operators of open networks sometimes worry that they could be legally
responsible if people use their networks to engage in copyright infringement.”1

The topic of copyright for Open Wireless is discussed in a white paper (“Open
Wi-Fi and Copyright: A Primer for Network Operators” 2014). Clients using our

1https://www.eff.org/wp/open-wi-fi-and-copyright-primer-network-operators



1 INTRODUCTION 3

protocol are merely allowed to use VPN traffic, making the AP a mere passive
conduit, unable to read the traffic.

We need traffic prioritization to prevent “free riding” by neighbors (Eckersley
2011).

For National Research and Educational Networks it was found that authentication
via 802.1x was more safe than a web portal and more scalable than using VPN-
based authentication (Wierenga and Florio 2005). They also mention that
standardization for wireless configuration is required to prevent reconfiguration
at different locations. In our research the 802.1x authentication is used to provide
the AP with the VPN endpoint location. The actual authentication is done by
validating this VPN endpoint, instead of the password field.

The Open Garden protocol plans to make every hotspot a VPN exit node, creating
a decentralized VPN setup (Hainsworth 2018). This matches our research where
every AP SHOULD be a VPN server.

Unaware users can be made aware of their behavior in order to improve security
and privacy (Consolvo et al. 2010). However, we propose a technical solution
instead of increasing awareness.

In the context of SlyFi; “for such infrastructural solutions to be effective, they
need both to be incorporated into wireless standards and to become widely
deployed.” (Klasnja et al. 2009) However, we will use the protocols available on
COTS clients.

Wi-Fi Protected Access version 3 (WPA3) enables privacy between clients by
providing individualized encryption. However, this does not prevent the AP
provider from eavesdropping. Our research will use a VPN tunnel, creating end
(client) to VPN endpoint encryption.

When providers enable Wi-Fi sharing (e.g. using Fon) between homes, they could
enable Wi-Fi roaming, preventing the IP address of the client to change when
walking through a street. This can also be done using this protocol at a larger
network (e.g. campus), but not between houses (independent APs).

Modern web browsers are starting to use encrypted DNS, which will increase
the client’s privacy (NCSC 2019). However, we propose to use a VPN tunnel,
which also hides additional data such as the server name indication (SNI).

1.2.1 Related wireless solutions

We present various Wi-Fi solutions to get an impression of existing approaches.

Open to selective users There are Wi-Fi initiatives for specific groups of
people, such as Eduroam for students and Govroam for government employees.
Various internet service providers (ISPs) configure routers at home locations
as Wi-Fi APs for their customers, such as Comcast’s xfinitywifi, KPN’s Fon or
British Telecom’s BT Wi-fi.

Open to all users Various initiatives exist to provide free wireless for com-
munities and residential areas. Fon provides residential WiFi in European cities
and has its own router, the Fonera (Ojeda-Zapata 2014). Fon has an option for

https://openwireless.org/myths-legal.html
https://openwireless.org/myths-legal.html
https://www.ietf.org/rfc/rfc2119.txt
https://www.eduroam.org/
https://govroam.nl/
https://hotspots.wifi.comcast.com/
https://www.kpn.com/internet/wifi-hotspots/gratis-wifi-met-fon.htm
https://www.btwifi.co.uk/


2 METHOD 4

paid users called “Bill” and the “Linus” option to provide free access (Schneier
2008). Other initiatives use mesh networking to create the wireless network, such
as FunkFeuer in Austria, Freifunk in Germany and the Open Garden protocol.

Airports often provide broker based solutions, such as iPass, Tmobile/Vodafone
hotspots, or Boingo. Alternative forms of payment include ad based solutions,
examples are World Wi-Fi and the three-stage Stackelberg game based platform
(Yu et al. 2017).

Open to all providers and users The following Wi-Fi solutions allow anyone
to create an AP.

The Commotion Construction Kit provides a “guide to building community
wireless networks”. The Open Wireless Movement provides software that can
be installed on OpenWrt compatible routers. This movement is backed by the
Electronic Frontier Foundation. Other solutions offer Wi-Fi in exchange for
points/data/credits, examples are Karma and the Open Garden protocol (which
uses VPN) (Hainsworth 2018).

2 Method
This section provides a Protocol introduction by showing an example sequence
diagram. Next we start the protocol definition by looking at the requirements
for a supplicant (section Protocol: Supplicant) — the one initiating the protocol
— followed by the specification for the AP (section Protocol: AP Specification).
We conclude by describing the Test setup.

2.1 Protocol introduction
Participating APs have a shared procedure of authenticating and authorizing
clients. We will introduce this shared procedure (the protocol) by explaining the
connection setup between a supplicant and an AP.

In the sequence diagram shown in fig. 3, hostapd is the Wireless Access Point
(WAP), which is the Network Access Server (NAS). In this example Test setup,
all aspects of the protocol are implemented on the same system on chip (SoC).

https://wiki.techinc.nl/MeshNet
https://wiki.p2pfoundation.net/Funkfeuer
https://freifunk.net/en/what-is-it-about/
https://www.opengarden.com/protocol/
https://www.ipass.com
https://www.boingo.com
https://worldwifi.io
https://commotionwireless.net/docs/cck/
https://openwireless.org/
https://www.eff.org/issues/open-wireless
https://yourkarma.com/wifi/how-it-works-3/


2 METHOD 5

AP (SoC) <-----L2----> router
_____________|_____________ _____|____

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
a | | | | | | |
#---b---># | | | | | |
# #--c--># | | | | |
# # #--d--># | | | |
# # # #--e----------------------->#
# # # f | | | |
# # # #--g--># | | |
# # #<--h--# | | | |
# #<--i--# | | | | |
#<---j---# | | | | | |
#---k-------------------------=-----># | |
#<--------------------------------l--# | |
#---m-------------------------=------------------->#

Figure 3: Sequence diagram of example implementation of the protocol

a. Supplicant (client) scans for an AP and finds a foreign AP that matches
the Wireless configuration (SSID)

b. Supplicant connects to the authenticator (hostapd) using 802.1x creden-
tials, which communicate the VPN endpoint’s Protocols and ports in the
802.1x identity

c. Authenticator connects to the 802.1x authentication server
d. This authentication server uses a custom Pre-authorize script
e. Script validates that provided information points to a VPN endpoint.
f. if VPN: continue else return 802.1x rejected
g. Script creates Network policies, these Implemented policies are set to

whitelist the VPN endpoint
h. OK
i. OK
j. 802.1x client accepted (wlan bridged with eth0; L2 access to router)
k. client requests DHCP lease (IP address)
l. router provides IP to client (thus NAT in router)

m. client connects to VPN server

The custom code for this protocol is implemented in the Pre-authorize script.

In larger networks (e.g. campus) we expect the WAP (hostapd) to be on different
hardware than the 802.1x authentication server.

2.2 Protocol: Supplicant
We have seen the Protocol introduction, which showed that the supplicant initiates
the protocol. We will now look at the configuration required on the supplicant
(client).

The client needs to configure two aspects, the 802.1x Wireless configuration and



2 METHOD 6

a VPN client. The Wireless configuration is part of this protocol and is created
with the following information:

• domain or IP of VPN server
• IP Protocols and ports used to connect to VPN server
• will the supplicant validate the 802.1x certificate?

This section details the configuration of the client, these settings are motivated
in section Protocol: AP Specification.

2.2.1 802.1x credentials

We now look at the 802.1x credentials, which will encode the VPN endpoint in
the anonymous identity, as described in section 802.1x identity. This will allow
foreign APs to whitelist traffic to it.

client
|
a

Figure 4: Supplicant sets network configuration (snippet from fig. 3)

The clients needs to add a new Wi-Fi network (fig. 4), using the configuration
shown in table 1.

Table 1: Network configuration on supplicant

field value default
SSID “tunroam.org 19”
Security 802.1x EAP
EAP type Protected EAP (PEAP)
phase 2 MSCHAPv2
CA certificate variable no validation
anonymous identity variable
identity variable
password variable “password”

The variable fields in table 1 are dependent on the validate_certificate flag being
set. The static values are motivated in section Wireless configuration.

When the client connects to an AP (fig. 5), the anonymous identity is used to
communicate the VPN endpoint to the AP.

client |hostapd
| |
a |
#---b--->#

Figure 5: Supplicant connects to AP (snippet from fig. 3)



2 METHOD 7

Clients have the option to indicate that their 802.1x request MUST be proxied
to their own server (to get a known certificate).

validate_certificate disabled Without certificate validation, the AP does
not proxy the 802.1x request, giving the supplicant a different certificate at every
location.

Example: When we describe the identities for an OpenVPN/WireGuard VPN
server running on port 443 UDP (IP protocol 0x11), it is encoded as 11443 and
has the flag character appended (as described in section 802.1x identity):

11443a@<ADDRESS-VPN-SERVER>

where <ADDRESS-VPN-SERVER> is an IP address or fully qualified domain name
(FQDN).

The password field needs to have the literal value “password”, to allow the
authentication server to complete the Challenge-Handshake Authentication
Protocol (CHAP) procedure.

validate_certificate enabled If the supplicant desires to validate the cer-
tificate, or has no option/rights to disable validation; it needs different values
for the identities and password fields.

In the following example of an anonymous identity, the flag character (b) indicates
the request needs to be proxied:

11443b@<FQDN-EAP-SERVER>

The regular identity is not exposed to the AP but only seen by the server
providing the certificate. The realm part (<FQDN-EAP-SERVER>) MUST be the
same for both identities from table 1 (as described in section Identities). The
user part of the identity and the password MAY be specified for the specific
needs of the external authentication server proxied to.

Multiple protocols and ports To allow clients to use various VPN protocols,
one can define multiple protocols and ports. These are separated by an underscore,
as seen in the following IPsec example:

11500_32_33_114500a@10.10.10.10

The corresponding values are explained in table 2.

Table 2: Protocols and ports for IPsec example

value IP proto. id IP protocol name port description
11500 0x11 User Datagram Protocol (UDP) 500 Internet Key Exchange (IKE)
32 0x32 Encap Security Payload (ESP) N/A
33 0x33 Authentication Header (AH) N/A
114500 0x11 User Datagram Protocol (UDP) 4500 NAT-T (RFC 3947 sec. 4)

The AP MAY only allow traffic for the L4 Transport layer protocols it supports

https://www.ietf.org/rfc/rfc2119.txt
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc3947
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 8

and were found valid (i.e. listening).

2.2.2 VPN

The AP expects the client to connect to a VPN endpoint, to which it will allow
(whitelist) traffic.

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
#---k-------------------------=-----># | |
#<--------------------------------l--# | |
#---m-------------------------=------------------->#

Figure 6: Client connects to VPN (snippet from fig. 3)

The client MAY use the DNS server provided by the DHCP server of an AP to
resolve its VPN endpoint, as shown in step l of fig. 6.

The client SHOULD use a VPN client that connects to the VPN server using
UDP (e.g. OpenVPN, WireGuard or IPsec using NAT traversal as defined in
RFC3947 section 4). VPN clients that use other protocols MAY be supported
by the AP, as described in section L4 Transport layer.

A rogue AP could accept a client and use the VPN endpoint information to
only block the VPN, hoping the client will ignore the VPN. Therefore the client
SHOULD only allow traffic via the VPN when connecting to APs.

2.3 Protocol: AP Specification
In the previous section (Protocol: Supplicant) we read what the supplicant
communicates to the AP. We will now look at the authentication server the AP
uses to process authentication requests.

We start by defining/parsing the 802.1x identity received by the supplicant,
followed by the 802.1x authentication server that receives this data. This section
concludes with Network policies the AP SHOULD implement.

A VPN server SHOULD be installed on an AP when configured for a home
location. However, configuration and VPN identity management is not part of
this protocol.

The goal of this protocol is to allow an AP to share Wi-Fi without the facilitator
being liable for the traffic generated by clients. We do this by only allowing
VPN traffic and DNS to locate the VPN server to be seen by the ISP of that AP.
The client will appear on the internet with the IP address of its VPN server.

2.3.1 802.1x identity

First we clarify that the 802.1x identity is separate from the VPN credentials.
The 802.1x identity only states the VPN endpoint, not the user login for the
VPN.

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc3947
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 9

There are two identities/usernames (as shown in table 1), 1) an anonymous
(provided to the authentication proxy) and 2) the identity provided to the
authentication server that provides the certificate. We call the anonymous
identity the anonid and the regular identity the innerid. The anonid is handled
at the AP and thus needs the VPN information.

A practical example of parsing the anonid is given in section Pseudo code parse
identity.

Identities Identities consist of a user part and a realm/domain part, separated
by the @ delimiter (i.e. userpart@realmpart). The anonid MUST contain the
same realm as the innerid since Windows copies the realm part of the innerid
and uses it in the anonid (“PEAP Identity Privacy Support in Windows7” 2009).

2.3.1.1 Protocols and ports The anonid starts with the user part, which
starts with listing IP protocols and ports. The IP protocols are discussed in
section L4 Transport layer.

The supplicant communicates the IP protocols to the authentication server by
the IP protocol id in hexadecimal. Additional information (i.e. port number) is
appended to the id. If multiple are given, they are separated by an underscore.

An example for port 443 TCP (0x06) and UDP (0x11):

06443_11443f@10.10.10.10

The AP MUST accept at least the first 3 tuples it supports. If the
AP only allows UDP (0x11), it MUST be able to retrieve the UDP
configuration if unsupported protocols are preceding in the identity
(e.g. 32_33_2f_06443_11443a@10.10.10.10). The AP SHOULD accept
the supplicant when — of the supported protocols — a subset of the ports were
found valid (e.g. when 0622 and 11443 are in the identity and no UDP 443
socket is detected, only TCP 22, it MUST whitelist TCP 22 and accept the
802.1x request).

The AP MUST accept/reject supplicants based on the information provided in
the identity. It MUST NOT present a captive portal.

Motivation While WireGuard and OpenVPN are protocols that only need
one UDP port, IPsec requires more ports. Therefore we require at least 3 tuples
to be processed. More on VPN protocols can be found in section VPN protocols.

The supplicant MUST be accepted when only a subset is found valid, to allow
configurations such as 32_33_11500_114500 (IPsec).

2.3.1.2 Flags The flag character is appended to the list of tuples, making it
the last character of the user part.

This flag character is a base32 character as defined by RFC4648, to represent 5
bits. We have defined only the first (least significant bit) for this flag character;
the validate_certificate flag, as shown in table 3. The flag character is
an ‘a’ if the supplicant does not validate the 802.1x authentication certificate
(default) or a ‘b’ when the supplicant does want to validate the certificate. When

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc4648


2 METHOD 10

the supplicant does desire to validate the certificate, the AP MUST proxy the
request.

Table 3: Bits in flag character

bit name description
0000? validate_certificate Validate 802.1x certificate?
000?0 RESERVED
00?00 RESERVED
0?000 RESERVED
?0000 RESERVED

Motivation We place the flag before the default delimiter (@), to enable it to
be included in the delimiter, becoming a custom delimiter (f@). It is prefixed
and not appended to require no parsing of the realm part when using the default
delimiter. We note that the realm module of FreeRADIUS requires a single
character as delimiter.

We pick base32 for the flag notation from the RFC instead of base64 to make
the identity case insensitive.

2.3.1.3 Hostname After the delimiter we either have an IP address or an
FQDN.

If the realm part of the identity contains an FQDN instead of an IP address, it
MUST contain “tunroam.”. This subdomain requirement MUST be enforced in
the authentication server when validating the identity and MAY also be enforced
with DNS. The authentication request MUST be rejected if this requirement is
not met.

All IPv4 addresses MUST be in the dotted-decimal notation (RFC1123). IPv6
addresses MUST be in the format specified in RFC5952, without square brackets
(used in URLs).

IPv4 MUST be supported by the AP. IPv6 SHOULD be supported by the AP.

Motivation Section Wireless configuration motivates the name of the protocol.
We use this name (TUNroam) as the required subdomain.

This subdomain MUST be enforced using the anonid since APs MAY allow
encrypted DNS, resulting in this requirement not being verified when just using
DNS filtering. This requirement is set to avoid inconsistencies across APs, where
some do want to filter DNS and others do not.

The VPN client MAY require a DNS query to resolve the VPN endpoint. To
allow APs to filter these requests we require the realm part of the 802.1x identity
to include a specific subdomain. This requirement is to protect the AP provider
from unintended DNS queries being logged by its ISP.

Mobile devices can contain apps that indicate a lifestyle (e.g. Grindr; gay dating
app) that is celebrated with parades in some countries and can lead to the death

https://www.ietf.org/rfc/rfc2119.txt
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/mods-available/realm
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc1123
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc5952
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 11

penalty in others (Amnesty 2019). When a client’s VPN is off, such apps could
do DNS queries, which can be blocked since they do not include the specific
subdomain.

The following pseudo filter rule allows egress packets containing ‘tunroam’ on
port 53 (DNS):

iptables-nft -I OUTPUT -j ALLOW --algo bm \
-p udp --dport 53 \
--match string --hex-string "|07|tunroam|"

2.3.2 802.1x authentication server

The Wireless AP uses an authentication server to validate connecting supplicants.
This authentication server MAY implement the proposed protocol in the Pre-
authorize phase, as shown in fig. 7.

client |hostapd auth pre
| | | |
# #--c--># |
# # #--d-->#

Figure 7: Authentication server uses Pre-authorize script (snippet from fig. 3)

2.3.2.1 validate_certificate When the validate_certificate flag is set
in the anonid, vpn.<DOMAIN-IN-INNERID> is resolved for the VPN address and
<DOMAIN-IN-INNERID> for the authentication server. If a supplicant provides an
IP address instead of an FQDN, the AP MUST use this IP address for both the
authentication and VPN server.

The request proxied to the external server MUST use the RADIUS protocol
(RFC 2058) on UDP 1812 (not to be confused with UDP 1645, as mentioned in
RFC2138) using the secret “testing123” (FreeRADIUS default).

Example FreeRADIUS client.conf:

client acceptall {
ipv4addr = * # any
proto = udp
secret = testing123

}

The innerid MAY hold actual user credentials, not used by the AP but by the
authentication server proxied to.

If the AP desires to do VPN endpoint validation, it MUST complete the validation
step before proxying the authentication request. If the VPN endpoint validation
fails, the authentication request is rejected without forwarding the request.

Motivation Both the secret for proxying the RADIUS request (“testing123”)
and the identity validation when not proxying the RADIUS request (“password”)
are weak. These passwords are not used to secure the protocol, but to enable two

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc2058
https://tools.ietf.org/html/rfc2138
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/clients.conf
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 12

parties who have no prior agreement, to share a secret so they can communicate
with each other.

802.1x supplicants like iOS require the validation of a certificate and other
systems (e.g. Windows) require admin rights to disable validation.

Some supplicants have the option to disable certificate validation, allowing every
AP to use a unique self signed certificate. For clients that validate certificates
(e.g. Windows), we need to present a certificate that is trusted by the client. We
have two options 1) provide a certificate that is signed by a trusted certificate
authority like Let’s Encrypt 2) proxy the request to a authentication server the
supplicant trusts. However, the first approach requires the private key to be
shared to every AP, allowing anyone to revoke this certificate.

We suggest to install the specific server certificate in the supplicant, since
validating the common name (CN) of a certificate works for a DNS name but is
not feasible for all supplicants (e.g. Android 9 supports it, on Chrome OS it is
not an option).

Two DNS records are needed to allow the authentication server and VPN server
to be on a different IP address.

The realm part of the authentication server stays the same, requiring no modifi-
cations when proxying the request. Since the VPN endpoint validation requires
an update to the authentication server (to support this protocol) we require this
custom script to implement the DNS logic (i.e. prefix vpn.).

2.3.2.2 Stripping realm When the supplicant indicates (by setting the
validate_certificate flag) it needs the authentication request to be proxied,
the authentication server serves as a Network Access Server (NAS). The server
MAY strip the realm part of the identity when forwarding the authentication
request.

Motivation The external RADIUS server proxied to enable the supplicant to
be presented with the same certificate at each AP it visits. It is in the interest
of the supplicant — who is the maintainer of the authentication server proxied
to — that it accepts all requests at all time. Thus the server does not need the
realm information.

We allow the proxying authentication server to strip the realm part of the
identity. This is the default behavior of FreeRADIUS. When desired, the server
responding to the request MAY obtain its realm via reverse DNS.

2.3.3 Wireless configuration

Participating APs have the wireless configuration described in this section. This
shared configuration allows clients to automatically connect to a foreign AP.

The service set identifier (SSID) MUST be “tunroam.org 19”.

https://support.microsoft.com/en-us/help/814394/certificate-requirements-when-you-use-eap-tls-or-peap-with-eap-tls
https://www.securew2.com/blog/8021x-vs-https-server-certificate-validation/
https://wiki.freeradius.org/glossary/NAS
https://www.ietf.org/rfc/rfc2119.txt
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/proxy.conf
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/proxy.conf
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 13

client |hostapd
| |
#---b--->#

Figure 8: Client connects to AP (snippet from fig. 3)

Clients MUST be able to connect (fig. 8) using PEAP with MSCHAPv2 as
discussed in section EAP protocols.

Motivation Versioning is possible with different SSIDs. The number in the
required SSID refers to the 2019 version of the protocol. If new versions of the
protocol would require the client to provide different information, the version
number SHOULD be set to the year the new version is released. Clients MAY
configure settings for multiple SSIDs, which then can connect to the version
available.

We observed that public Wi-Fi hotspots often include the words “free” and
“wifi”. We did not pick the words “Open” (referring to Open Source, open to
anyone to join the protocol) since it could be misunderstand as an open wireless
network. We did not use “Free” since it requires the client to initially setup a
VPN endpoint and users have other expectations of “free wifi”, “wifi” in a Wi-Fi
SSID is a pleonasm.

While the name Tunroam has resemblance to Eduroam and Govroam, this
project is not associated with their brand or product. Roam stands for roaming,
allowing clients to connect in multiple locations. Tun refers to VPN tunnel and
“tun” in:

What is the difference between TUN driver and TAP driver? TUN
works with IP frames. TAP works with Ethernet frames.2

2.3.4 Network policies

It is in the interest of the AP provider to filter traffic, therefore we state that it
MAY enforce network policies (fig. 9) on the link layer (L2) and SHOULD on L3
and L4. However, no network policies are required for a valid implementation.

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
# # # #--g--># | | |
# # #<--h--# | | | |
# #<--i--# | | | | |
#<---j---# | | | | | |
#---k-------------------------=-----># | |
#<--------------------------------l--# | |
#---m-------------------------=------------------->#

Figure 9: Setting and enforcing network policies (snippet from fig. 3)
2https://www.kernel.org/doc/Documentation/networking/tuntap.txt

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://github.com/torvalds/linux/blob/master/Documentation/networking/tuntap.txt#L214
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 14

The AP SHOULD allow all incoming traffic and only limit the outgoing, pre-
venting the need for connection tracking.

We acknowledge that the proposed filtering/whitelisting is minimal and that one
might circumvent it by using it as a covert channel. However, we expect there
to be little incentive for this type of abuse, since anyone can join using a free
VPN provider.

In the example implementation (fig. 3), the network policies are set in the
authentication flow. When clients stay connected for an extended period, their
DHCP lease MAY be renewed, but the network policies MAY not be renewed.

Network policies MUST be valid for at least 12h (or at least as long as the
DHCP lease), after which the supplicant MAY need to reconnect to have access
to its VPN again. A longer time span such as 24h MAY result in a laptop having
to reconnect during work the next day.

2.3.4.1 L2 Link layer The protocols used on the link layer are up to the
implementer of this protocol. Expected protocols are ethernet (IEEE 802.3) and
Address Resolution Protocol (ARP) (RFC826) for IPv4. The AP MAY limit
ARP to prevent MAC learning of other devices connected to the network and
detect MAC spoofing.

We note that L3 filtering by a router is bypassed when an attacker knows the
MAC address of a device connected on the link layer. Therefore one MAY keep
a whitelist of MAC addresses the supplicant is allowed to connect to or provide
other ways of separation (e.g. VLAN).

Suggestions on filtering frames can be found on kernel.org3.

Motivation The implementer is responsible for any security related issues
with providing a client with access to the private network. This might expose
devices ‘protected’ by NAT such as Network Attached Storage devices.

2.3.4.2 L3 Internet layer IP packets from the client MAY be limited to
network/connection management (e.g. DNS lookup for VPN endpoint) and the
VPN endpoint.

The AP MAY have one segregated network (e.g. VLAN) for all clients connecting
to the AP, allowing L3 filtering.

The 802.1x authentication is needed to provide the AP with the domain or IP
address to which it will allow the client to connect. The AP SHOULD only route
packets from the client to the VPN IP address.

2.3.4.3 L4 Transport layer The AP SHOULD filter based on the correct
IP protocol and port.

To enable the client to use multiple VPN protocols, the requirements in table 4
are given.

3https://wireless.wiki.kernel.org/en/developers/openwirelessmovement

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc826.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 15

Table 4: IP protocols

IP protocol ID RFC NAT public IP
Transmission Control (TCP) 0x06 793 SHOULD SHOULD
User Datagram (UDP) 0x11 768 MUST MUST
Generic Routing Encapsulation (GRE) 0x2F 2784 MAY MAY
Encap Security Payload (ESP) 0x32 4303 MAY MUST
Authentication Header (AH) 0x33 4302 MAY MUST

NAT refers to Network Address Port Translation (NAPT) (RFC2663) and public
IP when every client is given a public IP address.

When clients are provided with a public IP address, incoming traffic should also
be filtered.

The AP MAY filter well-known ports (below 1024), except for 22 (socks tunnel),
443 (HTTPS tunnel) and 500 (IKE for IPsec), but MUST allow ports (for
supported IP protocols) over 1024 when given in the identity.

Motivation Only UDP is considered a MUST have, which enables VPN
protocols such as OpenVPN, WireGuard and IPsec/IKE.

An AP operator MAY want to block ports associated with email or other well-
known ports. We need UDP 500 for Internet Key Exchange (IKE), which
switches to UDP 4500 for NAT Traversal as defined in RFC 3947 section 4.

If the AP provides public IP addresses to supplicants, it needs to support IP
protocol 0x32 ESP and 0x33 AH. IPsec does a check for NAT, when no NAT is
detected it will use ESP and AH instead of NAT Traversal.

Some ISPs block certain ports (Schellevis 2014), therefore we allow clients to
pick custom ports, matching their VPN endpoint.

2.3.4.4 DNS VPN clients MAY require DNS to lookup their VPN end-
point, therefore the AP MUST support Do53 (as defined by draft-hoffman-dns-
terminology-ter-01). The subdomain requirement in section Hostname enables
the AP to filter DNS queries which do not include the specified subdomain.

We see the adoption of encrypted DNS in web browsers (NCSC 2019) and
the Android operating system supports4 RFC7858 DoT. The AP MAY allow
encrypted DNS for DoT using port 853 or DoH using a whitelist of trusted
providers5. This results in the DNS query originating from the AP instead of
the VPN server, without intermediates (such as an ISP) being able to log the
DNS queries.

If the AP provider does not want its ISP to see any DNS queries from connecting
clients, it MAY hijack Do53 DNS traffic like some ISPs do (Farrokhi 2016), since
clients MAY NOT accept the DNS server from DHCP. This allows the AP to

4https://developers.google.com/speed/public-dns/docs/dns-over-tls
5https://www.chromium.org/developers/dns-over-https

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://tools.ietf.org/html/rfc793
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc768
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc2784
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc4303
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc4302
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc2663
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/rfc3947
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/html/draft-hoffman-dns-terminology-ter-01
https://tools.ietf.org/html/draft-hoffman-dns-terminology-ter-01
https://tools.ietf.org/html/rfc7858
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 16

tunnel the requests using a DoH proxy, which are provided by parties such as
Cloudflare6 and Facebook7.

Motivation The ability to filter DNS gives the AP provider more safety in
countries where this might be desired8.

The client MAY NOT accept the nameserver pushed by an AP, which is motivated
by:

• When users cannot use a custom DNS, they have less privacy when VPN
is off.

• Users may not know how to enable automatic nameserver configuration
through DHCP.

• Windows requires admin rights to change this.

2.3.5 VPN server

The AP SHOULD have a VPN server installed, enabling the operator of this
AP to connect to foreign APs using this VPN server, as shown in fig. 10. This
creates decentralized peer to peer tunnels between clients and their own AP
(being the VPN server).

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
#---m-------------------------=------------------->#

Figure 10: Client connects to VPN (snippet from fig. 3)

The VPN client will run on the mobile client, not the AP. Otherwise the AP
could do malicious activities using the IP address of the VPN server.

2.4 Test setup
This section describes the Proof of Concept (PoC) created to validate the protocol.
An overview of the components can be found in fig. 11.

AP (SoC) <-----L2----> router
_____________|_____________ _____|____

client |hostapd auth pre filter| |DHCP WAN| VPN

Figure 11: Components in test setup (snippet from fig. 3)

2.4.1 VPN

The VPN server used for testing was installed on a Linux server using
install-vpn-using-docker.sh9. The type of VPN server for testing is
motivated in section VPN protocols.

6https://developers.cloudflare.com/1.1.1.1/dns-over-https/cloudflared-proxy/
7https://facebookexperimental.github.io/doh-proxy/tutorials/simple-setup.html
8https://en.wikipedia.org/wiki/Political_repression_of_cyber-dissidents
9https://github.com/tunroam/scripts

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


2 METHOD 17

2.4.2 Configuring FreeRADIUS

We use FreeRADIUS, since it “is the most popular and the most widely deployed
RADIUS server”10. While Diameter (RFC3588) is a newer protocol, RADIUS
was chosen since it is a widely adopted protocol in existing wireless infrastructures
and routers.

We need three modifications on the authentication server:

• Allow our server to be reached from everywhere: for proxied requests
• Allow every user when doing the CHAP: one shared fixed password
• Install a pre-authorize script: verify identity and VPN endpoint

The first item was described in section 802.1x authentication server and the
other two can be found in section FreeRADIUS modifications.

Inner-tunnel The RADIUS server needs to be able to proxy the RADIUS
request when the supplicant set the validate_certificate flag. We mimic
this external authentication server by configuring a second server:

$ ls /etc/freeradius/*/sites-enabled
default inner-tunnel

Both these RADIUS servers run on the same SoC:

$ ss -4lpun|grep -E "(1812|Port)"
State Recv-Q Send-Q Local Address:Port Peer Address:Port
UNCONN 0 0 0.0.0.0:1812 0.0.0.0:*
UNCONN 0 0 127.0.0.1:18120 0.0.0.0:*

The PoC is not configured to be able to proxy to external RADIUS servers, but
the behavior is simulated by running two daemons.

2.4.3 Implemented policies

Section Network policies states that those policies are a SHOULD have. They
are not implemented on the PoC for the following reasons:

• During the demo, an open WiFi (after identity validation) would be more
desirable

• An actual implementation (e.g. on a campus) would not run all the com-
ponents on the same device

Therefore the scripts outputs network policies instead of setting them:

$ validate_anonid.py 11443_06443_00testA@tunroam.lent.ink
WARNING the additional value is not a port number
INFO suggesting whitelist rules
{ 'iptables-nft -A OUTPUT -j ACCEPT -d tunroam.lent.ink \

--protocol 17 --dport 443',
'iptables-nft -A OUTPUT -j ACCEPT -d tunroam.lent.ink \

--protocol 6 --dport 443' }
INFO Welcome aboard 11443_06443_00testA@localhost

10https://networkradius.com/doc/current/introduction/FreeRADIUS.html

https://tools.ietf.org/html/rfc3588
https://www.ietf.org/rfc/rfc2119.txt


3 RESULTS 18

In this output, the warning is caused by 00test. The validation is successful
since one or both of the other tuples (UDP and TCP 443) was found listening
on the specified hostname.

2.4.4 Hardware setup

During development, the debugging was done on:

cat /proc/cpuinfo|grep Model
Model : Raspberry Pi 3 Model B Rev 1.2

running the latest Raspbian OS. It was connected to the student’s home router.
The router was configured to do port forwarding (DMZ host option).

The configuration was captured in installation scripts11, which were used to
install a second SoC, an Orange Pi Zero Plus running the latest Armbian. This
second SoC was used during the presentation demo.

These *bian distributions were chosen since OpenWrt does not support WiFi on
the Orange Pi12.

The example flow described in section Protocol introduction uses a bridged setup.
For the presentation demo we decided to use NAT on the SoC, since this also
works when the physical port — the SoC connects to in the presentation rooms
— is allowed only one DHCP lease. Both the bridged and NAT setup can be
created using the installation scripts13.

3 Results
Following the infrastructure as code (IaC) paradigm, the installation scripts14

proved that it is feasible to construct a setup that enables the proposed protocol.

When we connected a client (tested on Chrome OS and Android) to the SoC
broadcasting the SSID, we were able to connect when the VPN endpoint specified
in the identity pointed to a valid socket (tested with TCP and UDP). Through
the logs we confirmed that the 802.1x authentication server on the SoC does:

• 802.1x identity parsing
• VPN endpoint validation15

• Is able to derive whitelist rules from the anonid, as seen in section Imple-
mented policies

11https://github.com/tunroam/networking
12https://openwrt.org/toh/hwdata/xunlong/xunlong_orange_pi_zero_plus
13https://github.com/tunroam/networking
14https://github.com/tunroam/networking
15https://github.com/tunroam/auth-server/blob/57a25dc04b2b5868f7c449f7ba15de0f10fc3551/validate_anonid.py#L62

http://www.orangepi.org/OrangePiZeroPlus/
https://www.armbian.com/orange-pi-zero-plus/


3 RESULTS 19

Communicating VPN endpoint

client |hostapd auth
| | |
#---b---># |
# #--c-->#

Figure 12: 802.1x identity forwarded to authentication server (snippet from
fig. 3)

The protocol describes how the 802.1x identity is used to encode the VPN
endpoint’s Protocols and ports. This identity is configured on the supplicant and
communicated (via hostapd) to the 802.1x authentication server, as shown in
fig. 12. This answers sub-question 1 of our Research question.

Implementing the protocol To answer sub-question 2 of our Research ques-
tion, we showed that the client is able to communicate the VPN endpoint using
the 802.1x identity. This requires modifications on the 802.1x authentication
server, without changes to the authentication client (hostapd) or supplicant
(e.g. smartphone).

We described the modifications to the RADIUS server in section FreeRADIUS
modifications.

Policies

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
#---k-------------------------=-----># | |
#<--------------------------------l--# | |
#---m-------------------------=------------------->#

Figure 13: Network policies enforced on client (snippet from fig. 3)

To answer sub-question 3 of our Research question, we discussed Network policies
that enable the AP to limit the outgoing traffic of clients to VPN traffic, as
shown in fig. 13. DNS queries can be filtered by the AP through the required
subdomain in the Hostname.

We showed example firewall rules that can be implemented. In our Test setup,
these rules are set in the custom Pre-authorize script, used by the 802.1x
authentication server.

VPN servers might aim to appear as a different service, such as a HTTPS web
server, to avoid being blocked. Therefore the current protocol only verifies if a
socket is open, without any additional checks. This approach allows clients to
use different VPN protocols.



4 DISCUSSION 20

Testing the protocol The PoC used at the presentation demo shows that
the protocol is feasible. When clients attempt to connect, the authentication
server validates their VPN endpoint and is able to set Network policies. The
PoC was created using the installation scripts16 and answers sub-question 4 of
our Research question.

Additional The following findings do not contribute to the protocol we devel-
oped. However, they do provide insights for future research.

• The router used for our research is able to function as a RADIUS client,
however, this was disabled by the ISP and updating the firmware was
deemed infeasible (Lentink 2019).

• Some IoT electronics we tested only support Wi-Fi using pre-shared key
(PSK).

• OpenWrt has options for remote control17, which allows an external au-
thentication server supporting this protocol to push network policies.

4 Discussion
Networks that only allow VPN traffic were already implemented, but we showed
that it is possible to allow for dynamic VPN endpoint validation and whitelisting
of specific IP protocols and ports. We use the 802.1x identity to communicate
the VPN endpoint from the supplicant to the 802.1x authentication server.

Access Point (AP) providers can use this Open Source solution to share their
internet without liability concerns. The protocol is decentralized, requiring no
external dependencies for the AP provider.

Users connecting to these APs have enhanced privacy on all networks they
connect to if they leave their VPN always on. Users enjoy more Wi-Fi networks
they can join and are not presented a captive portal on networks implementing
this protocol.

Potential AP providers include shared office space or housing, consumer routers
(e.g. by using a SoC) or current open Wi-Fi providers. These providers need to
configure the modified authentication server and allow it to set network policies.

Psychology of adoption Since the impact of this concept is dependent on the
adoption, we need to consider that limiting some users could actually increase the
adoption of APs. This could increase the network effect (as used in economics).

Clients specify the VPN they connect to, being either a VPN provider (not
adding an extra AP to the network) or another AP with VPN server, as shown
in fig. 14.

For larger parties providing free wifi, there is no incentive to filter clients using
a VPN provider. Home providers of APs could desire to only allow clients who
also provide an AP. This partisanship is also seen in MIT License versus General
Public License (GPL) for software; the former allows anyone to use it, while the
latter requires one to have the same shared value: open source.

16https://github.com/tunroam/networking
17https://openwrt.org/docs/guide-user/services/remote_control/ostiary.server

https://www.draytek.com/support/knowledge-base/5680
https://en.wikipedia.org/wiki/Network_effect


4 DISCUSSION 21

Figure 14: Client connects to VPN endpoint via foreign AP

This concept could lead to the same bigotry. However, the AP is not able to
distinguish the two parties without a blacklist. And even with a blacklist of
DNS records, one could duplicate the records under another apex, pointing to
the public VPN provider.

The requirement of providing an external RADIUS server does not enforce this
either. Offering a free RADIUS server to couple with an existing VPN provider
will generate data for the RADIUS provider, creating an incentive to create such
a service.

4.1 Limitations
We expect it to be unlikely that this protocol will be supported by ISP provided
routers, since using a home location as a VPN endpoint will double the traffic
to that router for a client when using it remotely. Using a VPN also impacts
the latency and bandwidth of the client.

The specification states that the network SHOULD enforce Network policies,
which is not implemented in our Test setup. While this does adhere to the
specification, it is an undesirable situation. We argue that it is feasible to enforce
network policies, with the tool described in section Netfilter, using the custom
python script described in section Implemented policies.

Adherence specification The Proof of Concept (PoC) (created using the
installation scripts) does not implement the full protocol.

The ability to set the validate_certificate flag is not implemented (to have
the request being proxied to an external RADIUS server). We argue that this is
possible (as seen in the implementation of the Eduroam network) and considered
it out of scope for this research.

The PoC currently proxies the request to a second authentication server on the
same device, the Inner-tunnel.

4.2 Future work
This section discusses some potential future work, topics that may enrich or
strengthen the protocol or implementations of it.

Dynamic DNS When the VPN endpoint or the RADIUS server proxied to
is located at a home location without a fixed IP address, the server should be

https://www.ietf.org/rfc/rfc2119.txt


4 DISCUSSION 22

able to update its DNS records when the IP address changes. Besides DNS,
other options exists such as dynamic IPsec or Tunnel Endpoint Discovery (TED).
Future research could explore ways to implement this.

RADIUS as a Service If an external party offers to serve as a RADIUS
server implementing this protocol; what would be the (trust/security/privacy)
implications? This would allow an existing wireless infrastructure to use this
external RADIUS server and would receive access control list (ACL) rules in
return (if no rules, client is Rejected). The RADIUS server will receive data on
connecting clients.

Malicious usage without VPN The current protocol recommends IP pro-
tocol and port number filtering. An attacker could use the identity to point to
an DoH DNS resolver (e.g. 06443_11443a@[8.8.8.8|1.1.1.1]) and use that
to resolve a website. When the IP address of the website is known, the at-
tacker disconnects and reconnects, with the IP address of the website set in the
anonid realm. This allows the attacker to visit the website (e.g. by modifying
/etc/hosts) without VPN, leaking the server name indication (SNI) to the ISP
of the AP provider.

Future research could look into (deep) packet inspection (DPI) or other ways to
avoid this potential abuse case.

DNS log poisoning When the AP provider is the target, an attacker could
use tunroam.illegalcontent.tld in the realm part of the identity, resulting
in the DNS query being observed by the AP’s ISP. Future research could explore
ways to mitigated this attack.

Automatic VPN client Some devices can be configured to automatically
enable a VPN for specific network configurations. Future research could explore
ways to dynamically enable VPN on clients for specific SSIDs.

802.11u For this research we used a shared SSID, just like Eduroam does.
It might be possible to propose a new ‘Access Network Type’ to the 802.11u
specification or use the ‘Venue Name information’ field.

Another option is to use the ‘Network Authentication Type’ field to redirect to
a local server and have the required configuration stored in localStorage in the
browser.

Future research could explore options to avoid the requirement of a shared SSID,
allowing companies to broadcast their own name as SSID while supporting the
protocol.

Additional

• Bandwidth management
• Quality of Service (QoS)
• Interoperability between IPv6 and IPv4, see section IPv6
• Performance measurements and optimizations

https://www.reddit.com/r/tasker/comments/2aml7b/howtoquestion_start_openvpn_connect_profile_when/
https://en.wikipedia.org/wiki/IPv6_transition_mechanism


4 DISCUSSION 23

• Additional security, such as update policies for the device with exposed
ports

• Passpoint (Hotspot 2.0)
• Propagating AP info using IEEE 802.11u-2011
• Create OpenWrt package of the protocol
• Can we store the VPN certificate in DNS (DANE) and retrieve it on the

client (browser) using DoH?

4.3 Conclusion
We have designed a protocol using existing protocols available on commercially
off the shelf (COTS) clients that eliminates the need for trust between client
and Wi-Fi provider by using a VPN tunnel. Q.E.D.

We showed how the 802.1x identity can be used to communicate the VPN
endpoint of a supplicant to an AP, answering sub-question 1 of our Research
question. Section Configuring FreeRADIUS details the modifications we made to
the 802.1x authentication server and section Implemented policies showed how
the Network policies could be implemented, answering sub-question 2. To answer
sub-question 3, we detailed Network policies that the AP MAY implement.

We showed through a Proof of Concept (PoC) that a FreeRADIUS authentication
server is able to authorize a supplicant when they provide a valid VPN endpoint,
answering sub-question 4 of our Research question. The authentication server is
able to first validate the VPN endpoint and then whitelist the endpoint through
network policies.

The TUNroam protocol enables supplicants who have a VPN client installed, to
automatically connect (without captive portal) to participating Wi-Fi networks.
The provider of the AP is able to safely share his internet connection through
whitelisting VPN endpoints, without liability concerns.

https://www.wi-fi.org/discover-wi-fi/passpoint
https://webresources.ruckuswireless.com/pdf/wp/wp-how-interworking-works.pdf
https://www.ietf.org/rfc/rfc2119.txt


5 APPENDICES 24

5 Appendices
5.1 IPv6
We assume that every VPN endpoint has either one public IPv4 address (or
access to it through port forwarding) or a dual stack from which the endpoint
has at least one public IPv6 address and access to IPv4, either direct or through
NAT.

AP VPN server
case 1____________ ________

|IPv4 | |IPv4 |
| |---IPv4-->| |
|____________| |________|

case 2____________ ________
|NAT IPv4 | |IPv4 |
|IPv6 |---IPv4-->| |
|____________| |________|

case 3____________ ________
|NAT IPv4 | |NAT IPv4|
|IPv6 |---IPv6-->|IPv6 |
|____________| |________|

case 4____________ ________
|IPv4 | |NAT IPv4|
|IPv4 to IPv6|---IPv6-->|IPv6 |
|____________| |________|

Figure 15: Possible situations of home internet connections

The first three cases shown in fig. 15 are feasible. Case 4 requires translation
between v4 and v6.

We expect that with port forwarding, not having the IP on the NIC, case 4 is
not possible. We consider this to be future work.

5.2 EAP protocols
This section motivates the EAP protocol we use. We looked at which EAP proto-
cols are available by default on consumer electronics, which do not authenticate
via cellular/SIM.

The mobile devices are composed of an older (5.1) and supported version (9) of the
mobile Operating System (OS) with the largest market share (“Mobile Operating
System Market Share Worldwide” 2019). For the desktop environments we looked
at a corporate Windows laptop and Chrome OS. The data on Apple devices is
retrieved from *.apple.com.

https://labs.ripe.net/Members/emileaben/6to4-why-is-it-so-bad


5 APPENDICES 25

Android 5.1 (Moto G first gen.)

• 802.1x EAP
– PEAP

∗ None
∗ MSCHAPV2
∗ GTC

– TLS
– TTLS

∗ None
∗ PAP
∗ MSCHAP
∗ MSCHAPV2
∗ GTC

– PWD

Android 9 (Mi A1, Android ONE)

• 802.1x EAP
– PEAP

∗ None
∗ MSCHAPV2
∗ GTC

– TLS
– TTLS

∗ None
∗ PAP
∗ MSCHAP
∗ MSCHAPV2
∗ GTC

– PWD

Chrome OS (77.0.3865.35)

• EAP
– LEAP
– PEAP

∗ EAP-MD5
∗ MSCHAPV2

– EAP-TLS
– EAP-TTLS

∗ EAP-MD5
∗ MSCHAP
∗ MSCHAPV2
∗ PAP
∗ CHAP
∗ GTC

Mac

• 802.1x



5 APPENDICES 26

– TLS
– EAP–FAST
– MD5
– LEAP
– TTLS (“WiFi.EAPClientConfiguration,” n.d.)

∗ PAP
∗ EAP
∗ CHAP
∗ MSCHAP
∗ MSCHAPv2

– PEAP (“Mac Os X 10.5: How to Configure Network Preferences for
802.1X” 2014)

∗ MSCHAPv2
∗ MD5
∗ GTC

iOS The following applies to “iOS 12.3 and later” (“Use Your Homepod on an
802.1X Wi-Fi Network” 2019).

• 802.1X
– PEAP
– EAP-TLS
– EAP-TTLS
– EAP-FAST

Windows 10 (1803)

• WPA2-Enterprise AES
– Smart Card or other certificate
– Protected EAP (PEAP)

∗ Smart Card or other certificate
∗ Secured password (EAP-MSCHAP v2)

– EAP-TTLS
∗ Unencrypted password (PAP)
∗ Challenge Handshake Authentication Protocol (CHAP)
∗ Microsoft CHAP (MS-CHAP)
∗ Microsoft CHAP Version 2 (MS-CHAP v2)
∗ Smart Card or other certificate
∗ Secured password (EAP-MSCHAP v2)

• 802.11x WEP
– Protected EAP (PEAP)

∗ Smart Card or other certificate
∗ Secured password (EAP-MSCHAP v2)

– EAP-TTLS
∗ Unencrypted password (PAP)
∗ Challenge Handshake Authentication Protocol (CHAP)
∗ Microsoft CHAP (MS-CHAP)
∗ Microsoft CHAP Version 2 (MS-CHAP v2)
∗ Smart Card or other certificate
∗ Secured password (EAP-MSCHAP v2)



5 APPENDICES 27

5.2.1 Intersection

The intersection of the observed devices gives us:

• 802.1x
– PEAP

∗ MS-CHAP v2
– TTLS

∗ PAP
∗ MSCHAP
∗ MSCHAPV2

However, on Windows 7 TTLS requires additional software (Fan 2016). This
results in PEAP-MSCHAPv2, which is also suggested by FreeRADIUS18

and is available at many Eduroam networks, such as those at the University of
Amsterdam, University Utrecht, Cornell, Rijks University Groningen, Leiden
University, University of Edinburgh and MIT.

5.3 VPN protocols
We reason that providers of paid VPN service want to support the VPN protocols
with the largest market adoption. From the subset of these protocols we explore
which one would be the best for our use case.

We took the top VPN providers from three comparisons articles. The top two
ranked were NordVPN and ExpressVPN (Gewirtz 2019) (VPNdiensten 2019)
(Athow 2019).

NordVPN NordVPN lists the following options19:

• OpenVPN
• IKEv2/IPsec

ExpressVPN ExpressVPN lists the following options20:

• OpenVPN
• PPTP MPPE: MSCHAP, MSCHAPv2 (PPTP is less secure)

When we look at these protocols, both IKEv2/IPsec and OpenVPN are secure
solutions. Chrome OS require L2TP for using IKEv2, which requires more open
ports than OpenVPN. OpenVPN allows us to filter on one port for UDP, which
is what we used during our research.

5.3.1 OpenVPN

Besides requiring only one port, OpenVPN will “always first try UDP, and if that
fails, then try TCP.”21 This allows our AP to whitelist UDP traffic, enabling
the client to use TCP on other networks where UDP is blocked. This was the
second motivation for picking OpenVPN over IPsec during testing.

18https://networkradius.com/doc/current/raddb/mods-available/eap/peap.html
19https://nordvpn.com/tutorials/linux/
20https://www.expressvpn.com/support/vpn-setup/#linux-setup
21https://openvpn.net/faq/why-does-openvpn-use-udp-and-tcp/

https://extranet.uva.nl/content/a-z/draadloos-internet-voor-bezoekers/beveiliging/beveiliging.html?1571231074718
https://extranet.uva.nl/content/a-z/draadloos-internet-voor-bezoekers/beveiliging/beveiliging.html?1571231074718
https://handleidingen.uu.nl/handleiding/eduroam-op-chromeos/
https://it.cornell.edu/wifi/connect-eduroam-android
https://www.rug.nl/umcg/diensten/ictsupport/produktendiensten/handleidingen2/eduroam-windows7.pdf
https://www.student.universiteitleiden.nl/binaries/content/assets/ul2staff/ict/handleidingen/manual-connecting-to-wifi-2018-eng.pdf
https://www.student.universiteitleiden.nl/binaries/content/assets/ul2staff/ict/handleidingen/manual-connecting-to-wifi-2018-eng.pdf
https://www.ed.ac.uk/information-services/computing/desktop-personal/wifi-networking/configure-device/eduroam-android
http://kb.mit.edu/confluence/pages/viewpage.action?pageId=152599592
https://support.google.com/chromebook/answer/1282338?hl=en


5 APPENDICES 28

5.3.2 Preinstalled

We observed that OpenVPN is usually not supported by default on OSes (except
Chrome OS) but IPsec based tunnels are. This made us decide that the protocol
MUST support Multiple protocols and ports.

5.3.3 Suggestion

The VPN provides a client with access to APs implementing this protocol. The
VPN will also provide additional security when using other Wi-Fi APs. We
therefore suggest to use a VPN on all foreign Wi-Fi networks.

One MAY use OpenVPN with port 443 TCP and UDP. This will work on regular
public Wi-Fi that have TCP 443 (HTTPS) whitelisted.

5.4 Pseudo code parse identity
We prove some example code in ECMAScript 6, which can be tested in the
terminal of a web browser.

// https://tools.ietf.org/html/rfc4648 section 6
const BASE32_STR = 'abcdefghijklmnopqrstuvwxyz234567'
// https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
const MY_SUPPORTED_IP_PROTOCOLS = {

'0x06' : (dest,port) => {return whitelist(dest,'tcp',port)},
'0x11' : (dest,port) => {return whitelist(dest,'udp',port)},
'0x32' : (dest) => {return whitelist(dest,'esp')},
'0x33' : (dest) => {return whitelist(dest,'ah')}

}
function whitelist(dest, protocol, port){

var result = "iptables-nft -A OUTPUT -j ACCEPT -d " +
dest + " --protocol " + protocol

if (port) return result + " --dport " + port
else return result

}
function char_to_flags(char){

const i = BASE32_STR.indexOf(char.toLowerCase())
if (i === -1) return false
// We prefix zeros for when the value is less than 16
const binary_str = '0000' + (i).toString(2)
return {

validate_cert: Number(binary_str.substr(-1,1)),
RESERVED0 : Number(binary_str.substr(-2,1)),
RESERVED1 : Number(binary_str.substr(-3,1)),
RESERVED2 : Number(binary_str.substr(-4,1)),
RESERVED3 : Number(binary_str.substr(-5,1))

}
}
function isIPaddr(str){ // up to implementer to insert regex for ipv4/ipv6

return true
}

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


5 APPENDICES 29

// WARNING this code does no input validation
function parseIdentity(id){

const userpart = id.split('@')[0].toLowerCase()
const realm = id.split('@')[1].toLowerCase()
const flags_char = userpart[userpart.length-1]
const server_addr = realm
if (! isIPaddr(realm) &&

(realm.indexOf('tunroam.') === -1))
return "ERROR required subdomain missing in hostname"

var requested_list = userpart.substr(0,userpart.length-1).split('_')
var rulelist = []
for (const i of requested_list){

const prid = '0x' + i.substr(0,2) // protocolid
const additional_info = i.substr(2)
if (additional_info == '53') return 'Rejected, no DNS port allowed'
if (prid in MY_SUPPORTED_IP_PROTOCOLS){

const rule = MY_SUPPORTED_IP_PROTOCOLS[prid](server_addr,additional_info)
rulelist.push(rule)

}
}
return {

rules : rulelist,
server_addr: server_addr,
flags: char_to_flags(flags_char)

}
}

parseIdentity('11500_114500_32_33a@10.10.10.10')

5.5 FreeRADIUS modifications
This section shows some of the modifications done on the FreeRADIUS server.
For the Python code and the installation script, see the source code22.

Overview FreeRADIUS configuration

• radiusd.conf configuration loaded by daemon
– some general configuration
– INCLUDE proxy.conf
– INCLUDE client.conf
– modules section

∗ INCLUDE mods-enabled/
– policy section

∗ INCLUDE policy.d/
– INCLUDE sites-enabled/

We observe that the main configuration includes 3 files in its main context.
22https://github.com/tunroam/auth-server



5 APPENDICES 30

5.5.1 Pre-authorize

client |hostapd auth pre filter| |DHCP WAN| VPN
| | | | | | | |
# # #--d--># | | | |
# # # #--e----------------------->#
# # # f | | | |
# # # #--g--># | | |
# # #<--h--# | | | |

Figure 16: Custom pre-authorize script flow (snippet from fig. 3)

The rlm_python module provides a template and an example script. How to
call the Python functions, is shown in experimental.conf. The mapping to
the function names is done in mods-available/python. The functions are able
to being called through rlm_attr_filter.

# $ apropos rlm_ # use this to find other modules
$ man rlm_attr_filter|grep -A 18 SECTIONS|grep -v ^$
SECTIONS

preacct
Filters Accounting-Request packets.

accounting
Filters Accounting-Response packets.

pre-proxy
Filters Accounting-Request or Access-Request packets prior to proxying them.

post-proxy
Filters Accounting-Response, Access-Accept, Access-Reject, or Access-Challenge responses from a home server.

authorize
Filters Access-Request packets.

post-auth
Filters Access-Accept or Access-Reject packets.

We implement the protocol in the authentication server by setting it as an
authorize function. We inserted it before (P)EAP, enabling the script to judge
if to Accept or Reject (step f in fig. 16).

When running the authentication server in debug mode, we observed that it first
goes through the authorize section:

freeradius -X &
echo "User-Name=bob,Chap-Password=hello" | radclient -x localhost auth testing123

Sent Access-Request Id 77 from 0.0.0.0:32774 to 127.0.0.1:1812 length 44
User-Name = "bob"
CHAP-Password = 0xc01e12815a584bfb57210f5435ff843b8a
Cleartext-Password = "hello"

(0) Received Access-Request Id 77 from 127.0.0.1:32774 to 127.0.0.1:1812 length 44
(0) User-Name = "bob"
(0) CHAP-Password = 0xc01e12815a584bfb57210f5435ff843b8a
(0) # Executing section authorize from file /etc/freeradius/3.0/sites-enabled/default

https://wiki.freeradius.org/modules/Rlm_python
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/src/modules/rlm_python/example.py
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/src/modules/rlm_python/prepaid.py
https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/experimental.conf
https://freeradius.org/modules/?mod=rlm_attr_filter


5 APPENDICES 31

(0) authorize {
(0) policy filter_username {

Python3 We observe that the package manager on Raspbian 10 provides
FreeRADIUS v3.0.17, while Github provides v3.0.20, which includes Python3.
The discussion on Github suggests it will use a different format and — at the
moment of writing — is under active development23. We will create our script
using Python3, since Python2 is end of life (EOL) in less than a month.

The Python3 script is called from Python2, see the source code24 for details.

5.5.2 CHAP

For the Challenge-Handshake Authentication Protocol to be performed, the server
needs to know the plaintext password.

For the authentication we used rlm_eap_peap which is a sub module of rlm_eap,
which will use rlm_eap_mschapv2, which in turn requires rlm_mschap.

The server validates the password using the innerid and the password field
configured in the supplicant. FreeRADIUS allows to have a second server (locally
or proxy to external for the validate_certificate flag) to do the password
validation inside the TLS tunnel (used in PEAP and TTLS).

We used FreeRADIUS by running two servers as described in section Inner-tunnel.

The inner tunnel needs the plaintext password, which we set in the authorize
module using a custom Python script:

return RLM_MODULE_OK, (), \
( ('Cleartext-Password', 'password'), )

5.6 Netfilter
For the network policies we used nftables since it is the successor to firewalld
(Garver 2018) and iptables (Debian 2019).

apt show nftables 2> /dev/null|grep replaces
nftables replaces the old popular iptables, ip6tables, arptables and ebtables.

We used the old iptables syntax for familiarity, using:

$ apropos iptables-nft
iptables-nft (8) - iptables using nftables kernel api
iptables-nft-restore (8) - iptables using nftables kernel api
iptables-nft-save (8) - iptables using nftables kernel api

23https://github.com/FreeRADIUS/freeradius-server/issues/2351
24https://github.com/tunroam/auth-server

https://github.com/FreeRADIUS/freeradius-server/blob/v3.0.x/raddb/mods-available/python3
https://networkradius.com/doc/current/raddb/mods-available/eap/peap.html
https://networkradius.com/doc/current/raddb/mods-available/eap.html
https://networkradius.com/doc/current/raddb/mods-available/eap/mschapv2.html
https://networkradius.com/doc/current/raddb/mods-available/mschap.html


5 APPENDICES 32

References
Amnesty. 2019. “Amnesty International Global Report: Death Sentences and

Executions 2018.” https://www.amnesty.org/download/Documents/ACT50
98702019ENGLISH.PDF.

Athow, Desire. 2019. “The Best Vpn Service 2019.” https://www.itproportal.co
m/guides/best-vpn-service/.

Chamberlain, Kendra. 2019. “Municipal Broadband Is Roadblocked or Outlawed
in 26 States.” https://broadbandnow.com/report/municipal-broadband-
roadblocks/.

Consolvo, Sunny, Jaeyeon Jung, Ben Greenstein, Pauline Powledge, Gabriel
Maganis, and Daniel Avrahami. 2010. “The Wi-Fi Privacy Ticker: Im-
proving Awareness &#38; Control of Personal Information Exposure on
Wi-Fi.” In Proceedings of the 12th Acm International Conference on Ubiq-
uitous Computing, 321–30. UbiComp ’10. New York, NY, USA: ACM.
https://doi.org/10.1145/1864349.1864398.

Debian. 2019. “Nftables.” https://wiki.debian.org/nftables.

Eckersley, Peter. 2011. “Why We Need an Open Wireless Movement.” https:
//www.eff.org/deeplinks/2011/04/open-wireless-movement.

Fan, Carl. 2016. “Windows 7 Wired 802.1x Eap-Ttls Authentication Method.”
MicrosoftTechnet. https://docs.microsoft.com/en-us/windows/client-
management/advanced-troubleshooting-802-authentication.

Farrokhi, Babak. 2016. “Is Your Isp Hijacking Your Dns Traffic?” https://labs.r
ipe.net/Members/babak_farrokhi/is-your-isp-hijacking-your-dns-traffic.

Garver, Eric. 2018. “Firewalld: The Future Is Nftables.” https://developers.red
hat.com/blog/2018/08/10/firewalld-the-future-is-nftables/.

Gewirtz, David. 2019. “The Best Vpn Services for 2019.” Cnet. https://www.cn
et.com/best-vpn-services-directory/.

Gupta, Vishal, and Mukesh Kumar Rohil. 2012. “Enhancing Wi-Fi with Ieee
802.11 U for Mobile Data Offloading.” International Journal of Mobile
Network Communications & Telematics (IJMNCT) 2 (4): 19–29. https:
//www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_E
nhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/li
nks/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-
Mobile-Data-Offloading.pdf.

Gurley, Bill, and Patrick O’Shaughnessy. 2019. “All Things Business and
Investing.” http://investorfieldguide.com/gurley/#51m12s.

Hainsworth, Paul. 2018. “Open Garden: Building the Internet of Us. Hello
World, Part 2.” https://medium.com/open-garden-official/open-garden-
building-the-internet-of-us-hello-world-part-2-4caf5520f2bc.

Klasnja, Predrag, Sunny Consolvo, Jaeyeon Jung, Benjamin M. Greenstein,
Louis LeGrand, Pauline Powledge, and David Wetherall. 2009. “"When I
Am on Wi-Fi, I Am Fearless": Privacy Concerns & Practices in Eeryday

https://www.amnesty.org/download/Documents/ACT5098702019ENGLISH.PDF
https://www.amnesty.org/download/Documents/ACT5098702019ENGLISH.PDF
https://www.itproportal.com/guides/best-vpn-service/
https://www.itproportal.com/guides/best-vpn-service/
https://broadbandnow.com/report/municipal-broadband-roadblocks/
https://broadbandnow.com/report/municipal-broadband-roadblocks/
https://doi.org/10.1145/1864349.1864398
https://wiki.debian.org/nftables
https://www.eff.org/deeplinks/2011/04/open-wireless-movement
https://www.eff.org/deeplinks/2011/04/open-wireless-movement
https://docs.microsoft.com/en-us/windows/client-management/advanced-troubleshooting-802-authentication
https://docs.microsoft.com/en-us/windows/client-management/advanced-troubleshooting-802-authentication
https://labs.ripe.net/Members/babak_farrokhi/is-your-isp-hijacking-your-dns-traffic
https://labs.ripe.net/Members/babak_farrokhi/is-your-isp-hijacking-your-dns-traffic
https://developers.redhat.com/blog/2018/08/10/firewalld-the-future-is-nftables/
https://developers.redhat.com/blog/2018/08/10/firewalld-the-future-is-nftables/
https://www.cnet.com/best-vpn-services-directory/
https://www.cnet.com/best-vpn-services-directory/
https://www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_Enhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/links/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-Mobile-Data-Offloading.pdf
https://www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_Enhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/links/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-Mobile-Data-Offloading.pdf
https://www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_Enhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/links/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-Mobile-Data-Offloading.pdf
https://www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_Enhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/links/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-Mobile-Data-Offloading.pdf
https://www.researchgate.net/profile/Mukesh_Rohil/publication/268258653_Enhancing_Wi-Fi_with_IEEE_80211u_for_Mobile_Data_Offloading/links/54d1b4a80cf28370d0e0ff56/Enhancing-Wi-Fi-with-IEEE-80211u-for-Mobile-Data-Offloading.pdf
http://investorfieldguide.com/gurley/#51m12s
https://medium.com/open-garden-official/open-garden-building-the-internet-of-us-hello-world-part-2-4caf5520f2bc
https://medium.com/open-garden-official/open-garden-building-the-internet-of-us-hello-world-part-2-4caf5520f2bc


5 APPENDICES 33

Wi-Fi Use.” In Proceedings of the Sigchi Conference on Human Factors
in Computing Systems, 1993–2002. CHI ’09. New York, NY, USA: ACM.
https://doi.org/10.1145/1518701.1519004.

Lentink, Sander. 2019. “TMobile Thuis Router in Bridge Mode Krijgen.”
https://blog.lent.ink/post/tmobile-draytek-bridge-mode/.

“Mac Os X 10.5: How to Configure Network Preferences for 802.1X.” 2014.
AppleSupport. https://support.apple.com/en-us/HT3326.

“Mobile Operating System Market Share Worldwide.” 2019. https://gs.statcount
er.com/os-market-share/mobile/worldwide.

NCSC. 2019. “Factsheet Dns Monitoring Will Get Harder.” https://english.ncsc
.nl/publications/factsheets/2019/oktober/2/factsheet-dns-monitoring-will-
get-harder.

Ojeda-Zapata, Julio. 2014. “Don’t Panic, but That Public Wi-Fi Is Coming
from ... Inside Your House.” https://www.twincities.com/2014/02/01/dont-
panic-but-that-public-wi-fi-is-coming-from-inside-your-house/.

“Open Wi-Fi and Copyright: A Primer for Network Operators.” 2014. Electronic
Frontier Foundation. https://www.ef f.org/files/2014/06/03/open-wifi-
copyright.pdf.

“PEAP Identity Privacy Support in Windows7.” 2009. https://blogs.msdn
.microsoft.com/eapteam/2009/01/16/peap-identity-privacy-support-in-
windows7/.

Sastry, Nishanth, Jon Crowcroft, and Karen R Sollins. 2007. “Architecting
Citywide Ubiquitous Wi-Fi Access.” In HotNets. https://svn.wirelessleiden.n
l/svn/projects/802.1x/ontwikkeling_authenticatiesysteem_2009/diversen
/Architecting%20City%20wide%20Ubiquitous%20W--Fi%20Access.pdf.

Schellevis, Joost. 2014. “Telenet Heft Blokkade Poorten Onder 1024 Op.”
https://tweakers.net/nieuws/99860/telenet-heft-blokkade-poorten-onder-
1024-op.html.

Schneier, Bruce. 2008. “My Open Wireless Network.” https://www.schneier.c
om/blog/archives/2008/01/my_open_wireles.html.

“Use Your Homepod on an 802.1X Wi-Fi Network.” 2019. AppleSupport. https:
//support.apple.com/en-hk/HT209643.

VPNdiensten. 2019. “Beste Vpn Providers in 2019.” https://vpndiensten.nl/inf
ormatie/providers/beste-vpn/.

Wierenga, Klaas, and Licia Florio. 2005. “Eduroam: Past, Present and Future.”
Computational Methods in Science and Technology 11 (2): 169–73. http://li
b.psnc.pl/Content/593/10.12921_cmst.2005.11.02.169-173_Wierenga.pdf.

“WiFi.EAPClientConfiguration.” n.d. Developer Documentation. https://develo
per.apple.com/documentation/devicemanagement/wifi/eapclientconfigurat
ion.

Yu, Haoran, Man Hon Cheung, Lin Gao, and Jianwei Huang. 2017. “Public Wi-
Fi Monetization via Advertising.” IEEE/ACM Transactions on Networking

https://doi.org/10.1145/1518701.1519004
https://blog.lent.ink/post/tmobile-draytek-bridge-mode/
https://support.apple.com/en-us/HT3326
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://english.ncsc.nl/publications/factsheets/2019/oktober/2/factsheet-dns-monitoring-will-get-harder
https://english.ncsc.nl/publications/factsheets/2019/oktober/2/factsheet-dns-monitoring-will-get-harder
https://english.ncsc.nl/publications/factsheets/2019/oktober/2/factsheet-dns-monitoring-will-get-harder
https://www.twincities.com/2014/02/01/dont-panic-but-that-public-wi-fi-is-coming-from-inside-your-house/
https://www.twincities.com/2014/02/01/dont-panic-but-that-public-wi-fi-is-coming-from-inside-your-house/
https://www.eff.org/files/2014/06/03/open-wifi-copyright.pdf
https://www.eff.org/files/2014/06/03/open-wifi-copyright.pdf
https://blogs.msdn.microsoft.com/eapteam/2009/01/16/peap-identity-privacy-support-in-windows7/
https://blogs.msdn.microsoft.com/eapteam/2009/01/16/peap-identity-privacy-support-in-windows7/
https://blogs.msdn.microsoft.com/eapteam/2009/01/16/peap-identity-privacy-support-in-windows7/
https://svn.wirelessleiden.nl/svn/projects/802.1x/ontwikkeling_authenticatiesysteem_2009/diversen/Architecting%20City%20wide%20Ubiquitous%20W--Fi%20Access.pdf
https://svn.wirelessleiden.nl/svn/projects/802.1x/ontwikkeling_authenticatiesysteem_2009/diversen/Architecting%20City%20wide%20Ubiquitous%20W--Fi%20Access.pdf
https://svn.wirelessleiden.nl/svn/projects/802.1x/ontwikkeling_authenticatiesysteem_2009/diversen/Architecting%20City%20wide%20Ubiquitous%20W--Fi%20Access.pdf
https://tweakers.net/nieuws/99860/telenet-heft-blokkade-poorten-onder-1024-op.html
https://tweakers.net/nieuws/99860/telenet-heft-blokkade-poorten-onder-1024-op.html
https://www.schneier.com/blog/archives/2008/01/my_open_wireles.html
https://www.schneier.com/blog/archives/2008/01/my_open_wireles.html
https://support.apple.com/en-hk/HT209643
https://support.apple.com/en-hk/HT209643
https://vpndiensten.nl/informatie/providers/beste-vpn/
https://vpndiensten.nl/informatie/providers/beste-vpn/
http://lib.psnc.pl/Content/593/10.12921_cmst.2005.11.02.169-173_Wierenga.pdf
http://lib.psnc.pl/Content/593/10.12921_cmst.2005.11.02.169-173_Wierenga.pdf
https://developer.apple.com/documentation/devicemanagement/wifi/eapclientconfiguration
https://developer.apple.com/documentation/devicemanagement/wifi/eapclientconfiguration
https://developer.apple.com/documentation/devicemanagement/wifi/eapclientconfiguration


5 APPENDICES 34

25 (4): 2110–21. https://arxiv.org/pdf/1609.01951.pdf.

https://arxiv.org/pdf/1609.01951.pdf

	Introduction
	Research question
	Related work
	Related wireless solutions


	Method
	Protocol introduction
	Protocol: Supplicant
	802.1x credentials
	VPN

	Protocol: AP Specification
	802.1x identity
	802.1x authentication server
	Wireless configuration
	Network policies
	VPN server

	Test setup
	VPN
	Configuring FreeRADIUS
	Implemented policies
	Hardware setup


	Results
	Discussion
	Limitations
	Future work
	Conclusion

	Appendices
	IPv6
	EAP protocols
	Intersection

	VPN protocols
	OpenVPN
	Preinstalled
	Suggestion

	Pseudo code parse identity
	FreeRADIUS modifications
	Pre-authorize
	CHAP

	Netfilter

	References

