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Abstract—With the development of programmable network de-
vices, in-band network telemetry includes telemetry data directly
in packets. An efficient means for the data collection is required to
process large amounts of this data in real-time. The P4 language
can be used to extract telemetry data from incoming packets,
as it allows for efficient controlling of the data plane of network
devices. Remote direct memory access allows for direct placement
of data into the memory of an external machine, removing the
need for CPU involvement. This research aims to provide a
solution that uses P4 combined with remote direct memory access
to extract and store telemetry data efficiently. We implemented
the remote direct memory access over Ethernet protocol in a
switch using a P4 program. The program keeps the state of
the variables required to perform a write-only operation from
the switch to a collector machine. The telemetry data is stored
on persistent storage in the machine using memory mapping.
Experiments with this implementation show that the telemetry
data is saved to the designated addresses. With this solution,
telemetry data transfers can be performed directly to virtual
memory. We were able to achieve a rate of around 20 million
packets per second without any packet loss. This implementation
would only be useful in a lossless network, since the NIC will
ignore 16 million packets if a single packet is dropped.

I. INTRODUCTION

Network telemetry defines how to use various sources to
collect different metrics about the network health and transfer
it to a receiving endpoint for analysis. In order to potentially
solve network performance issues, telemetry metrics such as
link utilization and network latency can be examined [1].
With the development of programmable network devices, in-
band network telemetry includes telemetry data directly in
packets. This allows for gathering significantly more data,
which provides more details about the current state of the
network. A machine must be capable of high-resolution data
processing to collect this information in real-time. There are
many efficient packet collectors for Linux that process large
amounts of network traffic in real-time [2]. However, this
research aims to provide an efficient alternative technique
for such collectors. The Programming Protocol-independent
Packet Processors (P4) language can extract telemetry data
from incoming packets [3, 1], as it allows for efficient con-
trolling of the data plane of network devices [4]. This could
provide a more efficient method to extract telemetry data.
Remote Direct Memory Access (RDMA), as the name implies,
makes it possible to access memory remotely. It allows for
direct placement of data into the memory of an external

machine, removing the need for CPU involvement. For this
reason, RDMA has the potential to store the P4 extracted data
with high throughput. Therefore, this research aims to test if
RDMA combined with P4 is a viable approach for collecting
network telemetry data.

II. RESEARCH QUESTION

The question we aim to answer with this research is the
following:

Can RDMA combined with P4 be used to efficiently
collect telemetry data?

To answer this question, we drafted the following subques-
tions:

1) How do we encapsulate telemetry data in an RDMA
message?

2) Can an RDMA session be maintained on a P4 switch?
3) How can telemetry data be placed into persistent storage

using RDMA?
4) What packet rate can be achieved using RDMA?

III. BACKGROUND

A. Network Telemetry in P4

Network telemetry is the general concept of monitoring infor-
mation about network traffic. In the past, many methods have
been proposed to gather information about network health.
For example, maintaining counters in a network device and
actively probing a device to get information about the buffer
occupancy [5]. Another approach for monitoring network
health is using in-band network telemetry. This is the mecha-
nism of including monitoring data directly in network traffic
packets. This technique has multiple advantages over more
traditional methods of monitoring network traffic from out of
band. First of all, it enables the collection of internal state data
of any network device. Examples include identification (used
in path tracking), queue occupancy, and processing latency.
Secondly, where often the collected data in traditional methods
is obtained using sampling and results in much overhead, in-
band network telemetry allows for collecting data from every
packet with low overhead [6]. A protocol that implements this
mechanism by including additional headers in each packet is
called In-band Network Telemetry (INT) [7].
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Telemetry data is processed through a pipeline in order to
analyze it and perform actions accordingly. Figure 1 shows
an example of a telemetry pipeline. In this example, the
switch retrieves telemetry data from every packet that traverses
through it and sends it to a collector. Depending on the pipeline
implementation, a collector may store and forward the data to
one or multiple workers. A worker will perform an analysis of
the data. However, the vast amount of telemetry data coming
from the switch may be too much for one worker to process
in real-time. Batching the telemetry data into smaller jobs and
delegating the task of analyzing the data to a worker, divides
this workload.

Fig. 1. Consuming telemetry workflow.

This research focuses on a part of the telemetry pipeline shown
in Figure 1. We will investigate the part in which packets
arrive at the switch where telemetry data is extracted and
forwarded to the collector. The INT protocol is one of many
use cases that could benefit from an efficient implementation
for this pipeline. However, we will not make protocol specific
optimizations, nor will we implement any specific telemetry
protocol, to provide a general solution for telemetry collection.
Nowadays, multiple devices are P4 capable, such as Network
Interface Cards (NICs), routers, and switches. P4 offers more
flexibility than currently available on network devices because
there is no predetermined definition of a packet format. This
makes it protocol independent and allows for the design of
new protocols. This flexibility shows the potential of P4 for
implementing RDMA from a P4 enabled device (such as a
switch) that typically does not create RDMA packets. Another
advantage that comes with using P4 is the flexible allocation
of device memory, which makes it possible to assign memory
locations originally intended for forwarding tables as general-
purpose registers.
However, P4 has many limitations, since it is a domain-specific
language and not Turing-complete [8]. For instance, it can
only keep limited state between packets. Example objects
for keeping state are counters and registers. Counters keep
an incremental state between packets, while registers can
keep any state, and the CPU can also interact with them.
Furthermore, it can not allocate memory arbitrarily, as a C
program can. Moreover, there is no support for loops, typical
data structures such as dictionaries, or packet trailers [4].

Programs written in general-purpose programming languages
are not trivial to implement in P4. For this reason, it is
challenging to implement the RDMA protocol in a P4 switch.
In this research, we work around the limitations of P4 to
successfully implement RDMA.

B. RDMA

In high-performance computing, there is a strong demand
for responsive and high throughput data transfers. A Direct
Memory Access (DMA) engine is a component that the CPU
can use to facilitate a transfer between two buffers. When data
from a buffer needs to be transferred, the CPU can set up the
DMA engine with the source and destination address. After
setup, the transfer can complete without further involvement
of the CPU. With the transfer completing in the background,
the CPU can continue processing other tasks [9].
To allow DMA from a remote agent, RDMA was created [10].
With RDMA, the DMA engine is placed in a NIC. RDMA
allows a remote agent to initiate a memory transfer to and
from a target machine without its CPU involved. For example,
an RDMA write operation sends data to a buffer in a target
machine. On arrival of the RDMA write operation, the NIC
processes the packet to determine where the payload needs
to be placed in memory. After boundary checking, the NIC
initiates the write operation and writes the data directly to
memory.
Exposing memory to a network creates some security con-
cerns. To alleviate this, RDMA has strict boundary enforce-
ment. During the setup of RDMA, a pointer to the buffer
and its size are passed as arguments. This informs the NIC
that RDMA will only be allowed in this memory region. The
NIC will be responsible for filtering out a memory read or
write operation that attempts to access memory outside the
defined region. Even with the built-in security, a network
architect should make sure their network is properly segmented
to prevent an attacker from interfering with the RDMA data
stream. The security considerations can be found in [10] and
[11].
RDMA over Converged Ethernet (RoCE) is a protocol that
allows transferring RDMA packets over Ethernet networks.
In our research, we will use this protocol because we are
developing a method for Ethernet networks. There are two
versions of this protocol. RoCEv1 provides network traffic to
be switched over a layer 2 network, while RoCEv2 enables
routing RDMA traffic over a layer 3 network, using IPv4 or
IPv6. This allows for inter-subnet RDMA communications.
We will use RoCEv1 as it is the only RoCE version supported
by all available NICs in this research. The protocol was ini-
tially born out of Infiniband, a switched fabric interconnected
architecture for server and storage connectivity [12]. RoCE
uses Infiniband headers for their packet format. The headers
required for a RoCEv1 RDMA write-only operation are found
in Figure 2. The first header is for Ethernet, allowing the
traffic to travel over regular Ethernet networks. The Global
Route Header (GRH) is the Infiniband version of an IPv6
header. It contains the same header fields as an IPv6 header
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but is used on Infiniband networks instead. The Base Transport
Header (BTH) contains information regarding the action the
NIC needs to take on the payload. Because this example is
an RDMA write-only request, an RDMA Extended Transport
Header (RETH) needs to be included. This header contains
information about where in memory the payload needs to be
written. The invariant CRC behind the payload is a checksum,
similar, but not equivalent, to the Ethernet checksum.

Fig. 2. Example of an RDMA write request.

IV. RELATED WORK

In [13], the performance of TCP, UDP, UDT, and RoCE
are compared. They use the RDMA write operation due to
its low overhead. This research shows that RoCE provides
consistently good performance with low system overhead. The
CPU usage is much less in comparison to the other evaluated
protocols. Two situations were tested: using a dedicated path
for RoCE traffic, and simultaneously sending RoCE and TCP
flows. This research states that the ability of RoCE to provide
low latency and system overhead makes it a compelling
technology for high-resolution data transfers. This evaluation
shows that the RoCE protocol is worth further investigation
and consideration for high-throughput networks. For this rea-
son, we consider this as an option for the transfer of telemetry
data in our research.
In [14], researchers examine the feasibility of implementing
RoCE in a P4 capable switch. Three different use cases show
how the switch performs RDMA read, write, and atomic fetch-
and-add operations. The first use case investigates if it is
possible to use RDMA for extending the buffer of a switch.
The switch uses buffers to deal with bursts of outgoing traffic
on one of the ports. Unfortunately, if the buffer is full, packets
are dropped. However, RDMA can temporarily store bursts of
traffic in memory of a server until the buffers get cleared up.
When the buffers have free space left, the switch can make
an RDMA read request to retrieve the stored packets from
memory. The second use case uses RDMA for lookup tables.
By default, lookup tables in switches are in the order of tens
of megabytes. The switch can use RDMA to access external
memory to increase the size of lookup tables. First, a packet is
stored in the memory address after the action for the packet.
This makes the lookup operation stateless for the switch. The
buffers of the switch would fill up if the packet had to be
stored. Subsequently, an RDMA read request can pull the
packet from memory together with the action. The third use
case investigates RDMA for telemetry data. The experiments
show how the atomic fetch-and-add operation can increment
counters on remote telemetry servers.
While the research talks about the possibility of using RDMA
write-only operation for storing header information of teleme-
try data, they only tested the fetch-and-add operation for coun-
ters. The implementation in this research effectively borrows

memory from host systems. This means the host does not
know what happens in the loaned out memory regions, nor
does it perform any action on the stored data. In our research,
we will test the feasibility of using the RDMA write-only
operation for storing telemetry data into external memory. We
will also examine if it is possible to use RDMA to access
persistent external memory. Eventually, the server will further
process this data by forwarding it to one or multiple workers.
For this reason, the server and switch need to have some
communication about the data that is sent to the server.

V. METHODOLOGY

With this research, we want to implement RDMA to transfer
telemetry data to a collector server efficiently. To perform
RDMA operations from a switch, we will use the P4 language
to implement the RoCEv1 protocol and include telemetry data
as payload to store on the remote server. In the following
subsections, we explain the exact methods used to implement
the transfer.

A. Scope

We consider the following three aspects out of scope for this
research: data analysis, telemetry protocols, and signaling. As
discussed in Section III, the focus of this research lies in
the collection of telemetry data rather than the analysis of
it. Hence, we will not analyze the generated traffic. Instead of
implementing a specific protocol for telemetry data gathering,
we use telemetry data collected from the headers in the packet
that traverses the switch. We will also not implement signaling
the CPU about data that can be analyzed. Signaling should
provide an efficient method for letting the CPU know there is
data to be analyzed. An efficiently approach would result in the
CPU only reading the addresses that are ready to read from and
prevent data from being overwritten before it is read. However,
we will discuss a technique that could perform signaling.

B. Experimental setup

For the experimental setup, we used two servers and one P4
programmable switch. The switch we used is an Edge-core
Wedge100BF-32X. The switch contains 32x 100GbE QSFP28
ports and has the Tofino3.3T ASIC for P4 capability. One
of the servers is the Dell Poweredge R540, which has 128
GB of ram, 2x Intel Xeon Silver 4114, Mellanox ConnectX-
3, 2x Netronome Agilio CX 2x25GbE SmartNIC (P4 pro-
grammability turned off), and runs the Ubuntu 18.04 operating
system. The other server is the Supermicro, which has 196
GB RAM, 2x Intel Xeon Gold 5122, Mellanox ConnectX-5,
8x 1TB NVMe, and runs the CentOS 7.7 operating system.
The driver version used for the Mellanox NICs is the MLNX
OFED version 5.0-2.1.8.0.
Figure 3 shows the physical topology used for experimen-
tation. In this topology, we use the Supermicro server as
the collector of telemetry data. This is because the Mellanox
ConnectX-5 in this server supports higher throughput than the
Mellanox ConnectX-3. The Supermicro server also has 8TB
of NVMe storage for storing telemetry data.
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The Mellanox ConnectX-3 on the Dell server is for experi-
menting and examining RoCEv1 traffic. The four connections
to the Netronome CX NICs will generate TCP traffic that will
go through the P4 switch. The management plane is used to
access the equipment and injecting variables for RDMA in
the P4 switch. For the performance analysis, we run a packet
generator on a second Edge-core Wedge100BF-32X, which is
directly connected to the switch. We use this switch, because
it can send packets at 100Gbit/s.

Fig. 3. Physical lab setup used for experimentation. NIC 1 are the Netronome
Agilio CX 2x25GbE SmartNICs, NIC 2 is the Mellanox ConnectX-3.

C. Implementation of the server

For the proof of concept application, we use the RDMA
write-only operation. There are multiple reasons for this. First,
because it is an RDMA operation, no interaction is required
with the server after establishing a session. Secondly, the
only state information that needs to be kept is the variables
required to construct the packet. Another choice we could have
made is the send operation from the Infiniband verbs API.
However, this operation requires CPU interaction to locate
where the payload should be stored in memory. The RDMA
write-only operation already has this information included,
and therefore can directly interact with memory. This allows
for less CPU involvement, which could result in a faster-
performing operation.
In a regular RDMA application, two hosts that both have
RoCEv1 support set up an RDMA session by sharing their
queue pair numbers. A queue pair is a number that identifies
the packet and puts it in the appropriate queue. If one of the
hosts wants to access another host’s buffer, it requires a pointer
to the virtual memory address of the buffer together with a
remote key. The purpose of the remote key is to authorize the
RDMA to the virtual memory address.
In our implementation, the switch requires a queue pair, virtual
address, and remote key from the host to send RDMA write-
only operations to remote memory. The Infiniband drivers

are used to set up RDMA on the Supermicro server. These
drives return the remote key and queue pair that is needed to
configure the RDMA session. Between the switch and host,
there is a TCP connection active, responsible for transporting
the variables from the host to the switch. The TCP connection
is made over the management network (Figure 3), because the
variables are configured from the switch’s operating system.
With these variables, the switch can now craft RoCE packets.
In a typical RoCE application, two devices send information
about how to reach their available memory regions to each
other. However, in our application, the switch sends informa-
tion to the other host to remotely store telemetry data. Since
the server will not send write or read requests to the switch, the
only information the host requires is the queue pair number.
The server requires the queue pair number to transit to a state
where it is ready to receive packets. We will use an unrelated
queue pair number from a previous experiment to allow the
host to go to the correct state. The queue pair for accessing
the switch is statically configured on the host since it will not
be used.
In this research, the data will not be forwarded after arriving on
the telemetry collector. For this reason, we will write the data
directly into a file using the mmap function. We implemented
this by first opening a file that is filled with zeros. With its
file descriptor, we call the mmap function to map it to virtual
memory. This results in the whole file being registered as a
buffer. We use function calls from the Infiniband libraries to
make this buffer accessible from the NIC. As a result, the NIC
can perform the RDMA operations on the memory-mapped
file. This process removes the overhead created by manually
saving the data to a file.
This server application is written in C, as the libraries are
available for this programming language, and it allows for
extensive control of memory.

D. Implementation of the switch

In our workflow, network traffic that arrives at the switch will
be forwarded to both its desired destination and a switch port
connected to the collector server. This is done by copying the
packet in the ingress pipeline of P4, and setting its egress
port to the collector port. According to the packet egress
port, telemetry data will be encapsulated in RoCEv1 headers
used for RDMA write-only operations. As the P4 switch has
no native support for RDMA, we implement the ROCEv1
protocol ourselves. To do so, we defined the headers (as shown
in Figure 2), including their fields in a P4 program. According
to the definition of the header fields from the Infiniband speci-
fication [15] in combination with experimentation, we assigned
them the correct values. We will explain the important and
relevant header fields for our implementation in this section.
The complete overview including all values is provided in
Appendix A.
The GRH contains the same header fields as used in IPv6 for
compatibility. The next header field is 27, which identifies a
BTH from Infiniband. The migrate request flag in the BTH
is set as we migrate data from one device to another. The
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packet sequence number in the BTH is increased by one each
time a RoCE packet is sent. To include a sequence number
in our implementation, we created a counter using a register.
The counter is increased each time a packet is sent to the
telemetry server. The destination queue pair, remote key, and
virtual address are obtained from the server, as discussed in
Section V-C. These parameters are sent to the switch’s control
plane over a TCP connection. In our implementation, we
created a forwarding table entry when the three parameters are
received. The forwarding table has the egress port as key that is
matched against the egress port of the packets in the P4 egress
pipeline. In the case of a match, the parameters are assigned
to the RoCE packet. As the virtual address must be changed
after one packet is sent, we created a counter to calculate the
packet’s virtual address offset. The counter increments each
time a packet is sent with the number of bytes that are written
to the storage on the server.

Fig. 4. Headers and masked fields used in the Invariant CRC calculation.

As defined in the Infiniband specification, the invariant CRC
is a 32-bit checksum using the same polynomial as used in
Ethernet. The CRC is calculated over the fields shown in
Figure 4. There is one Infiniband header, the Local Route
Header, that is not part of the RoCE protocol. However, this
field is included when calculating the CRC, but all fields are
masked to one. Some other fields are also masked to one, as
shown in the figure. The switch supports the calculation of
CRCs with a custom created polynomial in P4.

1 CRCPolynomial<bit<32>>(
2 coeff = 0x04C11DB7,
3 reversed = true,
4 msb = false,
5 extended = false,
6 init = 0xFFFFFFFF,
7 xor = 0xFFFFFFFF) poly;

Listing 1. Custom CRC polynome in P4.

The parameters used to create the same polynomial as used
in Ethernet, are shown in Listing 1. However, the CRC
calculation using this polynomial results in a little-endian

version of the CRC value, while the correct value must be in
big-endian. To solve this, we used bit masking and operations
to swap the 4 bytes from little to big-endian.

VI. EXPERIMENTS

In the following subsections, we describe three different ex-
periments we performed to analyze RoCEv1 and our imple-
mentation. In the first experiment, we analyzed how a RoCEv1
session is established and what values are used. Secondly, we
tested our implementation to determine if it works correctly.
Finally, we analyzed the performance of the implementation
to evaluate packet loss.

A. RoCEv1 between two hosts

While the Infiniband architecture documentation describes
the purpose of the fields in each header, we performed
an experiment to determine the actual values used between
two compliant RoCEv1 hosts. We established a connection
between the Dell and Supermicro, both using their Mellanox
NICs. From the Mellanox programming manual [16], we
used an example program written in C, which included four
different RDMA operations. We modified the program to only
send one single RDMA write-only packet from the Dell to the
Supermicro server. Subsequently, we examined the receiving
host to see if its buffer was modified. With Wireshark, a packet
capture is created to evaluate the RoCEv1 packet.

B. RoCEv1 from the switch

We tested our implementation where RoCEv1 traffic is
supposed to flow from the switch to the Supermicro Mellanox
NIC. To evaluate if the implementation is working correctly,
we sent three TCP packets from the Dell, crafted using Scapy.

1 sendp(Ether()/IPv6(
2 src="fc00::5555:6666:7777:8888",
3 dst="fc00::1111:2222:3333:4444")/
4 TCP(dport=111,sport=222,
5 seq=0x1212,ack=0x3434),
6 iface="rename5")
7 sendp(Ether()/IPv6(
8 src="fc00::1111:2222:3333:4444"
9 dst="fc00::5555:6666:7777:8888")/

10 TCP(dport=222,sport=111,
11 seq=0x3435,ack=0x1213),
12 iface="rename5")
13 sendp(Ether()/IPv6(
14 src="fc00::5555:6666:7777:8888",
15 dst="fc00::1111:2222:3333:4444")/
16 TCP(dport=111,sport=222,
17 seq=0x1214,ack=0x3436),
18 iface="rename5")

Listing 2. Scapy script for sending the three packets.

The Scapy script is shown in Listing 2. The packets we
send include an Ethernet, IPv6, and TCP header. Line 1
up to 7 show this for the first packet. The switch forwards
traffic between two interfaces on the Dell. The telemetry
packet is forwarded to the Supermicro its Mellanox NIC.
The IPv6 addresses (blue and red), ports (magenta), sequence
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number (orange), and acknowledgement number (green) are
arbitrary values to be able to confirm that the data ends
up in the Supermicro’s persistent storage. We examine the
file on the disk where the telemetry data is supposed to be
stored to evaluate the implementation. This experiment will
be successful if the payload of the incoming packets ends up
in this file.

C. Performance

We performed experiments of our implementation to analyze
packet loss under different data rates. To examine the perfor-
mance of memory mapping, we compared it to volatile mem-
ory. We wrote a script in Bash that automatically initializes
the packet generator and telemetry server. For experiments that
used memory mapping, a 10 GB file was initialized before
starting the telemetry collector. The bandwidth of the links
that these packets traverse, is 100 Gbit/s.
The packet generator sends packets with a variable period. We
performed 40 unique experiments with a period ranging from
25 to 65 nanoseconds. Initially, we conducted the experiments
using periods ranging from 20 to 60 nanoseconds. However,
the packet loss did not change below 25 nanoseconds, and
above 65 nanoseconds. For this reason we scoped the experi-
mentation down to this range.
The packet rate is equal to the inverse of the traffic’s peri-
odicity. For example, if the periodicity is 20 nanoseconds we
calculate the rate using the following formula:

50, 000, 000 packets/second =
1

20 ∗ 10−9 seconds

This rate allows us to calculate the link’s throughput. Every
RoCEv1 packet is 146 bytes in total, including a 48 byte
payload. The equivalent network throughput for this range is
17.5 to 46.7 Gbit/s. The NIC stores the payload of the received
packet. With the receiving buffer defined as 10 GB, we know
how many bytes the buffer should be able to receive. For each
data point, we performed ten measurements. We calculate the
ratio of correctly stored packets by dividing the stored packets
by the total amount sent.

VII. RESULTS

In the following subsections we present the results of the three
previously described experiments.

A. RoCEv1 between two hosts

In Figure 5, the Infiniband headers are shown of the RoCEv1
packet generated by the Mellanox NIC on the Dell. Although
the packet also contains an Ethernet header, this is not of
interest. Therefore, we did not include it in the figure. We
examined the values in the headers that are specific to the
RoCE prtotocol and RDMA write-only operation.
The static values are the next header (27), opcode (10),
solicited event (0), migrate request (1), and header version (0).
The dynamic values used for RDMA session maintenance are
the destination queue pair (red), virtual address (blue), remote
key (orange).

Listing 3 shows the output of the C program we use to ex-
periment. We can compare the highlighted values of Listing 3
to Figure 5 to confirm the RDMA write worked. The virtual
address (blue) and remote key (orange) correspond to each
other. The hexadecimal numbers in Figure 5 have the same
value as the decimals in Listing 3. The destination queue pair
numbers (red) have the same hexadecimal values. The data
that is written to the buffer of the host is also shown in the
output (magenta). This data corresponds to the payload of the
packet in Figure 5. The data is the ASCII representation of
the string “RDMA Write operation”.

Fig. 5. RoCEv1 packet for RDMA write-only operation generated as an
example.

1 [rutger@sne-dtn-04 rdma-writeonly]$ ./rdma-
tutorial -d mlx5_1 -i 1 -g 2

2 ...
3 TCP connection was established
4 ...
5 MR was registered with addr=0x195e3c0,
6 lkey=0x2b75d, rkey=0x2b75d, flags=0x7
7 QP was created, QP number=0x932
8 ...
9 completion was found in CQ with status 0x0

10 Contents of server buffer:
’RDMA write operation’

11

12 test result is 0

Listing 3. Output of RDMA write operation on the server.

B. RoCEv1 from the switch

Listing 4 shows the written bytes in the Supermicro’s file.
This includes the header information from three packets that
were sent with Scapy. The first 32 bytes contain the source
(blue) and destination (red) addresses from the original packet
(subnet fc00::/64). The next bytes contain the source and des-
tination ports (magenta): 111 and 222. The sequence (orange)
and acknowledgment (green) numbers are placed after the port
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information. Finally, the last 4 bytes (black) contain data from
a counter in the switch. This pattern repeats for each packet
stored in memory.

1 Supermicro $ hexdump -C /mnt/nvme/output5
2 00 | fc00 0000 0000 0000 5555 6666 7777 8888
3 10 | fc00 0000 0000 0000 1111 2222 3333 4444
4 20 | 00de 006f 0000 1212 0000 3434 0000 0000
5 30 | fc00 0000 0000 0000 1111 2222 3333 4444
6 40 | fc00 0000 0000 0000 5555 6666 7777 8888
7 50 | 006f 00de 0000 3435 0000 1213 0000 0001
8 60 | fc00 0000 0000 0000 5555 6666 7777 8888
9 70 | fc00 0000 0000 0000 1111 2222 3333 4444

10 80 | 00de 006f 0000 1214 0000 3436 0000 0002

Listing 4. Hexdump of file on the Supermicro (note: this has been
slightly modified).

C. Performance

In Figure 6, we show the performance experiments. The lines
show the average over ten measurements per data point. The
surrounding areas show the standard deviation. The conversion
from periodicity to packets per second, results in an increasing
distance between the data points towards higher rates. In this
graph we observe packet loss earlier when data is stored to
memory, compared to a memory-mapped file. Furthermore,
from around 32 million packets per seconds, less than 0.4%
of the packets get stored.

Fig. 6. Percentage of packets stored with a given amount of packets per
second.

Table I shows an example of an measurement from the experi-
ments. The complete overview of the individual measurements
are provided in Appendices B and C. From the measurements
from 17 to 29 million packets per second, we observed that
either all of the packets got stored correctly or there was a gap
of exactly 224 packets, as shown in Table I. An explanation
for this specific number will be provided in the Discussion.

Million packets per second Packets received Packets total Ratio
27.03 206918997 223696213 0.925

TABLE I
SINGLE MEASUREMENT POINT AT 27 MILLION PACKETS PER SECOND.

VIII. DISCUSSION

Using the results in Section VII-A, we learned the values
for the header fields in the RoCEv1 packet. These results
confirmed the exact values to use for a RoCE RDMA write-
only operation. We used the values from the results in our
packets. During analysis of the header, we found that the
Global Route Header has some interesting properties. The
session to the Supermicro used IPv4 addresses, while the
header is an IPv6 address. In the Infiniband header, we can
see that the original IPv4 header is embedded into IPv6, with
IPv4 mapping (::ffff:a.b.c.d).
From the results in Section VII-B, we can determine if our
implementation works correctly. In the Supermicro server’s
file, we can see that the payload of all three packets is
correctly stored. This demonstrates that the original packets
were correctly stored in the final file with RDMA commands
from the switch.
From the results in Section VII-C, we can analyze the
performance of our implementation. We would expect less
performance from memory mapping compared to volatile
memory, because the memory mapped area lies in slower
storage. However, the difference between memory mapping
and volatile memory is not significant. We conclude from this
that memory mapping is not a performance constraining factor
for this application.
This experiment is conducted over 100 Gbit/s per links, but
the performance of this system does not reflect this. The first
packet loss occurs at around 17 million packets per second
when writing to memory, and 20 million packets per second
when writing to a memory-mapped file. The throughput over
the link at these points is 20 to 23 Gbit/s. This means that
packet loss is not due to the link’s capacity.
A limiting factor in the performance involves the sequence
number. The RDMA implementation of Mellanox expects a
sequence number that is incremented by one for every packet.
The sequence number is 24 bits long. In Table I, we see the
difference between the processed and total amount of packets
is exactly 224. When a packet is dropped before it is processed
by the NIC, there occurs a gap in the sequence numbers. The
NIC silently drops packets that do not contain the expected
sequence number. The switch has no knowledge about a drop
and even if it would, it can not re-transmit the packet. As a
consequence, the NIC halts until a packet with the correct
sequence number is processed. This means the NIC keeps
dropping packets until the sequence number wraps around,
which is 224 packets later. As a result, the NIC will ignore the
payload of 16 million packets when there is 1 packet dropped
in the network. We do not have a sufficient amount of data
to determine why the first packet is dropped. In the results,
we observe a steep decrease in stored packets at 32 million
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packets per second. From this rate, a significant amount of
packets is dropped, which causes the NIC to have frequent
issues with the sequence number. This results in the NIC only
occasionally storing packets.
The use of RDMA for transferring data has some implications.
The advantage of RDMA is that no CPU involvement is
required to store data. With the CPU removed from the process
of receiving packets, it can no longer be a bottleneck in
obtaining data from the network and storing it into memory.
We show that establishing an RDMA session between a
switch and server is feasible. This session allows for even
less involvement of the CPU than other methods. However,
a disadvantage of RDMA in our implementation is the lack
of knowledge the CPU has over data placement. This means
there is a need for signaling the CPU when a part of memory
can be read.
There are multiple possible solutions for implementing the
workflow after a collector gathers telemetry data. For this
research, we stored the data to a file. However, the approach
for gathering and processing the data further depends on the
complete telemetry workflow. For instance, a workflow that
does not store the data in the collector would use a different
technique to forward the data to workers efficiently. In this
case, it might be efficient to create large buffers in volatile
memory and send data directly to workers.
Our implementation has some limitations. First of all, we
considered implementing CPU signaling out of the scope of
our research. However, in order to use RDMA from a switch
for data telemetry in a production environment, there is a need
for signaling. The reason for this is that the collector server
needs to know when data is ready to be analyzed. A possible
solution for implementing signaling is using the RDMA write-
only with immediate operation in a RoCEv1 packet. This
operation allows for an RDMA write while signaling the CPU
with a 32-bit immediate value [15]. This value could signal the
CPU that a specific action needs to be taken on the previously
received telemetry data. If each packet includes a signal for the
CPU, this would be a CPU intensive approach. This operation
could be sent once every x amount of packets to decrease CPU
utilization.
Secondly, P4 does not support the processing of packet trailers.
In order to add data to the end of a packet, all the bytes
that come before it must be parsed as headers. Additionally,
implementations of P4 can have a maximum header length.
If this maximum is less than the maximum total packet size,
implementations of this protocol would only be able to create
packets smaller or equal to the maximum header length.
Another implementation dependent feature is the checksum
calculation. The P4 specification has no requirements on the
implementation of a CRC function [4]. For this reason, a
manufacturer has to implement it as an external function.

IX. CONCLUSION

This research investigated how RDMA can be combined
with P4 in order to collect telemetry data efficiently. We
created the part of a telemetry workflow where data from

network packets is extracted and transferred to a collector.
To provide a solution, we examined how telemetry data can
be encapsulated in RDMA messages. By experimenting with
and implementing the RoCEv1 protocol, we were able to craft
RoCEv1 packets on a P4 switch. The payload of this packet
carries the telemetry data. This data is written to the remote
collector using an RDMA write-only operation. An RDMA
session can be maintained on the switch by keeping the state
of the variables that are required for this operation in the
memory of the switch. On the collector, the NIC can transfer
the received telemetry data to persistent storage. This operation
is performed using the memory-mapped file on the NVMe
device. We were able to achieve a rate of around 20 million
packets per second with memory mapping without any packet
loss. Using volatile memory for the storage, we achieved a
rate of 17 million packets per second without packet loss.
Since the NIC will ignore 16 million packets if a single packet
is dropped in the network, this implementation would only
be useful in a lossless network. From this research, we can
conclude that the implementation of RoCEv1 in P4 can be
used to extract telemetry data and save telemetry data directly
to persistent storage.

A. Future Work

We recommend the following focuses on future work. Firstly,
the system performance of the collector could be optimized to
allow faster storage of the data. One of the possible methods
is to use NVMe over fabric instead of memory mapping a disk
to virtual memory. The Storage Performance Development Kit
provides a library that allows RDMA operations to be executed
directly to an NVMe drive. In our application, we used RDMA
to send data to virtual memory. The operating system mapped
this virtual memory to a file on the disk. SPDK provides a
method to bypass this step and interact directly with the NVMe
drive from the NIC.
Secondly, it is interesting to compare this implementation’s
performance with other implementations designed with the
same purpose. For instance, exciting technologies are the Data
Plane Development Kit (DPDK), and the extended Berkeley
Packet Filter (eBPF). All techniques are designed to improve
the performance of data transfers.
Furthermore, future work could extend our implementation
by implementing signaling with the proposed approach from
Section VIII.
Finally, future research can focus on completing the telemetry
workflow, including our implementation. Currently, the end-
point is storing the data to disk. By implementing signaling
into our system, it becomes possible for the CPU to track the
current state of the buffer. This allows the CPU to send batches
of data to consumers. By doing this, consumers can analyze
the network using high-resolution network data. In a situation
where the CPU is used to keep track of the buffer occupancy,
the system may start to perform worse. For example, a realistic
result is that buffers start to fill up faster than the CPU can
deal with the rate the telemetry data is stored to memory.
This is because eventually, buffers will have to cycle and
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start rewriting earlier parts of the buffer. If the buffers are
not processed fast enough, valuable data might be lost. For
this reason, it is essential to perform a thorough comparison
with the techniques mentioned before.
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APPENDIX A
HEADER FIELDS

Field Length
(bits)

Description Value
(decimals)

IP version 4 4 for Ipv4; 6 for IPv6 6
Traffic class 8 Global service level 0
Flow Label 20 Sequence identification 0

Payload length 16 Includes all length of subsequent headers and payload 82
Next Header 8 Indicates the header following the GRH 27
Hop Limit 8 Maximum hops allowed 64

Source GID 128 Identifies the interface that injected the packet into the
network

variable

Dest GID 128 Identifies the final destination interface of the packet variable
TABLE II

GLOBAL ROUTE HEADER FIELDS FOR RDMA WRITE ONLY OPERATIONS.

Field Length
(bits)

Description Value
(decimals)

Opcode 8 Indentification of RDMA Write Only operation 10
Solicited event 1 Indicates if an event should be generated by the responder 0

Migrate Request 1 Indicates migration state 1
Padding Count 2 Indicates the amount of padding used to align to a 4 byte

boundary in payload
0

Header Version 4 Indicates the version of the Infiniband Transport Headers 0
Partition Key 16 Indicates which logical partition is associated with this

packet
65535

Reserved 8 Ignored by receiver 0
Destination
Queue Pair

24 Indicates the Queue Pair Number at the destination variable

Ack request 1 Indicate if an acknowledgement should be generated at
receiver

1

Reserved 7 Ignored by receiver 0
Packet Sequence

Number
24 Used to detect a missing or duplicate packet variable

TABLE III
BASE TRANSPORT HEADER FIELDS FOR RDMA WRITE ONLY OPERATIONS.

Field Length
(bits)

Description Value
(decimals)

Virtual Address 64 The virtual address of the operation variable
Remote Key 32 The Remote Key that authorizes access for the operation variable
DMA Length 32 Indicates the length (in bytes) of the DMA operation 48

TABLE IV
RDMA EXTENDED TRANSPORT HEADER FIELDS FOR RDMA WRITE ONLY OPERATIONS.

A1



APPENDIX B
MEASUREMENTS OF THE PERFORMANCE EXPERIMENTS FOR A MEMORY-MAPPED FILE

Rate (million packets/second ) exp. 1 exp. 2 exp. 3 exp. 4 exp. 5 exp. 6 exp. 7 exp. 8 exp. 9 exp. 10
15.62 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
15.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.39 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.54 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.86 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.18 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
19.23 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
19.61 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
20.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
20.41 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
20.83 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
21.28 1.0 1.0 1.0 1.0 1.0 1.0 0.925 1.0 1.0 1.0
21.74 1.0 1.0 1.0 1.0 1.0 1.0 0.925 1.0 1.0 1.0
22.22 0.925 1.0 1.0 1.0 1.0 0.925 0.925 1.0 1.0 1.0
22.73 0.925 0.925 1.0 0.925 1.0 0.925 0.925 1.0 1.0 0.925
23.26 0.925 0.925 1.0 0.925 0.925 0.925 0.925 1.0 0.925 0.925
23.81 0.925 0.925 1.0 0.925 0.925 0.925 0.925 0.925 1.0 0.925
24.39 0.925 0.925 0.925 0.925 0.925 0.925 1.0 0.925 0.925 0.925
25.00 1.0 1.0 0.925 1.0 0.925 0.925 0.925 0.925 0.925 0.925
25.64 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 1.0
26.32 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
27.03 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
27.78 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
28.57 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
29.41 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.85 0.85 0.925
30.30 0.925 0.175 0.475 0.925 0.925 0.7 0.925 0.25 0.925 0.7
31.25 0.067 0.4 0.925 0.475 0.775 0.175 0.854 0.25 0.008 0.925
32.26 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.003
33.33 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
34.48 0.001 0.001 0.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
35.71 0.0 0.0 0.001 0.0 0.001 0.0 0.0 0.001 0.0 0.001
37.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
38.46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE V
RATIO (STORED PACKETS / TOTAL SENT) MEASUREMENTS FOR EXPERIMENTS USING A MEMORY-MAPPED FILE.
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APPENDIX C
MEASUREMENTS OF THE MEMORY PERFORMANCE EXPERIMENTS

Rate (million packets/second ) exp. 1 exp. 2 exp. 3 exp. 4 exp. 5 exp. 6 exp. 7 exp. 8 exp. 9 exp. 10
15.62 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
15.87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.39 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.54 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
17.86 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.18 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.52 0.925 0.925 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
18.87 1.0 0.925 1.0 0.925 1.0 1.0 1.0 1.0 1.0 1.0
19.23 0.925 1.0 0.925 0.925 1.0 1.0 1.0 1.0 1.0 1.0
19.61 1.0 1.0 0.925 1.0 0.925 0.925 0.925 1.0 0.925 0.925
20.00 1.0 0.925 1.0 0.925 1.0 0.925 0.925 0.925 1.0 1.0
20.41 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 1.0
20.83 0.925 1.0 0.925 0.925 0.925 0.925 0.925 0.925 1.0 1.0
21.28 1.0 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
21.74 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 1.0 0.925
22.22 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
22.73 1.0 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
23.26 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
23.81 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
24.39 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
25.00 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
25.64 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
26.32 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
27.03 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
27.78 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
28.57 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
29.41 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
30.30 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
31.25 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925 0.925
32.26 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002
33.33 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
34.48 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
35.71 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
37.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
38.46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE VI
RATIO (STORED PACKETS / TOTAL SENT) MEASUREMENTS FOR EXPERIMENTS USING MEMORY.
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