End-to-end security in LoRa and NB-loT sensor networks.

Presenters: Niek van Noort and Jason Kerssens Supervisors: Cedric Both and Jeroen de Boer from DataDigest

Introduction

- IoT monitoring devices
 - Make use of technologies with long range, low power consumption (LoRa, NB-IoT)
- End-to-end security important
 - Confidentiality, integrity, authentication
- Long Range (LoRa):
 - Connect via a gateway to a network, unlicensed band.
- Narrowband IoT (NB-IoT):
 - Via a Mobile Network Operator (MNO), licensed band.

Research questions

How can end-to-end confidentiality, authentication, and data integrity be achieved with IoT devices that make use of LoRa and NB-IoT?

- What capabilities do LoRa and NB-IoT have in terms of confidentiality, authentication and integrity?
- What security risks are present in LoRa and NB-IoT, relating to confidentiality, authentication, and data integrity?
- What security measurements could be taken by an administrator of an IoT network to achieve end-to-end security?

Background: LoRa

- End-device
- Gateway
- Network server
- Application server
- Join server
 - Manages end-devices wanting wanting to join the network

Background: LoRa

- End-to-end confidentiality
 - Symmetric-key encryption between end-device and application server
- Hop-by-hop integrity
 - Between end-device and network server, and between networks server and application server

Background: LTE

- Uu Interface (Air interface):
 - Confidentiality at the control plane and the user plane.
 - Integrity at the control plane.
- SGI interface:
 - To external networks
 - No confidentiality
 - No integrity

UE = IoT monitoring device eNB = Cell Tower

Background: NB-IoT

- Data via MME:
 - User data over the control plane.
 - User data integrity at the Uu Interface.

7

Background: NB-IoT

- Application server
 - $\circ \qquad {\sf E.g.} \ {\sf Monitoring} \ {\sf platform}.$
- Connected Device Platform (CDP):
 - Buffer between MNO and application server.
- HTTPS
- Possible hop-by-hop security with trust in MNO.
- Datagram TLS (DTLS)

Related work

• Florian Laurentiu Coman et al.

LoRaWAN packet forging by bruteforcing the Message Integrity Code (MIC).

- Emekcan Aras et al.
 Compromising LoRa root keys with physical access, jamming and replay attack by rebooting end-devices.
- Florian Laurentiu Coman et al. DoS attacks of NB-IoT user equipment.

Methodology: LoRa

- End-device:
 - RN2483A LoRaBee module
 - SODAQ Autonomo
 - Programmable with Arduino IDE
- Gateway:
 - Robustel R3000 LG
- Network server, application server:
 - ChirpStack
- No end-to-end integrity

Methodology: LoRa

- AES-CMAC:
 - Provides integrity
 - Input: plaintext, 128 bit key
 - Output: 128 bit tag
 - AES-CMAC implementation:
 - User Equipment: WolfSSL
 - Application Server: Cryptography (Python library)
- Include frame counter in the input to mitigate certain replay attacks

Methodology: LoRa

- AES-CMAC execution time measurement
 - Create tag
 - Verify tag
- Latency measurement
 - With and without AES-CMAC
 - 16 bytes sensor data
 - 16 bytes tag

Methodology: NB-IoT

- User Equipment (UE):
 - SODAQ NB-IoT Shield
 - Programmable with Arduino IDE
 - Ublox SARA N211 02B-00
 - No DTLS support
- Mobile Network Operator:
 - T-Mobile
 - Use of CDP
- No end-to-end security.

Methodology: NB-IoT

• AES-GCM:

- Confidentiality and Integrity
- Input: Plain text, Initialization Vector (IV), 128 bit key.
- Output: Cipher text, 128 bit tag
- **96 bit IV:**
 - 32 bits fixed field
 - 64 bits counter field
 - An IV must never be used with the same key twice!
- AES-GCM implementation:
 - User Equipment: WolfSSL
 - Application Server: Cryptography (Python library)

0	31	32	95
	Fixed Field	Counter Field	

Methodology: NB-IoT

- AES-GCM execution time measurement
 - Encryption
 - Decryption
- Latency measurement
 - With and without AES-GCM
 - 8 bytes sensor data
 - 28 bytes AES-GCM tag + IV

Results: LoRa

Create tag: 418µs 750µs

Verify tag:

Results: LoRa

• Mean

- Without CMAC: 1884 ms
- With CMAC: 2132 ms
- 99-percentile
 - Without CMAC: 2597 ms
 - \circ With CMAC: 3139 ms

Results: NB-IoT

- Encryption: $935 \,\mu s$
- Decryption: $453 \mu s$

Results: NB-IoT

- Spikes separated by one second.
- Mean:
 - With AES-GCM: 1982 ms
 - Without AES-GCM: 1984 ms
- 99-Percentile: 5007 ms
- No significant effect on the latency

Conclusion

- LoRa
 - Supports end-to-end confidentiality and hop-by-hop integrity.
 - End-to-end integrity can be implemented
 - AES-CMAC does affect the latency significantly
- NB-IoT:
 - No standard end-to-end security.
 - Confidentiality and integrity is possible in an hop-by-hop manner.
 - Depending on MNO and user equipment, DTLS can be used.
 - End-to-end security can be implemented at the application layer.
 - AES-GCM has no significant effect on the NB-IoT latency.

Future work

- Power Consumption
- DTLS
- Other technologies (Sigfox, LTE-M)