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Abstract—In this research we discuss the authentication, con-
fidentiality and integrity of user data sent over the Low Power
Wide Area Network (LPWAN) technologies, LoRa and NB-IoT.
In particular, we look at possibilities for end-to-end security. The
use case of this research is an IoT sensor network, where sensors
report back to a monitoring platform. LoRa already supports
end-to-end confidentiality, however, integrity is implemented in a
hop-by-hop manner. NB-IoT on its own does not provide any end-
to-end security, but hop-by-hop authentication, confidentiality
and integrity can be achieved by trusting a Mobile Network
Operator (MNO). Therefore, we have added end-to-end security
mechanisms on top of LoRa and NB-IoT in the application
layer, by using AES-GCM and AES-CMAC. Furthermore, we
measured the effect of our security additions on the latency
between the IoT sensors and the monitoring platform.

I. INTRODUCTION

IoT has grown from small scale integration of devices at
home to large scale IoT networks with national coverage
[1]. For example, IoT sensors are being deployed in the
Netherlands to monitor critical infrastructures, such as tunnels
or bridges. Security is an important aspect of such a network,
as the sensor data must be accessible at different locations,
e.g. a monitoring platform, and must therefore travel through
networks controlled by third parties. Data sent by IoT devices
has to be verified, as acceptance of false data could have catas-
trophic consequences in critical infrastructures. Additionally,
data has to be encrypted to ensure confidentiality.

To achieve cost efficiency, wireless communication is used
by most IoT sensors, making deployment easier in structures
that were initially not designed with IoT in mind. There
are many technologies with which wireless networks can be
established. For IoT devices, especially when it comes to IoT
sensors, low-power wide area network (LPWAN) technologies
are utilised, due to the low power requirements of IoT.
Prominent technologies pertaining to LPWAN include Long
Range (LoRa), Sigfox, and NarrowBand IoT (NB-IoT) [2].
For IoT devices that do not require low energy consumption,
LTE can be used for wireless communication instead. As LTE
offers a higher data rate, there might be situations in which
LTE is preferred over LPWAN technologies.

In this research we will focus on the capability of sending
data securely with LoRa, and NB-IoT. The use case of our
research is a sensor network for Dutch critical infrastructure,

where the sensors have a send rate of at least one message per
minute. Sigfox allows the sensors to send 140 messages per
day [2]. Therefore, it is not suitable for our use case and is
left out of scope. We will identify the risks and capabilities in
using different transport mechanisms and make a comparison
between LoRa and NB-IoT. We will mainly be looking at
the ways these technologies can provide integrity of data
and guarantee the authenticity of its sender, without relying
on cryptographic keys known by third parties, e.g. NB-IoT
providers. Additionally, if end-to-end confidentiality, integrity
and authenticity are not supported by an LPWAN technology,
we will consider the possibility of implementing this ourselves
by encrypting and signing monitoring data.

A. Research questions

We defined the following main research question:

How can end-to-end confidentiality, authentication, and
data integrity be achieved with IoT devices that make use of
LoRa and NB-IoT?

To answer our main research question we have defined
the following subquestions:

• What capabilities do LoRa and NB-IoT have in terms of
confidentiality, authentication and integrity?

• What security risks are present in LoRa and NB-IoT,
relating to confidentiality, authentication, and data in-
tegrity?

• What security measurements could be taken by an admin-
istrator of an IoT network to achieve end-to-end security?

B. Structure

The structure of this paper is as follows. In Section II we
look into the architecture and security measures present in
LoRa, NB-IoT, and LTE. In Section III we discuss related
work looking at security flaws found in LoRa and NB-IoT.
In Section IV we discuss how we implemented additional
security measures for both LoRa and NB-IoT and explain
how we measured the impact this has on the performance
of the aforementioned technologies. In Section V we show
the results of our measurements. In Section VI we discuss our
implementation and our results. Finally, in Section VII we give
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a conclusion and in Section VIII we will give suggestions for
future work.

II. BACKGROUND

In this section we describe the security measures that are
already in place for LoRa and NB-IoT. Furthermore, we will
give an overview of the conventional architectures that are
used for these technologies.

A. LoRa

1) LoRa Architecture: LoRaWAN networks consist of end-
devices, gateways, network servers, application servers, and
join servers.

End-devices communicate with one or multiple gateways
over LoRa. As such, a single message could be accepted
and relayed by multiple gateways at once. End-devices may,
depending on the activation procedure, contain two identifiers,
DevEUI and JoinEUI, as well as two cryptographic root keys,
AppKey and NwkKey. The DevEUI uniquely identifies an end-
device. The JoinEUI uniquely identifies the Join Server with
which the end-device needs to communicate in order to join
the network. The two cryptographic keys are used for gener-
ating session keys (AppSKey, FNwkSIntKey, SNwkSIntKey,
and NwkSEncKey).

Gateways receive messages from all end-devices that are
within range and relay messages to network servers over either
WiFi, Ethernet or LTE. They may also relay messages to other
end-devices over LoRa.

Network servers manage the network. They check device
addresses, which are different from the DevEUIs, to authen-
ticate end-devices. To verify integrity and decrypt certain
packets, the server also has the session keys FNwkSIn-
tKey, SNwkSIntKey and NwkSEncKey. They route application
packets to the appropriate application servers and forward join-
request and join-accept packets between the appropriate join
servers and end-devices.

Join Servers manage the activation procedure, needed for
end-devices to join the network. In order to do this they require
the DevEUI, and the two root keys - AppKey and NwkKey -
of each end-device that wishes to join the network. An end-
device sends a join request to this server, which the server can
check with the aforementioned parameters. Once accepted, the
join server and end-device generate the session keys and the
join server sends the required keys to the application server
and network server.

Table I
LORA PHYPAYLOAD

Size (bytes) 1 7 ... N 4
PHYPayload MHDR MACPayload MIC

Table II
LORA MACPAYLOAD

Size (bytes) 7 ... 22 0 ... 1 0 ... M
MACPayload FHDR FPort FRMPayload

Table III
LORA FHDR

Size (bytes) 4 1 2 0... 15
FHDR DevAddr FCtrl FCnt FOpts

Finally, application servers handle and interpret the data
sent by end-devices and can send downlink messages to end-
devices. This server also contains a session key (AppSKey),
needed to decrypt packets coming from end-devices.

2) LoRa Security: LoRaWAN makes use of symmetric
cryptography. The creation of message integrity codes (MIC)
and encryption of payloads is achieved by making use of four
session keys (FNwkSIntKey, SNwkSIntKey, NwkSEncKey,
and AppSKey). The way these session keys are created,
depends on the activation procedure. Activation, that is joining
a LoRaWAN network, is either possible through Over-The-Air
Activation (OTAA) or Activation By Personalization (ABP).
In the case of OTAA, the four session keys are derived from
the NwkKey and AppKey in combination with the DevEUI
and JoinEUI. The way these keys are derived can be seen in
Appendix A. For ABP, these session keys are directly stored
onto the end-device itself, meaning that NwkKey, AppKey,
DevEUI, and JoinEUI are not necessary.

Table I, II, and III show most of the typical fields of a
packet sent with LoRa. For encryption both the FRMPayload
and FOpts fields are encrypted separately. After encryption,
the MIC (which is a message authentication code) is created
for each packet using the AES128-CMAC scheme. FOpts and
FRMPayload are both encrypted with an encryption scheme
based on IEEE 802.15.4/2006 Annex B [3] with an AES key of
length 128 bits. The key used for this differs, however. In the
case of FOpts it is always encrypted using the NwkSEncKey.
The key used for FRMPayload depends on FPort. Either
NwkSEncKey is used if FPort has a value of zero or AppSKey
is used in all other cases.

One part of the MIC is calculated using the Forwarding
Network session integrity key (FNwkSIntKey). Another part
is calculated using the Serving Network session integrity key
(SNwkSIntKey). Both parts are calculated by taking all fields
in the message, i.e. MHDR and MACPayload. This results in
a 4 byte MIC that is added to the PHYPayload as seen in
Table I.

Encryption is end-to-end between the end-device and appli-
cation server. Integrity is, however, guaranteed through the
MIC in a hop-by-hop fashion. This means that a network
server may alter the packet’s contents without it being de-
tected.

Figure 1 shows the keys that are present in each device,
as well as confidentiality and integrity attributes of certain
connections.

Lastly, LoRa is secured against most replay attacks as it
makes use of frame counters. This is a 32 bit counter that is
stored on the end-device which should not reset after shutting
it down. Messages with a frame counter lower than or equal
to the frame counter of the last accepted packet are discarded.
As the frame counter is taken into account when creating the
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Figure 1. LoRaWAN architecture showing session keys, confidentiality, and
integrity attributes

MIC, re-sending a message with an altered frame counter (one
that has been incremented by one, for example) is not possible
either.

B. LTE

NB-IoT is based on LTE [4]. Therefore, we will first
describe the architecture and security measures of LTE, be-
ginning with some of its important components.

1) LTE Architecture: We are interested in the
confidentiality and integrity of user data that is sent over LTE.
Therefore, in this section, we cover the components of an
LTE architecture that have a role in authenticating users, and
routing user data [5]. Figure 2 shows how each component is
placed in the LTE architecture of a mobile network operator
(MNO).

• User Equipment (UE): Devices that make use of an
LTE network, e.g. mobile phones and IoT sensors, are
called User Equipment. The UE contains the Universal
Integrated Circuit Card (UICC), which contains crypto-
graphic keys that are also known by the MNO. Further-
more, the UE also stores two identifiers, the International
Mobile Equipment Identifier (IMEI) and the International
Mobile Subscriber Identity (IMSI). The IMEI identifies a
mobile device, while the IMSI identifies the subscriber,
who probably is the owner of the mobile device.

• Evolved Node B (eNB): In an LTE network, a base
station is called an Evolved Node B. The eNB is the
access point for the UE. The eNB and the UE com-
municate through the Uu interface. The X2 interface is
used to communicate between two eNBs. An S1 interface
(S1-MME or S1-U) is used between eNBs and the core
network.

• The Core Network: The core network is responsible for
authenticating UEs, and routing their user data through
the network. Components of the core network, important
to this research, are described below.

• Mobility Management Entity (MME): The Mobility
Management Entity has an important role in the control
plane of an LTE network. As its name suggests, it
provides mobility for the UE, but it is also used for user
authentication and selecting gateways.

• Serving Gateway (S-GW) and PDN Gateway (P-GW):
The user data from the UE is sent via an eNB to a Serving
Gateway in the core network. The S-GW forwards the
user data to a Packet Data Network (PDN) Gateway.
The P-GW forms a gateway to other networks, e.g. the
Internet.

• Home Subscriber Server (HSS): The MNO stores infor-
mation on its subscribers in the Home Subscriber Server.
An important entry, which is stored for a subscriber in
the HSS, is the cryptographic key K that is also stored
within the UUIC in the UE.

2) LTE Security: Because we focus on the confidentiality
and integrity of IoT sensor data, we are mostly interested in
the security of the LTE user plane. However, to get secure
data transport at the user plane, a secure control plane is also
important. Therefore, we first briefly discuss how a UE gets
access to the user plane, by identification and authentication.

When a UE wants to connect to an LTE network, it first
needs to identify itself. The identification is done following the
Initial Attach Procedure [5]. In this procedure, the UE sends
its IMSI and IMEI to the MME. The result of the procedure
is that the UE is provided a Globally Unique Temporary
Identity (GUTI). The GUTI is from there on used as identifier
instead of the IMSI. The IMSI is used as little as possible,
because it can also be used by eavesdroppers to identify
subscribers. Next, the Authentication and Key Agreement
(AKA) procedure is used to mutually authenticate the UE and
the LTE network [5]. To authenticate, the UE and HSS use the
shared cryptographic key K. If the authentication succeeds, the
UE can access the network and make use of the user plane.

Figure 3 and 4 show the protocol stack of the LTE user plane
and control plane respectively. The layers labeled RLC, MAC
and PHY provide the ability to transport bytes between the UE
and eNB, e.g. error correction, multiplexing, modulation [6].
In contrast to the Packet Data Convergence Protocol (PDCP),
these layers do not add anything to the security of LTE.
PDCP provides confidentiality and integrity to its upper layers,
e.g. RCC, between the UE and eNB on the Uu interface. It
supports encryption of user plane data and control plane data,
and it supports integrity protection and integrity verification
of control plane data [7]. Whether or not encryption and/or
integrity protection is used by the PDCP is decided by the
upper layers.

In the control plane, Radio Resource Control (RRC) sig-
naling is used between the UE and eNB, and Non-Access
Stratum (NAS) signaling is used between the UE and MME.
While RRC depends on PDCP for confidentiality and integrity,
NAS provides its own confidentiality and integrity. This is the
Non-Access Stratum Security (NAS security). The security
provided to RRC and the user plane by PDCP is called
Access Stratum Security (AS security) [8]. Furthermore, while
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Figure 2. A basic architecture of an LTE network. The names of the interfaces that are used by the components to communicate are also shown.

Figure 3. The protocol stack of the LTE user plane [6].

Figure 4. The protocol stack of the LTE control plane [6].

confidentiality is supported, confidentiality for RCC signaling
and NAS signaling is optional to the MNO. However, integrity
protection is not optional and must be provided for RCC
signaling and NAS signaling. The fact that no integrity is pro-
vided to the user plane on the Uu interface and confidentiality
is recommended, but optional to the MNO, is important to
this research. The cryptographic algorithms that are supported
by LTE to achieve confidentiality and integrity are based on
SNOW 3G, Advanced Encryption Standard (AES) and ZUC
[8]. For example, AES CTR mode can be used to achieve
confidentiality and AES-CMAC to achieve integrity [5].

In addition to the Uu interface, the eNB also uses the X2
and S1 interfaces to connect to the core network. Following
the LTE security specification [8], user plane and control plane
data must both have confidentiality and integrity protection
on these interfaces. This is achieved by a mandatory IPsec

Tunnel mode, with Internet Key Exchange version 2 (IKEv2)
for certificate authentication.

Finally, we discuss the security in the core network,
beginning with the S6a interface. The S6a interface carries
sensitive data from the HSS, e.g. cryptographic keys.
Therefore, confidentiality and integrity protection are
mandatory at this interface. Furthermore, if components of
the core network are not located in the same security domain,
e.g. physically divided, the interface between the security
domains must provide integrity and optionally confidentiality.
Also here, IPsec with IKE authentication is mandatory [8, 9].

For our research, we can conclude that LTE’s user plane
does support authentication and optionally confidentiality
between the UE and core network. However, no integrity is
supported for the user data. Furthermore, if the UE is for
example an IoT sensor and wants to report its measurements
to an application server, e.g. a monitoring platform, then
the sensor data needs to go over the Internet and would be
unprotected there. This is illustrated in Figure 5. Furthermore,
we put our trust in the LTE provider here, to make a part of
our path from the sensor to the application server confidential.
There is no end-to-end authentication, confidentiality, nor
integrity. However, end-to-end security can be implemented
on top of LTE in higher layers, e.g. Transport Layer Security
(TLS).

C. NB-IoT Architecture

NB-IoT is similar to LTE. However, changes have been
made for NB-IoT to make low power consumption possible
in the end devices. The UE goes into sleep mode when
it is not using sensors nor sending data to the application
server. The UE is not able to receive data in sleep mode.
Therefore, messages to the UE need to be queued by the
MNO. Then, the UE first needs to send an arbitrary uplink
message, notifying the MNO that it is awake, before it can
receive data. A change in LTE that affects the security of NB-
IoT is the Control Plane CIoT EPS optimization [10]. This
optimization allows transport of user data over the control
plane via the MME to the S-GW, which forwards it to the
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Figure 5. A simplified architecture of an IoT sensor that reports to an
application server via LTE. It is labeled at each link if the sensor data has
authentication, confidentiality and integrity.

P-GW. To transport user data between the UE and MME over
the control plane, the data is encapsulated in a NAS message
(Data over NAS). Transportation of user data over the control
plane has a security advantage. NAS security is used instead
of AS security. Thus, in addition to confidentiality protection,
the user data is now also integrity protected at the Uu interface
[11]. With NB-IoT, the UE has two options to send or receive
data. Data can be transported as a UDP datagram within an IP
packet, or Non-IP Data Delivery (NIDD) can be used [12]. In
the case of NIDD, data is transported inside a NAS message
without UDP and IP headers.

When UDP is used by the UE, a similar architecture as
with LTE is possible (Figure 5). However, another possible
architecture is shown in Figure 6. In this architecture the MNO
uses a Connected Device Platform (CDP) to store the messages
of the UE. Thereafter an API can be used to get the message
from the CDP to an application server, e.g. a monitoring
platform. The traffic between the CDP and application server
can be secured by using an application layer security protocol
such as HTTPS. In this case, authentication of the CDP can be
done with certificates and the application can be authenticated
with user credentials. Thus, with this NB-IoT architecture we
have authentication, confidentiality and integrity from the UE
to the application server. However, this is not end-to-end. In
this case we still put our trust in the NB-IoT provider.

D. End-to-End Security on top of NB-IoT

There are already technologies that allow end-to-end secu-
rity on top of NB-IoT. In this section we will discuss these
technologies.

1) Datagram Transport Layer Security: When the IP pack-
ets sent by the UE are also the packets that are received by the
application server, i.e. not using NIDD nor a CDP, Datagram
Transport Layer Security (DTLS) can be used to create end-
to-end encryption [13]. However, it is not standard for the
NB-IoT UE to support DTLS. Another disadvantage of DTLS
is that it adds the overhead of a handshake.

2) Object Security for Constrained RESTful Environments:
Constrained Application Protocol (CoAP) is a protocol that
can provide the REST services of HTTP to an NB-IoT

Figure 6. An NB-IoT architecture where the provider hosts a CDP. HTTPS
can be used to provide confidentiality, integrity and CDP authentication. By
using Data over NAS integrity is added between the UE and MNO.

network. Within the protocol stack of an NB-IoT network,
CoAP is placed on top of UDP or DTLS [14]. Object
Security for Constrained RESTful Environments (OSCORE)
is a CoAP extension which adds end-to-end security by us-
ing Authenticated Encryption with Associated Data (AEAD).
OSCORE only encrypts and integrity protects certain fields
of the CoAP protocol (protected fields). By using symmetric
key cryptography and because only sensitive fields of CoAP
are protected, OSCORE adds less overhead than end-to-end
security with DTLS [14]. Another advantage over DTLS is
that OSCORE makes end-to-end security possible with NIDD.
However, just like DTLS, OSCORE and CoAP itself are
not included in the NB-IoT standard. Therefore, OSCORE
is not mandatorily implemented on NB-IoT UE. However,
Lightweight M2M (LwM2M) version 1.1 supports CoAP with
OSCORE. LwM2M is used for IoT device management and it
has support for NB-IoT and LoRaWAN [13]. Since LwM2M
version 1.0 is at the time of writing already implemented by
some NB-IoT UE, e.g. UE from u-blox [15], LwM2M 1.1
with OSCORE might be implemented in the near future [16].
Furthermore, OSCORE can only provide end-to-end security
if the LwM2M 1.1 traffic is between the UE and application
server, not between the UE and MNO which is the case when
a CDP is used.

III. RELATED WORK

Kais Mekki et al. [2] compared Sigfox, LoRa and NB-IoT
in terms of quality of service (QoS), coverage, range, latency,
battery life, scalability, payload length, deployment, and cost.
A Sigfox base station has better range (40 km) than LoRa
(20 km) and NB-IoT (10 km). Sigfox and LoRa have a lower
power consumption and also lower end-device costs than NB-
IoT. At the expense of higher power consumption, NB-IoT
can operate with low latency and implements QoS. LoRa also
has the option to increase the power consumption and lower
the latency. NB-IoT scales up to 100 000 end devices per cell,
while Sigfox and LoRa scale up to 50 000 end devices per
cell. A disadvantage of Sigfox is that it limits the maximum
messages per day (140 uplink, 4 downlink). Sigfox also has
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the smallest payload length with 12 bytes uplink and 8 bytes
downlink. LoRa’s payload length is 243 bytes and NB-IoT’s
is 1600 bytes. An advantage of LoRa is its local network
deployment that can be connected to the public network via a
LoRa gateway.

Florian Laurentiu Coman et al. [17] have carried out a
vulnerability analysis of LPWAN technologies LoRaWAN,
Sigfox, and NB-IoT. They discuss the possibility of LoRaWAN
packet forging by bruteforcing the Message Integrity Code
(MIC). While this does not allow an attacker to send proper
messages, as the Application Session Key remains unknown,
it does allow them to send gibberish that could lead to Denial
of Service (DoS). They note, however, that this requires either
an unauthenticated and unencrypted connection between the
gateway and the network server, or an attacker having a
malicious gateway connected to the victim’s network server.
Being able to forge a MIC for a packet with the maximum
frame counter value, would make it possible for an attacker
to perform a DoS attack. This is because packets with frame
counters lower than previously accepted packets, are discarded
by the network server.

Emekcan Aras et al. [18] have looked into security vul-
nerabilities of LoRa. They mention possible attacks such as
compromising the root keys when an attacker has physical
access to an end-device. Jamming by making use of either ded-
icated hardware or by commercial off-the-shelf LoRa hardware
is also possible. Furthermore, if an attacker were to be able
to reset a device, this would reset its frame counter, which
would subsequently allow them to re-send messages which
were sniffed before. Lastly, they mention wormhole attacks
where an attacker would sniff a packet and subsequently jam
the frequency such that it does not reach the gateway. The
attacker could then send (or not) the sniffed packet at any
time that they would like. Such a sniffed packet can only be
sent once.

Because NB-IoT itself has no measures for end-to-end
security, there are no end-to-end vulnerabilities in NB-IoT
like LoRaWAN does have, e.g. forging parts of messages such
as the MIC. Most vulnerabilities of NB-IoT have to do with
DoS attacks as described by Florian Laurentiu Coman et al.
[17]. An attacker could for example try to jam NB-IoT traffic
between the UE and eNB. Another DoS method would be to
drain the battery of UE by pinging it from a compromised
UE. However, to make this possible the UE must be able to
communicate between themselves, which is not the case in
an NB-IoT architecture where UE only reports to a central
server. Furthermore, Florian Laurentiu Coman et al. mention
the problem of renewing cryptographic keys in an LPWAN
end-device as the keys might need to last the lifetime of the
UE (10 years), while NIST recommends to renew symmetric
keys after 2 years [19].

IV. METHODOLOGY

As seen in Section II, LoRa, NB-IoT, and LTE all lack
in some aspects when it comes to security. LoRa does not

offer end-to-end integrity. NB-IoT and LTE do not have end-
to-end authentication, integrity or confidentiality included in
their specifications. Standardized technologies exist that are
able to add end-to-end security to LTE and NB-IoT, e.g.
TLS, OSCORE and DTLS. However, these technologies are
not always supported by the UE. In this section, we will
describe measures that could be taken in order to mitigate the
shortcomings of LoRa and NB-IoT and how we implemented
them. We will not consider LTE separately, as this research is
focused on IoT technologies. The importance of LTE to this
research is that NB-IoT is based on LTE. We will describe the
setup of our environments as well.

A. IoT Cryptography Considerations

The use case of this research is an IoT sensor network. The
sensors report their measurements to a centralized monitoring
platform. Because the sensors and the monitoring platform
are managed by the same organisation, it is possible to use
symmetric cryptography with a pre-shared key between end-
device/UE and application server. By using a pre-shared key,
there is no key exchange needed that adds extra round-trips.
This is an important consideration in an IoT environment,
as extra round-trips lead to higher energy consumption and
more time to set up a session between the end-device/UE and
application server.

In LoRa we need to add end-to-end integrity and in NB-
IoT also confidentiality. To achieve this, we use Advanced
Encryption Standard (AES) as symmetric cipher for both LoRa
and NB-IoT. We chose AES because it is a widely used and
extensively analysed cipher approved by NIST [20].

B. LoRa

In order to set up a LoRa environment we made use of
ChirpStack [21] to set up a network server, application server,
and gateway bridge. We made use of the Robustel R3000
LG LoRa gateway. For the end-device we made use of a Mi-
crochip LoRaBee RN2483A module connected to a SODAQ
Autonomo board, programmable via Arduino IDE [22], using
the Sodaq RN2483 library [23]. The LoRa module supports
the LoRaWAN v1.0.3 specification. We also connected a TPH
v2 sensor to the board to get proper monitoring data. As for
the activation procedure, we made use of ABP. We transmitted
over LoRa with code rate 4/5 and a 125 kHz bandwidth on
EU868 frequencies (868.1MHz, 868.3MHz, and 868.5MHz).

In an effort to provide end-to-end integrity, we create a
MIC by using the AppSKey, which is already present on the
end-device. This is an 128 bit AES key. As both the end-
device and the application server have access to this key, it
can be used to achieve end-to-end integrity. To achieve this,
we used the same scheme as is used for the hop-by-hop MIC
that is already present in LoRa, i.e., AES128-CMAC. This is
used as it does not require any random data to be initialised.
As the SODAQ Autonomo only has a pseudorandom number
generator, we cannot make use of any other schemes that
require random data. We used the implementation of AES-
CMAC from WolfSSL for this [24]. AES128-CMAC requires
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Figure 7. The flow of our LoRa latency measurement.

an AES-128 key, a message, and the message length as input.
Different from the LoRa specification where a truncated 4 byte
MIC is created, we made use of the full-length 16 byte MIC
that is created with AES128-CMAC. This was done to add
security, further minimising the possibility of the MIC being
forged by brute forcing, as described in Section III. For our
implementation, AES128-CMAC takes the message as well
as the frame counter as input, alongside the message length
and the AES key. The frame counter is taken into account, to
provide end-to-end integrity for the frame counter as well (as
opposed to only for the message). This makes it infeasible for a
rogue network server to manipulate it, subsequently mitigating
certain replay attacks. The newly created MIC is ultimately
appended to the monitoring data in the payload, adding 16
bytes of overhead.

1) Latency measurement: In order to measure the effect
that calculating and adding a MIC to the payload has on the
performance, we measured the latency. That is, the execution
time it takes for creating a MIC and sending data, and the
time it takes for data to be received and verified at the
application server. The end-device is connected with a USB
to the application server. It waits for the server to instruct it
to send a packet. The end-device creates a MIC and sends the
packet over LoRa, eventually arriving at the application server,
after instructions have been received. The application server
sets a timer, timing how long it takes for a packet to arrive
and be verified after is has given the instruction. A packet is
sent every minute, as sending packets at a higher rate could
block the end-device. We also measure the time it takes to
create and verify a MIC separately, to see the impact that this
has on the execution time. These experiments are carried out
1000 times. Figure 7 shows our setup for these experiments.

C. NB-IoT

In our NB-IoT environment we used an SODAQ NB-IoT
Shield board [25] with a u-blox SARA N211 02B-00 NB-
IoT module [26], and a temperature and humidity sensor. This
board is attached to a Crowduino M0 SD [27], programmable
via Arduino IDE [22]. The MNO in our environment is T-
Mobile [28]. T-Mobile uses a CDP to give the application
server access to the UE messages via HTTP or HTTPS.
The application server is authenticated with a username and
password. T-Mobile does not support NB-IoT without a CDP
[29]. Therefore, this environment is a perfect example of an
environment where end-to-end encryption is not possible via
DTLS or OSCORE. The DTLS and CoAP traffic would be
between the UE and the CDP [30] and not end-to-end between
the UE and the application server. The only way to have end-
to-end security in an environment like this, is to encrypt the
payload itself. Therefore, we have implemented authentication,
confidentiality and integrity from the UE to the application
server ourselves. In the remainder of this section, we will
discuss the choice of the mode of operation used with AES and
how we implemented it securely. We end with an experiment
in which we measure the effect of the chosen cipher on the
latency from the UE to the application server.

1) Mode of operation: AES can be used with different
modes of operation, e.g. Galois Counter Mode (GCM) or
Cipher Block Chaining (CBC). We chose GCM as mode of
operation with two reasons. Firstly, AES-GCM is an Authen-
ticated Encryption with Associated Data (AEAD) cipher [31].
Therefore, it provides both confidentiality and integrity based
on a pre-shared key. Secondly, the initialization vector (IV)
of AES-GCM is allowed to be predictable. This is important
to the NB-IoT environment, as the UE might not be able to
generate random data. The Crowduino used in this research
is only able to generate pseudorandom data. Therefore, using
AES-CBC would not be secure as it needs randomly generated
IVs [32].

The input to AES-GCM is an AES key, an IV, additional
authenticated data (AAD) and the plain text. The AAD is
optional and contains data that does not need to be encrypted,
but must be authenticated [33]. For example, version numbers
of protocols can be used as AAD, to make sure that the right
versions are used [34]. As the AAD is optional, we left it
empty. The AES key is a randomly generated bit string of
length 128, 192 or 256. For the IV, NIST recommends [35],
using 96 bits of which 32 bits are a fixed field and 64 bits
are a counter field. The counter field can start at zero for the
first message encryption and increment for each new message.
While the same key and fixed IV field are used for each
message encryption on a device, the counter must never go
back to zero, otherwise security will be broken by repeating
IVs [33]. An important security requirement is that an IV is
never used twice with the same key. Therefore, the counter
must never wrap-around, back to zero. With a 64 bit counter
field and a send rate of one message per second, the UE is
able to last for more than 5.8 · 1011 years. This is more than

7



enough for an NB-IoT device, which is built to last without
maintenance for 10 years.

2) Implementation: We implemented end-to-end authenti-
cation, confidentiality and integrity between the UE and appli-
cation server. We used the implementation of AES-GCM from
WolfSSL [24] to add the needed cryptographic functionalities
to the Crowduino M0 SD. As application server, we used the
Python3 HTTP Server library [36]. At the application server
we used the Python3 Cryptography library [37] to add support
for AES-GCM. As long as each UE has its own pre-shared key
with the application server, the messages between the UE and
application server can also be authenticated. One could also
choose to use the same key for each UE. In this case, the fixed
field of each UE must be different. The disadvantage of this
solution is limited authentication as the application server can
only verify that a particular message came from one of the UE,
but not from which one. Also, if one UE gets compromised,
each UE needs to be updated with a new key. For each UE we
used a different AES key of 128 bits long. Furthermore, an IV
must never be used twice with the same key. Therefore, if a
key is used for encryption by both the UE and the application
server, the fixed field of the IV must be different for the UE
and the application server. The output of AES-GCM is a cipher
text and a tag of 16 bytes. In addition to the cipher text, the
receiving end needs the tag and IV as well to decrypt and
check the integrity of the message. Therefore, we append the
tag and IV to the cipher text and send them all together over
NB-IoT. Thus, 28 bytes of overhead are added to the message
by using AES-GCM.

To add replay protection, the receiving end of a message
must compare the counter field in the IV with the counter field
of the previous message received from the same sender. The
new message must contain a counter greater than the counter
of the previous message. To protect against a reflection attack,
the UE and application server could both use a different key
for encryption, or the following two approaches with the fixed
IV field could be chosen.

Approach 1: the UE and application server could check that
their received messages do not have a fixed IV field that is used
by themselves. We used this approach in our implementation.

Approach 2: the the fixed IV field of the UE and the
application server could be made known to each other on
forehand. With this approach, messages that were not ciphered
with the expected fixed IV field can be rejected.

3) Latency measurement: To measure how AES-GCM af-
fects the latency of messages from the UE to the application
server, we set up an experiment as shown in Figure 8. The
UE is connected to the application server via USB. Each
measurement starts with the application server starting a timer.
Directly after setting the timer, the application server sends
a signal to the UE over the USB connection that it must
send a message. When the UE receives the signal, it has its
sensor data already available for sending. It must only use
the AES-GCM cipher on the sensor data and send it via T-
Mobile NB-IoT to the application server. The size of the sensor
data is 8 bytes, containing two floating points that represent

Figure 8. The flow of our NB-IoT latency measurement.

temperature and humidity. Once the application server has
decrypted the sensor data and checked the integrity, it stops
the timer. After waiting ten seconds, a new measurement
will be started. We repeated this measurement 10000 times.
Between each measurement was a ten seconds interval, to send
messages at a rate that is suitable for NB-IoT. To compare,
this experiment will also be performed without AES-GCM.
Furthermore, we also separately measure the time it takes to
encrypt, decrypt and check the integrity of the 8 byte messages
with AES-GCM.

V. RESULTS

In this section we show the results of the LoRa and
NB-IoT measurements. For both technologies we measured
how much time it takes to execute our added cryptographic
functionalities. Furthermore, we measured the latency of the
technologies from the end-device/UE to the application server.

A. LoRa

Figure 9 shows the time it takes for the MIC to be created
by the end-device and the time it takes for the MIC to be
verified by the application server. The mean time it takes for
the MIC to be created is 418 µs. Verifying the MIC takes 750
µs on average.

In Figure 10 and 11 we see the result of our latency
experiment for LoRa. We see two histograms of the 1000
latency samples both with and without AES-CMAC in Figure
10. In Figure 11 we observe the latency and 99-percentile
for both these cases. On average without AES-CMAC there
is a latency of 1884ms while with AES-CMAC there is an
average latency of 2132ms. The 99-percentile is at 2597ms
without AES-CMAC and 3139ms with AES-CMAC.
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Figure 9. The time taken by the end-device and application server to perform
AES-CMAC on one message.

B. NB-IoT

Figure 12 shows the time taken by the UE and application
server, to use AES-GCM for encryption and decryption. It
takes the Crowduino on average 935 µs to encrypt an 8
byte message with AES-GCM, using an 128 bit key. The
application server needs on average 453 µs to decrypt the
message and check its integrity.

Figure 13 shows two histograms of the 10000 latency
samples, one with and one without AES-GCM. It is notable
that both histograms contain spikes that are separated by one
second. The highest spike is around 2000 ms. Figure 14 shows
the mean latency and the 99-percentile for both cases. The
mean latency is also around 2000 ms, with and without AES-
GCM respectively 1984 and 1982 ms. The 99-percentile in
both cases is 5007 ms.

VI. DISCUSSION

A. LoRa

The way we implemented end-to-end integrity for LoRa,
was to append an additional MIC to the payload. One down-
side to this is that this constitutes as MAC-then-encrypt, i.e. a
MIC of the plaintext is created and then encrypted alongside
the plaintext. An issue with this, is the fact that the application
server is unable to verify the integrity of the message without
decrypting it first. This means that when an attacker sends
garbage to an application server, it would have to perform an
extra step, requiring more time to discard the message. This, in
turn, may facilitate other attacks such as DoS attacks. Ideally,
encrypt-then-MAC should be used instead [38].

An issue with LoRa’s implementation of integrity checks is
the fact that it makes use of a MIC that is only 4 bytes long.
This goes against the NIST recommendation of having a MAC
that is at least 64 bits (8 bytes) long, as described in NIST SP
800-38B [39]. Making use of a MIC that is too short results in

vulnerabilities such as MIC forging as described in Section III.
This is why the MIC, which is used for end-to-end integrity,
created in this research has a length of 16 bytes. While this
results in more overhead, it also offers a higher degree of
security, which may be needed when handling sensitive data.
Making use of a 16 byte MIC makes it infeasible for a MIC
to be forged.

Furthermore, we have incorporated the frame counter in our
newly created MIC. Replaying the message after the default
4 byte MIC has been forged is thus not possible as the frame
counter is also used for the 16 byte MIC. Incorporating the
frame counter does not prevent all replay attacks, however. It
is, for example, still the case that - after the frame counter is
reset, either by resetting the device or by means of a wrap-
around - an attacker would be able to replay old messages
from before the frame counter was reset.

From Section V we can see that the execution time does
not increase significantly, when adding end-to-end integrity
through AES-CMAC. We do, however, see that the latency
increases significantly, from 1884ms to 2132ms. This is likely
because the extra 16 byte tag is included in the payload. More
data has to be sent, increasing the latency.

One thing to note is that the implementation of end-to-
end integrity described in this research makes use of the
AppSKey. Ideally, a separate AES key is used for creating
a MIC as AppSKey is already used for end-to-end encryption.
If two keys are used this further improves the security, as
the compromise of one key only leads to either encryption or
integrity failing and not both.

B. NB-IoT

In this research we discussed different ways to make NB-
IoT communication between UE and an application server
end-to-end secure. We discussed DTLS and OSCORE, but
these two possibilities are not supported on all UE and also
not supported by every MNO. Therefore, we looked into
a third possibility, implementing security at the application
layer, using Arduino hardware. In this section we discuss
the limitation of our implementation and the results of our
experiments.

On a UE reboot it is important that the state of the counter
in the AES-GCM IVs is remembered. Otherwise, the UE will
start to reuse IVs, breaking the AES-GCM security, and it
will accept replayed messages from the application server. To
remember the state of the counter, the UE needs persistent
storage, which might not be present on the UE. This would
form a problem to our method of using AES-GCM in NB-IoT.
In this research we assumed that the UE would never reboot.
However, this could happen. For example, sensors that are
plugged into a power socket instead of a battery will reboot
after a power outage. If the counter can’t be restored after
reboot, alternatively a new key or fixed IV field can be chosen
to avoid IV repetition. However, this would be time consuming
if it has to be done manually to a device in the field. To solve
this problem, a mechanism can be developed with which the
application server delivers the fixed IV field to the UE after
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Figure 10. Two histograms showing the latency from the end-device to the application server, with and without AES-CMAC. 1000 samples are shown each.

Figure 11. The mean, standard deviation and 99-percentile of the latency
between the end-device and the application server.

it boots. In this case, the application server could make sure
that it chooses a fixed IV field that has not been used before.
However, we could not come up with such a mechanism that
is protected against replay attacks, as the UE can also not
remember the last counter IV field of the application server
on a reboot. This would allow an attacker to replay a message
with an old fixed IV field. If the UE uses the old fixed IV field
with a counter that has been reset, the security of AES-GCM
is broken.

Another security issue with AES-GCM is that the length of

Figure 12. The time taken by the UE and application server to use AES-GCM
on one message.

the cipher text is the same as the length of the plain text. This
could give away valuable information to an eavesdropper. For
example, one could differentiate between the cipher text of the
plain text “Yes” and the plain text “No”, just by looking at
its length. This problem can be solved by having a constant
message size. Padding can be used to fill smaller messages.

Section V-B has shown that the time it takes to use AES-
GCM at the UE and application server is in the order of
microseconds. The latency from the UE to the application
server was in the order of seconds, with and without AES-
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Figure 13. Two histograms of the latency from the UE to the application server, with and without AES-GCM. The histograms contain 10000 samples each.

Figure 14. The mean, standard deviation and 99-percentile of the latency
between the UE and application server.

GCM. Because, the microseconds encryption/decryption time
are almost nothing compared to a few seconds of latency, we
can say that AES-GCM does not significantly influence the
latency of NB-IoT. However, it could still influence the power
consumption of the UE. This is something that we did not re-
search, but is also important to an IoT device. AES-GCM does
not only add extra operations per message which increases the
power consumption, but it also adds 28 bytes to the message
that need power to be transmitted. Power consumption could
be lowered by choosing other cryptographic functions than

AES-GCM. Instead of AES-GCM, one could use lightweight
cryptography methods such as PRESENT for encryption, and
SPONGENT as a hash function to provide integrity. These are
more efficient algorithms, but are also less secure [40].

Lastly, we also noticed that the latency histograms in
Figure 13 contained spikes, separated from each other by one
second. We expect that this is caused by the implementation of
the CDP of T-mobile. The CDP buffers messages from the UE
and does an HTTP post to push the messages to the application
server. If the CDP does its posts to our application server on a
one second interval, it could be the cause of the noticed effect
on the latency.

VII. CONCLUSION

In this research we discussed the security measures that are
in place for LoRa. We have seen that LoRa supports end-to-
end confidentiality and hop-by-hop integrity, by default. We
have also discussed several attacks and have seen from related
work that MIC forging and replay attacks are possible. Hop-
by-hop integrity also makes it possible for a rogue network
server to alter packets without notice of the end-device or
application server.

For LoRa we implemented end-to-end integrity on the
payload. This was done by creating a tag with AES-CMAC
and adding it to the payload, using a shared key that both
the end-device and application server have. AES-CMAC was
chosen as it did not require any random data generation to
be initialised. This makes it suitable for IoT devices, as there
is a high probability that such devices are unable to generate
random data. We included the frame counter as input for AES-
CMAC in order to mitigate certain replay attacks. In order to
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be protected against replay attacks, one needs to make sure
that the frame counter is not reset. We have measured the
execution time and latency with and without the use of AES-
CMAC. From our experiments we had seen that making use
of AES-CMAC does increase the latency significantly as more
data needs to be sent.

For NB-IoT we discussed DTLS, OSCORE and an applica-
tion layer implementation to add end-to-end security between
UE and the application server. DTLS is not supported by all
UE, as it is not a standard for NB-IoT. However, some NB-IoT
UE manufactures do implement it. When the UE does support
DTLS, also the right MNO must be chosen. One that allows
the UE to send its UDP datagrams to the application server.
Thus, an MNO without a CDP must be used.

OSCORE extends CoAP with end-to-end security using
AEAD. As OSCORE is also part of the LwM2M 1.1, it
probable that it will be implemented by manufacturers of NB-
IoT UE in the near future. However, at the time of writing,
we could only find UE with support for LwM2M 1.0. Thus,
without OSCORE. Just like DTLS, OSCORE does not provide
end-to-end security if a CDP is used by the MNO, as the CDP
will be one of the CoAP endpoints.

If DTLS and OSCORE are not supported and the UE
is programmable, we can add end-to-end security on the
payload ourselves. We did this by encrypting the NB-IoT
payload with AES-GCM, using a pre-shared key only known
to the application server and one UE. AES-GCM was chosen,
because it allows predictable IVs. Therefore, the UE does
not need to have a secure random number generator. To
keep our method with AES-GCM secure, we discussed some
requirements. An IV must never be used twice with the same
key. Therefore, the UE should be able to remember the state of
the counter field in the IV when it reboots. To protect against
replay attacks, it must be confirmed that a received message
has a counter field in the IV that is higher than the previous
received message. Lastly, to protect against reflection attacks,
the UE and application server should use different keys for
encryption and decryption, or the fixed IV field can be used
to decide if a message was reflected.

Furthermore, due to NB-IoT’s power efficient nature, it has
a high latency. Our experiments show that using AES-GCM
on the messages from the UE to the application server adds
an insignificant amount of time to the latency. However, we
did not research how the power consumption is affected.

VIII. FUTURE WORK

In this research we implemented end-to-end integrity for
LoRa and NB-IoT, as well as end-to-end encryption for NB-
IoT. While this does mitigate some attacks, other attacks such
as wormhole attacks or certain replay attacks are still possible.
One could look at the possibility of mitigating such attacks by,
for example, introducing time and allowing packets to only be
accepted within a certain time frame.

Furthermore, we only implemented security solutions for
LoRa and NB-IoT. There are, however, more technologies that

are commonly used in IoT environments, such as Sigfox or
LTE-M, that could be researched.

For NB-IoT, one could further research use cases in which
the NB-IoT UE supports DTLS or other methods that add end-
to-end security. As the interest in secure IoT is growing, most
new NB-IoT UE support DTLS.

One could also look at the power consumption. Implement-
ing end-to-end confidentiality and integrity with AES-CMAC
and AES-GCM could have impact on the power consumption
of a device. As most IoT devices are low power devices, it
is important that adding confidentiality and integrity this way
does not have significant impact on the power consumption.
Finally, the effect of DTLS on the power consumption would
be interesting to research.
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APPENDIX A
LORA KEYS

Figure 15. The way various keys, used for creating MICs and encrypting payloads, are derived in the case of OTAA [41].
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