Deepfake detection through PRNU and logistic regression analyses

3. July 2020

Catherine de Weever Sebastian Wilczek Supervisor: Prof. dr. ing. Zeno Geradts Netherlands Forensic Institute

The Problem of Perception

[1] Source: https://www.dijitalx.com/wp-content/uploads/2019/09/deepfake_amyadams_nicholascage.png

How can a forged Deepfake video be differentiated from an authentic one, for forensic

purposes?

How can a forged Deepfake video be differentiated from an authentic one, for forensic purposes?

- 1. What detection methods are already available?
- 2. Are these detection methods still applicable to modern Deepfakes?
- 3. If these methods are still applicable, can they be enhanced?
- 4. If these methods are not applicable anymore, what other approaches could be taken?

Related Work

Video Characteristics

- Retrieving values from video files for comparison
- Koopman, M., Rodriguez, A. M., Geradts, Z.
- PRNU
 cross-correlation

Data-driven

- Capturing specific artifacts
- Visual features
- Matern, F., Riess, C.,
 - Stamminger, M.
- Deep neural network & logistic regression model

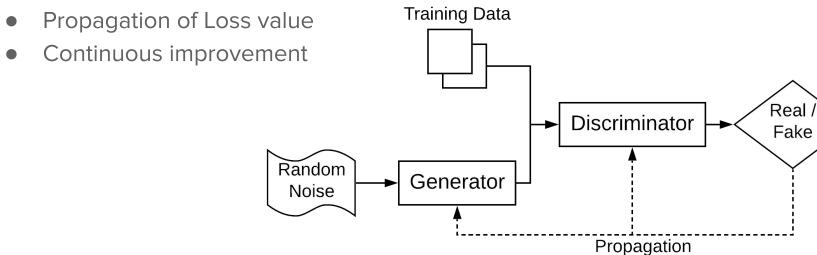
Frequency Domain

- Freq. Domain analysis followed by classifier
- Durall Lopez, R. et al.
- Supposed 100% accuracy

Background Information

GAN

- Generative Adversarial Network
- Random, influenced creation



PRNU

- Photo Response Non Uniformity
- Fingerprint of digital camera
- Inhomogeneity in silicon of sensor
- Photons translated to electrons slightly differently
- Cross-correlation between patterns
 - → Likelihood of originating from same camera

Logistic Regression

- Classification algorithm
 - predicts the probability of a target variable
- Solves binary classification problems

$$y'=rac{1}{1+e^{-(z)}}$$

$$z=b+w_1x_1+w_2x_2+\ldots+w_Nx_N$$

- Probability score between 0 and 1
 - \circ mapped to a binary category by classification threshold
- Metrics used for evaluating classification model's predictions
 - Accuracy -> best classification threshold is known
 - receiver operating characteristic curve (ROC) curve -> N classification thresholds
 - Area under the ROC curve (AUC) -> aggregate measure of the performance

[2]

Experiments

Data Set Retrieval



FaceForensics++ Technical University of Munich

Celeb-DF University at Albany Own creations University of Amsterdam

Deepfake Creation

- Created using *DeepFaceLab*
- 60.000 65.000 Iterations
- Quick96
- ca. 10 seconds (220-260 frames)
- NVIDIA Quadro P5000
- Intel Xeon E5-2678 v3
- Sony G8341 Xperia XZ1

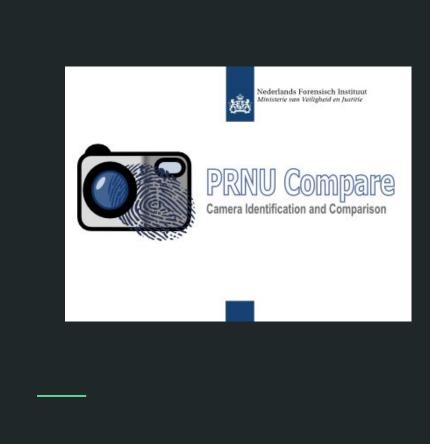
Original

Fake

Check

PRNU Analysis

- PRNU Compare
 - developed by NFI
 - extracts patterns
 - computes cross-correlation
- Comparisons
 - Original
 - Deepfake
 - Check (where available)
- Classification
 - High correlation → Original
 - Low correlation → Fake



Visual Artifact Analysis

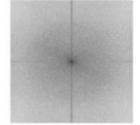
- VA
 - developed by Matern, et al.

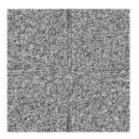
- captures visual artifacts in the eyes, teeth, and facial contours
- 2 variants
 - VA-MLP → small neural network
 - VA-Logreg → logistic regression model
- o detect and segment → feature extraction → classify
- Non-trained model -> default classifiers
- Trained model → created classifiers using the extracted features
- Classification
 - AUC score > $0.5 \rightarrow$ deepfake
 - AUC score $\leq 0.5 \Rightarrow$ original

[3]

Frequency Domain Analysis

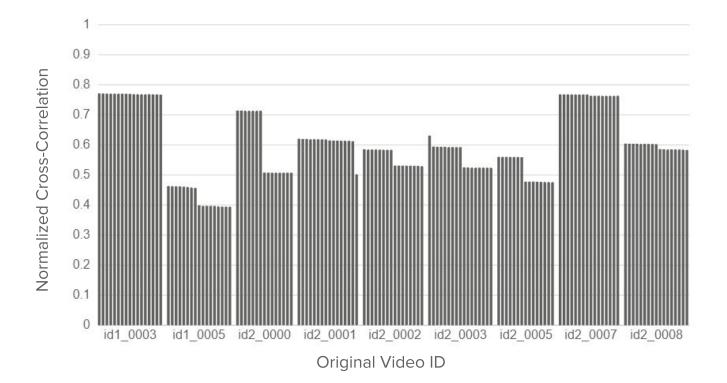
- DeepFakeDetection
 - developed by Durall Lopez et al.
 - frequency domain of an image
 - both real and fake images needed
 - \circ DFT \rightarrow Azimuthal averaging \rightarrow Classify
- Data preparation
 - \circ ran face detection
 - square images
- Classification
 - logistic regression model
 - Accuracy (average classification rate) > $0.5 \rightarrow deepfake$



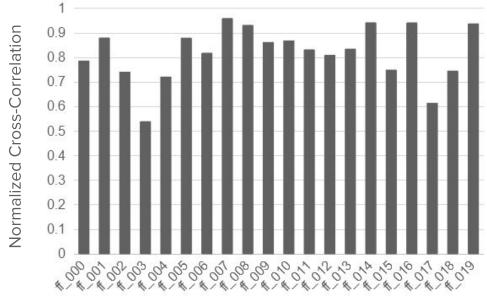


Results

PRNU Analysis - Celeb-DF

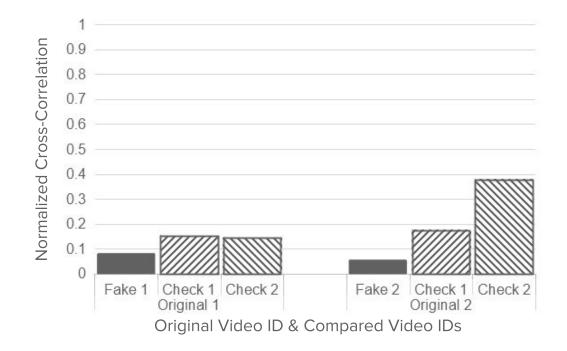


PRNU Analysis - FaceForensics++

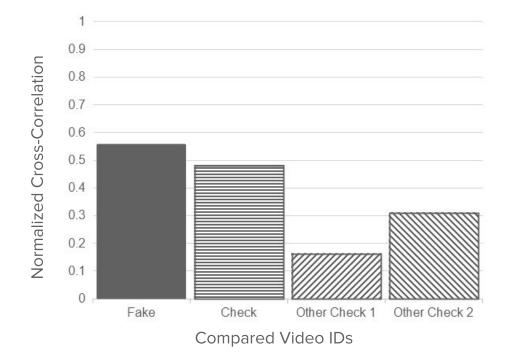


Original Video ID

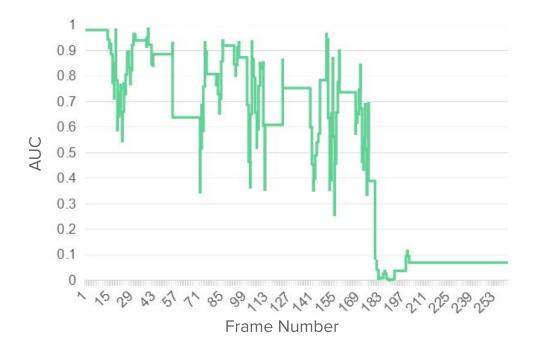
PRNU Analysis - Own Deepfakes



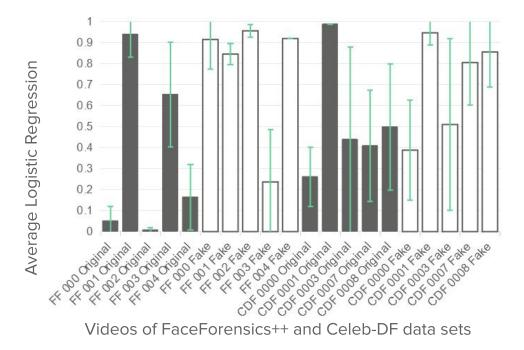
PRNU Analysis - Own Deepfakes, stabilized



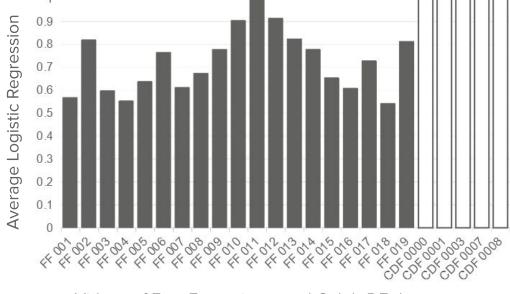
Visual Artifact Analysis - partial Deepfake and original



Visual Artifact Analysis - Faceforensics++ & Celeb-DF



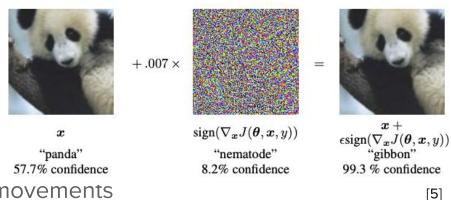
Frequency Domain Analysis - FaceForensics ++ & Celeb-DF



Videos of FaceForensics++ and Celeb-DF data sets

Detection Evasion

- methods using Logistic Regression
 - \circ Misclassification \rightarrow lower AUC
 - Adversarial Attack using FGSM
 - Add random noise
- PRNU pattern influenced by camera movements
 - Lower cross-correlation scores



$$adv_x = x + \epsilon * \operatorname{sign}(\nabla_x J(\theta, x, y))$$

Media Authentication - The Problem

- GAN can use detection for improvement
- Working towards detection makes Deepfakes better
- Potential solution: Find original instead of fake media
- Requires Provenance Information
 - Chain of origin and modification
 - Problem: Propagation

Media Authentication - Provenance Propagation

• Public key infrastructure

- Everyone needs public keys
- Entire file required to read signature → streaming?
- Files often edited without breaking authenticity

• More sophisticated systems

- AMP (Microsoft)
- Manifests with various hashes and metadata
- \circ Stored with file / in database / using blockchain
- Watermarking
- Works for file chunks
- Pointers to source files → Provenance
- Other projects (Adobe, The New York Times)

Conclusion

Conclusion

- Varying results for PRNU analysis
 - No cut-off value determinable
 - Drawback: requires comparison media
- Visual artifact analysis unreliable
 - Plenty of invalid frames
 - Results ambiguous for both trained and untrained approach
 - Only needs Deepfakes
- Frequency Domain analysis biased
 - Different data sets return different results
 - Requires both Deepfake and original media
- Detection Evasion
 - Movement for PRNU, FGSM for logistic regression model

Conclusion

- GAN will improve
 - Alternative approaches required
- Provenance systems are promising
- System Design
 - Access, Security, Availability
- Ethical concerns
 - Responsible organizations
 - Perception of unsigned media
 - Privacy of sources

Discussion

- Insufficient data for PRNU analysis
- Little time → Automation
- Data sets not fitting for visual artifact and frequency domain analysis
- Evasion and Media Authentication only discussed in theory

Future Work

- Extension of Measurements
- More custom Deepfakes & Check videos
- Neural network alternatives
- GAN-proof detection
- Design of Media Authentication system
- Ethics of Media Provenance

Thank you for your attention!

Catherine de Weever Sebastian Wilczek

sebastian.wilczek@protonmail.com

https://github.com/sebastianwilczek

References

- 1. <u>https://www.dijitalx.com/wp-content/uploads/2019/09/deepfake_amyadams_nicholascage.png</u>
- 2. <u>https://developers.google.com/machine-learning/crash-course/logistic-regression/calculating-a-proba</u> <u>bility</u>
- 3. Matern, F., Riess, C., and Stamminger, M. "Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations". In: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). 2019, pp. 83–92.
- 4. Durall Lopez, R. et al.Unmasking DeepFakes with simple Features. Available at: <u>https://arxiv.org/abs/1911.00686v3.pdf</u>
- 5. <u>https://www.tensorflow.org/tutorials/generative/adversarial_fgsm</u>