
Monitoring an EVPN-VxLAN fabric
with BGP Monitoring Protocol

July, 2020

Davide Pucci
M.Sc. Security and Network Engineering

University of Amsterdam
Amsterdam, The Netherlands

davide.pucci@os3.nl

Giacomo Casoni
M.Sc. Security and Network Engineering

University of Amsterdam
Amsterdam, The Netherlands

giacomo.casoni@os3.nl

Abstract—The BGP Monitoring Protocol (BMP) has been
defined in June 2016 and is meant to provide a complete Border
Gateway Protocol (BGP) monitoring solution, while eliminating
the need for clumsy workarounds and home-cooked solutions,
such as setting up extra, ad-hoc, BGP speakers to work as route
collectors, or even screen-scraping. Given the widely spreading
adoption of Ethernet VPN (EVPN) in Data Centers nowadays, a
mean to monitor such an overlay would greatly improve visibility
of the internal workings of a EVPN fabric, allowing for greater
effectiveness with regard to the troubleshooting flow and incident
handling and prevention. In our research, we identified use
cases for BMP applications in a EVPN overlay network and
we proved its validity by implementing a BMP suite — based on
the Free Range Routing (FRR) suite — capable of exchanging
and analyzing, specifically, EVPN traffic.

Index Terms—BGP, BMP, EVPN, VxLAN, routing, route
distinguisher, route target, MAC mobility

I. INTRODUCTION

The Border Gateway Protocol (BGP) is a widely known
routing protocol, whose first definition is dated back in the late
eighties [17]. The protocol is supposed to work on top of the
Transmission Control Protocol (TCP), allowing BGP to skip
the implementation of several strategies, meant to guarantee
reliability and security capabilities, as all features partly of-
fered by the transport protocol, already. When configured and
running on a node, called a speaker, a connection is established
with neighboring speakers and portions of information within
the routing scope are exchanged. Such information unit is
called Network Level Reachability Information (NLRI): rely-
ing on data obtained with the cooperation between a network
of BGP peers, a virtual graph of reachable networks is built,
with each peer contributing to the availability of parts of them,
and altogether basing it off the physical architecture. Along-
side the NLRI, further information is exchanged, to ensure
that every speaker is able to detect whether certain inferred
configurations lead to loop or to apply desired policies. All
the data is being kept, by each node, on a database structure
called Routing Information Base (RIB). Each speaker has three
different kind of RIBs: 1) the Adj-RIB-In stores all the routes
information received a specific peer (each Adj-RIB-In is linked

to a specific peer), 2) the Local-RIB stores the effective routing
information that is applied on the local speaker, after having
processed and enforced local policies and 3) the Adj-RIB-Out
stores all the routes information that the local speaker selected
to be advertised (similarly to the Adj-RIB-In, there is a
Adj-RIB-Out per neighboring peer).

The introduced behavior applies to what is commonly
known as External BGP (eBGP), which represents the part
of BGP strictly related to the inter-Autonomous System (AS)
routing. Originally, eBGP and its counterpart for intra-AS rout-
ing, Internal BGP (iBGP), were logically entirely separated,
as it initially appeared to be obvious to make a separation
between their roles and scopes. Nowadays, while eBGP is
still behind the routing of the highest hierarchy level of the
Internet, it also expanded to be suitable in further scopes. Since
when BGP was first defined, more and more additions have
been done to extend the capabilities of the two layers, like
the introduction of private AS numbers [13], the definition
of AS Confederations [30], or BGP Route Reflection [2].
Moreover, the belief that the original distinction between
iBGP and eBGP was no more indispensable started spreading:
both scopes could be covered entirely by eBGP. In fact, in
August 2016, the Request for Comments (RFC) 7938 [16]
appeared, to claim BGP to be a valid solution to handle
routing within a single private Data Center. Such environments
are always more relying on virtualization technologies and
protocols to build flexible infrastructures, which have to be
able to be dynamically stretched and shrunk to hold complex
and different-scales systems, to isolate or intersect networks
segments, to possibly enforce granular policies. These needs
seem to be flawlessly supported by the BGP capabilities, which
has been kept on being upgraded and extended, over and over.

In such infrastructure, among the other requisites, stability
represents a key component: in order to properly guarantee
it, a conscious and consistent view of how the various com-
ponents of the network are inter-working with each others is
needed. This brings the attention to monitoring: being aware
of the (in)correct functioning of such complex environment
represents an important challenge, even more so when the

environment itself, the network, is representing the baseline
onto which further application components rely to offer their
services. With this in mind, the BGP Monitoring Protocol
(BMP) [27][11] represents a new solution to cover such need,
specifically for BGP: it allows to collect meaningful informa-
tion involved in the inter-speaker communication and setup,
e.g., various neighboring speakers vendor and implementations
specifications, BGP sessions enumerations, exchanged pre-
fixes, constructed AS_PATHs, as well as statistics reports con-
taining information not inherently visible on the BGP protocol
level. This new protocol relies on a well-known distinction
of roles, being the BMP server assigned of collecting (more
precisely, passively receiving) the aforementioned information
from its neighboring speakers, the BMP clients. Given the
young nature of BMP, however, it does not represent a de-
facto standard for monitoring BGP, yet.

Thanks to its high flexibility, BGP has been successfully
applied to very different use cases, such as the aforementioned
Data Centers, as well as university campuses. In such contexts,
it is also often required for different parties, possibly in
different locations, to share a private communication channel,
e.g., separate machines belonging to the same department
spread across a campus, or servers from a single client placed
in different Data Centers. In scenarios like these, a Virtual
Private Network (VPN) strategy is usually adopted, to allow
the two areas aiming for privacy to send and receive to/from
each other with a public network in between, guaranteeing
privacy to the parties. Ethernet VPN (EVPN), a specific case
of VPN [24], is defined as a BGP-based control plane for
layer-2 and layer-3 connectivity. It operates on a Provider
Edge (PE) and Customer Edge (CE) infrastructure, where
reachability information is exchanged among PEs, which also
exchange encapsulated traffic. As far as reachability goes, PEs
make use of MultiProtocol BGP (MP-BGP) [3][4][5][8] to
exchange information relying on a IP/MPLS backbone. On the
other hand, encapsulation can be achieved by many means,
and while several options are available for EVPN, Virtual
Extensible LAN (VxLAN) [18] is usually the preferred one
in Data Centers. VxLAN is a tunneling technology used to
encapsulate Ethernet frames in User Datagram Protocol (UDP)
packets. Moreover, VxLAN expands the ID space which is
quite limited in conventional Virtual Local Area Network
(VLAN). EVPN uses the concept of Route Distinguisher
(RD), also exchanged via MP-BGP, to make locally significant
identifiers globally unique and achieve network separation on
shared links. To give further policy control over what foreign
RD-dependent routes are to be imported locally in a specific
(possibly different) RD, the extended community Route Target
(RT) is used.

II. PROBLEM AND PREVIOUS RESEARCH

While BMP offers a native solution to BGP route advertise-
ment data collection, its adoption is not widespread yet. This
could be due to the protocol being relatively new, although all
major networking equipment manufacturers already provide
support for it, or to the fact that alternative solutions had

already been used before BMP came to be. Traditionally, BGP
monitoring has been done by having a full session with a
so called route collector [31], which is nothing more than
a BGP speaker used to collect routes from other routers for
monitoring purposes. BGPmon [32], hypothesized in 2009,
improves on the collectors idea and relies on a overlay network
on top of the original fabric, which is used to exchange BGP
advertisements between routers and collectors. The presence
of existing BGP monitoring systems could be hampering the
adoption of BMP.

Furthermore, it is still unclear what kind of information
can be gathered with BMP: by design, the protocol is meant
to collect BGP messages exchanged between the monitored
station and its peers, as well as introducing specific type of
counters and data, in the form of the aforementioned statistics
reports. It is still not entirely clear how such information can
be interpreted and to what extent it can be applied to real-
life common use cases, beyond simple statistics collection.
For example, is it capable of tracking Virtual Machine (VM)
movements within a network? Can it detect a security incident
while happening?

While BMP by design seems to not impose limits in
terms of network architectures — as long as BGP is taking
care of the routing component, BMP can be introduced —
with no consideration of Address Family Identifier (AFI) /
Subsequent AFI (SAFI), on the other hand, it remains unclear
whether this is the case in practice. Even more so, given that
open BGP/BMP implementations such as Free Range Routing
(FRR) seem to support it only for tracking a Protocol Data
Unit (PDU) whose scope is strictly linked to IPv4 and IPv6
AFIs and unicast and multicast SAFIs only. Its behavior when
attempting to monitor an overlay network, namely built relying
on EVPN- and VxLAN-based strategies, is still not clear.

Finally, it is worth mentioning that open source products
that revolve around BMP are also being released. OpenBMP,
for example, is a BMP collector used to aggregate information
from several BMP enabled routers. Moreover, OpenDayLight
Software Defined Network (SDN) controller also implements a
BMP plugin. However, even for the few BMP implementations
that do exist, the depth is relatively low, to the best of our
knowledge. For example, OpenBMP only provides function-
ality such as AS number lookup and geo-location, which only
make sense in a traditional AS-to-AS BGP context.

Given the widespread use of BGP as, initially, the only
Exterior Gateway Protocol (EGP) solution, and nowadays as
Interior Gateway Protocol (IGP) in Data Centers [16], it is only
natural that much research went into attempting to reliably
monitor the state of BGP sessions, in order to detect and
troubleshoot faults or attacks.

Already in 2004, Nordström et al., in Beware of BGP attacks
[21], warned about the possibilities of attacks against the BGP
infrastructure. Threats like traffic blackholing, redirection and
sniffing were already very much a concern then. Moreover, as
mentioned in BGP in the Data Center [9], cloud environments
in Data Centers change quickly, and new virtual networks and
machines are spinned up in seconds, calling for a way to detect

2

the location of virtual components at a given time.
Monitoring BGP advertised routes could provide a solution

to the aforementioned problems. The task, however, proved
to be all but trivial in recent researches. Mainly two prob-
lems need to be addressed when attempting to perform BGP
monitoring:

• How can BGP route advertisements be collected?
• How can the collected data be analyzed?

Several solutions were proposed in the literature to col-
lect BGP route advertisements. Notably, BGPmon [32] first
advanced in 2009 a variation of the traditional BGP data
collection method. Originally, BGP routes were monitored
by creating a full BGP session with an extra router, which
was only used for monitoring. The approach described in
the proposed software, while based on the same principles,
implements only the components necessary to monitor. This
method, however, while allowing much greater scalability, is
still flawed. For example, the only routes that can be monitored
are the ones exported by the observed BGP speaker. This
means that no information can be inferred about the raw,
unprocessed, advertisements the BGP speaker receives. One
year later, in 2010, the research Beyond the Best: Real-Time
Non-Invasive Collection of BGP Messages [31] proposed an
entirely different method for BGP data collection, which relied
on selective IP packets duplication and forwarding. At the
time of writing, BMP was already proposed, but the authors
deemed it to be too experimental and not mature enough.
While allowing wider visibility on the the state of the BGP
environment, this method introduces complexity on the side of
the collector, which has to take care of demultiplexing streams
and reassembling TCP segments. Finally, in 2016, BMP was
defined [27], promising a built-in, native approach to tap and
observe the internals of the BGP pipeline. In the subsequent
RFC 8671 [11], support was added to BMP for monitoring
not only the content of Adj-RIB-In, but also Adj-RIB-Out.
For both databases, pre-policy and post-policy monitoring is
available nowadays.

As far as analyzing collected BGP information, much re-
search has been focusing on the issue of BGP routes hijacking.
Papers such as Visual analytics for BGP monitoring and prefix
hijacking identification [6], HEAP: reliable assessment of BGP
hijacking attacks [26], IP prefix hijack detection using BGP
connectivity monitoring [1] and ARTEMIS: Neutralizing BGP
hijacking within a minute [28] all propose different solutions
to prevent or mitigate this phenomenon. Much in the same
direction, the research Unsupervised real-time detection of
BGP anomalies leveraging high-rate and fine-grained teleme-
try data [23] focuses on detecting general BGP anomalies,
which could imply attacks on a network infrastructure or
malfunctions of network equipment. On a different note, Net-
cohort: Detecting and managing vm ensembles in virtualized
data centers [14] proposed monitoring BGP routes advertise-
ments to detect performance bottlenecks caused by ensembles
of virtual machines. Finally, projects such as BGPStream: a
software framework for live and historical BGP data analysis

[22] aim at an overall view on a environment given by BGP
data.

No research so far has focused explicitly on the integration
of BMP with EVPN-VxLAN environments. This is a gap
to be filled, however, given the increasing reliance Data
Centers have on EVPN-VxLAN [10], which operates based on
MP-BGP [24] and could therefore be monitored with BMP.
More specifically, no further research seems to have been done
about possible approaches on monitoring cross-networks VM
movements in a EVPN-based environment.

III. RESEARCH QUESTIONS

How can BMP effectively used to monitor an EVPN-
based overlay networks?

This question can be divided into these sub-questions:
1) Can BMP, by design, be used to monitor an EVPN

overlay network?
2) Can a proof of concept be realized to cover such a

scenario and with which open source technologies (e.g.,
FRR or OpenBMP)?

3) What information can be collected and in what way can
this information be used to monitor the overlay network?

4) In which way did the adoption of BMP impact the
network in its design?

IV. RESEARCH CONSIDERATIONS

According to the BMP’s RFC [27], the way BGP is
monitored is not AFI/SAFI-dependent. In fact, regardless of
the approach to encapsulate a BGP message within a BMP
packet, the monitoring protocol provides a restricted range
of messages types and none of them is explicitly relying on
a given AFI/SAFI assumption. In the predominant and most
important use case, there is the routing information: the current
status of announced and exchanged route is provided to the
BMP servers. This information might come in two different
shapes: 1) Route Monitoring, in which case the BMP client,
i.e. the monitored BGP speaker, sends all the routes processed
and stored in the Adj-RIB-In (or in the Adj-RIB-Out, as
defined in a further BMP reiteration RFC [11]) as soon as
the BMP session is up, while keeping the monitoring server
up-to-date by sending further routes as received by the speaker
in the shape of BGP UPDATE PDU subsequently; 2) Route
Mirroring, in which case the speaker proxies and forwards
every BGP message it is encountering, giving the BMP server
a full-fidelity view of all the network. Considering that this
approach is much noisier within the network, it is advised to
be used for troubleshooting purposes only.

Another message type is the stats report: this kind of mes-
sage is not created by directly encapsulating BGP messages,
but rather by deriving BGP statistics to observe interesting
events that could occur on the speakers. Event- or timer-
driven, such reports basically contain counters of aggregated
information, e.g., number of (known) duplicate prefix adver-
tisements or withdrawals, number of invalidated updates due to
CLUSTER_LIST, AS_PATH or AS_CONFED loops, number
of routes in a given RIB and so forth.

3

Fig. 1. Experiment network topology. At the bottom, the main spine-leaf structure, consisting of four spines, four leaves and two border nodes: each of the
spine and leaf nodes are BMP clients. At the top, the nodes covering management-related purposes: the management server is the designed BMP server,
connected via dedicated links to each BMP client.

Finally, Peer status message type is used to give an insight
about BGP speakers overall status, as when they come up or
down, bringing BGP sessions up and down as well.

As per the aforementioned reasons, protocol-wise, BMP
does not impose any constraint in terms of AFI/SAFI, enabling
for the proposed use case of monitoring EVPN fabrics the
same way it can be done for more traditional environments
based on IPv4/6 unicast and multicast routing only.

Given that the mean opens up to such a monitoring scenario,
further work has been done about identifying what kind of
information is worth to be traced to gather what kind of
behavior observation. On this extent, the following events have
been defined:

1) VM movements history, to give an insight about when and
where movements have been done within the network for
a given Media Access Control (MAC) address.

2) Infrastructure convergence time, to give an accurate es-
timation of how long the network took to converge and
stabilize.

3) MAC flapping, to detect whether a MAC address is being
advertised by a single PE or if conflicting advertisements
are being exchanged.

4) Inconsistencies in MAC Mobility counters [25], to show
whether in the network MAC movements unexpectedly
happened.

5) BGP sessions status, to track down when and to which
extent a speaker has stopped peering.

6) Prefixes authority history, to show an insight about where
prefixes are originated and, if applicable, when such
prefixes authority has been moved from one node to
another.

V. EXPERIMENTS AND DISCUSSION

Network topology

As shown in fig. 1, the network topology adopted for the
experiment is represented by a typical spine-leaf infrastructure.
Four spines are full-mesh and point-to-point link connected to
a set of four leaves and two borders: each of them is running
BGP, with each link translating into a BGP session. The four
leaves are grouped in couples, each representing a Multichassis
Link Aggregation (MLAG) pair, to which racks of three
servers are directly connected. These servers are hosting VMs
whose MACs are being advertised in the network. Every node
in the network has a dedicated eth0 interface connected to
the virtual oob-switch, to guarantee connectivity to the
oob-mgmt-server, which represents the BMP server: the
BMP communication is entirely isolated from the BGP logical
layer. Every BGP speaker is running Cumulus Linux 4.1.1 and
shipping with FRR 7.0.

BMP server

Being that BMP is a relatively new protocol, not many open
server implementations exist at the time of writing, being
OpenBMP, from Streaming Network Analytics System [29],
arguably the most popular. The tool, however, has question-
able EVPN support: while EVPN routes can be recognized,
the analysis features are mainly focused on classical BGP
applications, such as AS-to-AS BGP sessions. For example,
OpenBMP provides the functionalities for IP geo-location and
AS number lookups. Clearly, these features are of no use when
applied to an EVPN environment. As far as parsing goes, as
of version 3.3.0, Wireshark can fully parse BMP messages.
However, Wireshark provides no analysis and unflexible vi-

4

sualization capabilities. A custom solution has been therefore
built, in order to satisfy all the following requirements:

• full parsing capabilities for both BMP message headers
and BGP EVPN messages, including relevant Path At-
tributes and Extended Communities;

• analysis of the received data, with regard to the defined
use cases;

• visualization of the analytics drawn from the BMP col-
lector.

The parser has been implemented to parse BGP messages
containing the AS_PATH, EXTENDED COMMUNITIES,
MP_REACH_NLRI and MP_UNREACH_NLRI path attributes.
For the EXTENDED COMMUNITIES path attribute, the focus
went towards parsing the RT and the MAC Mobility counter
extended communities. While all extended communities
have the same size, i.e. eight bytes, and all use one byte
for the type and subtype, the remaining six bytes can be
used differently. Parsing only works correctly for extended
communities that use a two bytes field followed by a four
bytes one. For MP_(UN)REACH_NLRI, parsing is only
implemented if the AFI and SAFI are, respectively, 25 and
70 (Layer-2 Virtual Private Network (L2VPN) and EVPN).
As far as the BMP message goes, only message type 0
(Route Monitoring), 2 (Peer Down Notification), 3 (Peer Up
Notification), 4 (Initiation Message), and 6 (Route Mirroring
Message) are processed.

The server has been implemented in Python [7], relying on
an ElasticSearch instance for data storing and retrieval. While
Kibana was initially used, the too specific nature of the use
case in analysis made impossible to leverage its visualization
functions: this led to therefore resort back to Python plotting
libraries, namely Matplotlib [19] and NetworkX [20].

BMP client

The BMP client is the BGP speaker to be monitored. As an
extension of BGP the protocol is implemented along in the
routing protocol stack. As mentioned in Network topology
section, each node is running FRR 7.0, which is not yet
supporting BMP. Support for BMP has been added from
version 7.2 onward: hence, a preventive FRR upgrade has
been done to enable it, as well as explicitly enabling the bmp
module as a startup option to the bgpd daemon:

1 spine01$ grep bgpd_options /etc/frr/daemons
2 bgpd_options = " -M snmp -A 127.0.0.1 -M bmp"

Listing 1. Add bmp module to bgpd options

Furthermore, according to the suite documentation, at the
time of writing, the current implementation of the monitoring
protocol is only supporting tracking IPv4/v6 AFI and unicas-
t/multicast SAFI when enabled in monitoring mode [12]:

Only IPv4 and IPv6 are currently valid for AFI,
and only unicast and multicast are valid for SAFI.
Other AFI/SAFI combinations may be added in the
future.

Although, as described in Research Considerations section,
BMP protocol is (S)AFI-independent, its FRR implementation
presented some use cases constraints to be overcome. Mainly,
such constraints were imposed as per the assumption about
the layout of a (S)AFI RIB: being the EVPN RIBs made of
two different layers, this is conflicting with the simple single-
layer structure of a IP-based RIB. This latter RIB represents a
single set of routes (and possible further information attached
to them), while for EVPN this is not the case: a route is
not self-described uniquely, as several Virtual Routing and
Forwarding (VRF) could be using same networks referenced
in routes to enforce different behaviors. EVPN relies on the
concept of RD (and RT) to identify to which VRF a (otherwise
ambiguous) route is to be installed. The RD is associated to a
VRF and prepended to a specific route to confer uniqueness
to the route itself. This structure gives an insight about the
reason why FRR implemented EVPN RIBs to be organized
in two-layers tables. Steps to add support for this use case
involved the steps below.

AFI/SAFI enablement

To configure Route Monitoring for a supported (S)AFI, such
as IPv4 unicast, the following commands are to be used:

1 spine01# configure terminal
2 spine01# router bgp
3 spine01# bmp targets default
4 spine01# bmp monitor ipv4 unicast pre-policy

Listing 2. VTY shell commands to add BMP pre-policy monitoring for IPv4
unicast

The function called by the bmp monitor command cor-
responds to the bmp_monitor_cmd function installed using
the macro DEFPY in bgpd/bgp_bmp.c. Allowing the com-
mand to support L2VPN AFI and EVPN SAFI is a matter of
extending a constant:

1 DEFPY(bmp_monitor_cfg,
2 bmp_monitor_cmd,
3 - "[no] bmp monitor <ipv4|ipv6>

<unicast|multicast>
<pre-policy|post-policy>$policy",

4 + "[no] bmp monitor <ipv4|ipv6|l2vpn>
<unicast|multicast|evpn>
<pre-policy|post-policy>\$policy",

5 NO_STR
6 BMP_STR
7 "Send BMP route monitoring messages\n"
8 - "Addr Family\nAddr Family\n"
9 - "Addr Family\nAddr Family\n"

10 + "Addr Family\nAddr Family\nAddr Family\n"
11 + "Addr Family\nAddr Family\nAddr Family\n"
12 "Send state before policy and filter ...\n"
13 "Send state with policy and filters ...\n")
14 { ... }

Listing 3. Patch to allow enabling EVPN monitoring

Correct queue routes identification

When a BMP session is established in a Route Monitoring
scenario, the bgpd daemon is appending items pointing to
registered routes to a special BMP-related queue. Each of these

5

items is represented by the following struct definition:

1 struct bmp_queue_entry {
2 struct bmp_qlist_item bli;
3 struct bmp_qhash_item bhi;
4 struct prefix p;
5 uint64_t peerid;
6 afi_t afi;
7 safi_t safi;
8 size_t refcount;
9 };

Listing 4. BMP routes queue entry structure

As clearly visible, the only field referring to the specific
route is the struct prefix p: the problem here is that,
as mentioned, for EVPN this is just not enough, as a prefix
could very much likely be not unique on its own. This is why
a further field is needed to be taken into account: struct
prefix_rd rd field adds the missing discriminator to prop-
erly identify EVPN routes. When handling queue operations,
two auxiliary functions are called to perform comparison
of objects and compute their hash: bmp_qhash_cmp and
bmp_qhash_hkey. The prefix_rd field can be exploited
to correctly compute such operations in a coherent and unam-
biguous way.

The first function performs the comparison between two ob-
jects and was originally only taking into account the prefix
p field as well as performing a memory comparison. It has
been extended to check the RD field as well, when applicable:

1 int bmp_qhash_cmp(struct bmp_queue_entry *a,
2 struct bmp_queue_entry *b)
3 {
4 int ret;
5

6 + if (a->safi == SAFI_EVPN
7 + && b->safi == SAFI_EVPN) {
8 + ret = prefix_cmp(&a->rd, &b->rd);
9 + if (ret)

10 + return ret;
11 + } else if (a->safi == SAFI_EVPN)
12 + return 1;
13 + else if (b->safi == SAFI_EVPN)
14 + return -1;
15

16 ret = prefix_cmp(&a->p, &b->p);
17 if (ret)
18 return ret;
19 ret = memcmp(&a->peerid, &b->peerid,
20 offsetof(struct bmp_queue_entry, refcount) -
21 offsetof(struct bmp_queue_entry, peerid));
22 return ret;
23 }

Listing 5. Patch to fix queue EVPN-related entries comparison

On the other hand, the function to calculate the hash for a
specific entry needed to take the RD into account as well to
extend the hash key material, when applicable:

1 uint32_t bmp_qhash_hkey(struct bmp_queue_entry *e)
2 {
3 uint32_t key;
4

5 key = prefix_hash_key((void *)&e->p);
6 key = jhash(&e->peerid,
7 offsetof(struct bmp_queue_entry, refcount) -
8 offsetof(struct bmp_queue_entry, peerid), key);

9

10 + if (e->afi == AFI_L2VPN && e->safi == SAFI_EVPN)
11 + key = jhash(&e->rd,
12 + offsetof(struct bmp_queue_entry, rd) -
13 + offsetof(struct bmp_queue_entry, refcount) +
14 + PSIZE(e->rd.prefixlen), key);
15

16 return key;
17 }

Listing 6. Patch to fix queue EVPN-related entries hash generation

Extended these two functions, it is prevented to see IP routes
overwriting EVPN routes in the queue, as well as being able
to discriminate between EVPN routes with the same network
structure but different RD.

Final step was to inflate the bmp_queue_entry object
with the RD information when the route is originally handled
by BMP and put in the queue, i.e. in the bmp_process_one
function.

1 void bmp_process_one(struct bmp_targets *bt,
2 struct bgp *bgp, afi_t afi, safi_t safi,
3 struct bgp_node *bn, struct peer *peer)
4 {
5 struct bmp *bmp;
6 struct bmp_queue_entry *bqe, bqeref;
7 size_t refcount;
8

9 + if (safi == SAFI_EVPN && bn->prn)
10 + prefix_copy(&bqeref.rd,
11 + (struct prefix_rd *)
12 + bgp_node_get_prefix(bn->prn));
13

14 ...
15 }

Listing 7. Patch add RD inflation in case of EVPN routes

Two-layer tables iteration

When sending out routes, BMP is iterating on each RIB,
encapsulating each route into a BGP UPDATE packet and then
surrounding it with a BMP header. To iterate, the function
bmp_wrsync is called repeatedly with the object struct
bmp *bmp which maintains information about the current
state of sync with the BMP server: the field bmp->syncpos
points to the last element in the table which has been synced,
i.e. a prefix in the table.

Fig. 2. Traditional single-layer IP RIB structure and synchronization mech-
anism

If the bmp_wrsync function were to be called in a context
like shown in fig. 2, the second entry of the IP RIB would be
synced.

FRR’s BMP implementation takes for granted that the table
to iterate is just one level deep: to extend this behavior to

6

cover deeper tables too, the bmp_wrsync function has been
patched to keep working transparently for all the already
covered cases, while performing few more operations in case
of EVPN: a new bmp->syncrdpos field is introduced, to
point to the last element handled in the middle-layer table.
Combining both bmp->syncpos and bmp->syncrdpos,
the current middle-layer table position, i.e. the current RD, can
be associated with the corresponding current final-layer table
position, i.e. the effective route prefix.

Fig. 3. Dual-layer EVPN RIB structure and synchronization mechanism

This is clearly visible in fig. 3, which shows how the
bmp->syncpos pointer is still used to point to the (inner)
prefix table, while the newly introduced bmp->syncrdpos
one keeps track of the (outer) route distinguisher table.

To conclude, the last part is about ensuring that, in
case of deeper tables, at the end of the bmp->syncpos-
based iteration, instead of concluding the synchronization,
bmp->syncpos was reset and bmp->syncrdpos in-
creased to the next outer table entry.

For a matter of briefness and due to the complex nature
of the patch to cover the mentioned case, it is not shown:
nevertheless, the patches are entirely available on the FRR
upstream repository1.

Final configuration

Once the BMP support for EVPN routes is correctly intro-
duced, effective EVPN monitoring configuration is straight-
forward:

1 spine01# configure terminal
2 spine01# router bgp
3 spine01# bmp targets default
4 spine01# bmp connect $HOST port $PORT max-retry $X
5 spine01# bmp monitor l2vpn evpn pre-policy

Listing 8. VTY shell commands to add BMP monitoring for EVPN

1The patches have been submitted to the official maintainers of FRR and
have been successfully merged on the upstream repository:

1) “lib: prefix: add prefix rd type”,
https://github.com/FRRouting/frr/pull/6582

2) “bgpd: bmp: add support for L2VPN/EVPN routes”,
https://github.com/FRRouting/frr/pull/6590

For a further look and their full version, the references above can be used.

Or, via the configuration file, within the BGP tag block:

1 router bgp $ASN
2 bgp router-id $BGP_ID
3 ...
4 !
5 bmp targets default
6 bmp monitor l2vpn evpn pre-policy
7 bmp monitor l2vpn evpn post-policy
8 bmp connect $HOST port $PORT max-retry $X
9 !

Listing 9. Configuration file instructions to add BMP monitoring for EVPN

Use cases and analysis

VM movements and convergence time estimation

Tracking reachability information (MP_(UN)REACH_NLRI)
for a given MAC address can give insights into when, where
from and where to a VM was moved.

Messages regarding a given address must be grouped co-
herently and on a time basis so that each group reflects a
single event (such as a VM movement). In order to do so, after
retrieving all reachability messages regarding a specific MAC
address, the mean time interval between message reception
and the related standard deviation are computed. Given a user-
provided tolerance and the current time interval t, a message
is evaluated as belonging to the current event, or being the
first of a new event by the means of formula 1:

t > µtime ×
(
tolerance× #messages

σtime

)
(1)

Once events are identified, it is possible to ob-
serve which PE was sending reachability advertisements
(MP_REACH_NLRI) and which one was advertising unreach-
ability (MP_UNREACH_NLRI). This gives an indication as
to which rack a VM was moved from and to. Fig. 4 is a
visualization of what an event should look like.

Fig. 4. Plot of received reachability information upon VM movement. The
y-axis represents the type of advertisement, while the x-axis the time, with
format HH:MM.

The blue nodes represent reachability advertisements, while
the red ones represent unreachability ones. In a correct en-
vironment, all reachability advertisements should come from
a single Next Hop Network Address and similarly for
all the unreachability ones. Given all the advertisements in
an event, the difference between the last and first timestamp
gives an indication of how long it took to the infrastruc-
ture to converge to a stable state, where all the nodes had
correct information about where a MAC could be reached
from. Given several identified events, it is then possible to

7

https://github.com/FRRouting/frr/pull/6582
https://github.com/FRRouting/frr/pull/6590

compute a mean convergence time. For the proposed exper-
imental setup, the mean convergence time for MAC address
44:38:39:ff:00:19 was 1.46 seconds, with a standard
deviation of 0.25 seconds.

Fig. 5 represents a plot of a possibly incorrect EVPN
behavior. In this case, reachability are exchanged without older
information being revoked. This could be due to formula 1
failing to detect events correctly. In this case, an operator
could fine tune the output by increasing the tolerance value.
This could also, however, be an indication of MAC flapping
occurring.

Fig. 5. Plot of incorrect received reachability information. The y-axis
represents the type of advertisement, while the x-axis the time, with format
HH:MM.

MAC flapping detection

While in a traditional layer-2 network MAC flapping is defined
as a switch receiving frames with the same source MAC
address on different ports, in a EVPN context it refers to
an address being advertised by several PEs. According to
the Juniper knowledge base [15], MAC flapping “makes the
network more vulnerable and wastes network resources”.

At the heart of MAC flapping detection is the process
of traversing the events identified with the same method
described in Section VM movements and convergence time
estimation and ensuring that at no point in time a specific
MAC address is advertised by more than a single PE. MAC
advertisement changes can be represented by a graph, as
shown in fig. 6.

Fig. 6. Directed graph of correct MAC advertisement flow.

Fig. 6 represents a correct flow of MAC advertisements
across the infrastructure, where each node represents which
PE advertised a given MAC and at which time. Mainly, it is
important for the graph to only have a single blue node. Blue
nodes are those that are still valid at the moment of analysis,

meaning that no unreachability information has invalidated a
previous reachability advertisement. Moreover, it is important
that in the directed graph that represents the advertisement
flow all non-terminal node are of degree two and terminal
nodes of degree one. This shows that at no point in time any
reachability information was received without the previous one
being invalidated. This is not the case, for example, in fig. 7,
an example of a graph that shows the EVPN infrastructure
running into a faulty state at timestamp 09:34, but eventually
fixing itself, since it can be noted that only one node is valid
at the time of analysis (only one blue node).

Fig. 7. Directed graph of incorrect MAC advertisement flow.

MAC Mobility counter inconsistencies detection

The MAC Mobility counter, associated to each MAC address,
is increased whenever a MAC address is learned by a PE [25].
The counter had been introduced, among other reasons, to
prevent MAC duplication issues and it is therefore intended to
stop any BGP action for a given MAC until corrective measure
is taken by the operator. BMP offers a different way to track
the value of the counter and detect more faults than just MAC
duplication.

Fig. 8. Plot of correct MAC Mobility counter. The y-axis represents the MAC
Mobility value, while the x-axis the time, with format HH:MM.

Fig. 8 shows a correct plot of MAC Mobility counter against
time, while fig. 9 represents a faulty situation where the
counter is seen decreasing at timestamp 09:43. This could,
for example, be due to a node advertising false information
or due to the reception of old information, caused by large

8

latency in the network. This could help uncover problems
such as, for example, bugs in the implementation of a routing
protocol, possible loss of connections of some nodes or
network congestion.

Fig. 9. Plot of incorrect MAC Mobility counter. The y-axis represents the
MAC Mobility value, while the x-axis the time, with format HH:MM.

BGP sessions

A BGP session can be defined as a couple of BGP peers
IDs (id1, id2), with no ordering applied. In order to track
the lifetime of a specific session, BMP offers the Peer
Status information, which is basically the encapsulation of
two BGP OPEN messages for Peer Up, and BGP CEASE
NOTIFICATION, i.e. type-6 BGP NOTIFICATION, for Peer
Down. On one hand, the Peer Up message keeps track of both
IDs involved in the session bringup: each of the two BGP
OPEN messages encapsulated contains the BGP Identifier field.
For Peer Down the case is slightly different, as BMP only
encapsulates a BGP NOTIFICATION with type-6, which
does not contain any reference to a session, but it does for
the specific peer which has gone down, thanks to the BGP
Identifier field in the BMP header. While it is straightforward
to infer that, if a peer has entirely gone down, such event
impacts on all the sessions which that peer was involved
in, this reasoning does not apply in cases in which either
1) the peer has specifically invalidated a session, meaning
that the BGP CEASE NOTIFICATION only applies to that
very session, or 2) the peer has unexpectedly gone down, not
allowing the bgpd daemon to track the event and sending out
the notification accordingly.

In the case shown in fig. 10, though, a single node has been
entirely shut down, allowing for each session tracked to be
invalidated.

As clearly visible, at first, all the sessions are up, as it
was possible to reconstruct thanks to the BGP OPEN read by
the BMP server. At 14:04:30, the node leaf02, with BGP
Identifier 10.10.10.2, is manually shut down, triggering BGP
CEASE NOTIFICATIONs to be sent out to the server. Just
five seconds later, the node is back up again, resulting on new
BGP OPEN messages, thanks to which the BMP server is able
to infer the new status of the sessions.

Fig. 10. Plot of peer sessions status, inferred via BMP Peer Up and Down
events, correlated with time. The y-axis represents the BGP session status,
while the x-axis the time at which a certain event occurred, with format
HH:MM:SS.

Prefix authority

The prefix authority tracking allows to check whether a
certain prefix has started being advertised by new peers. This
information can be gathered reading the content of a BGP
UPDATE message, which is encapsulated in both BMP Route
Monitoring and Mirroring messages. The prefix author-
ity can be inferred relying on two different fields:

1) in the NLRI of a EVPN type-5 route, i.e. IP route Prefix,
both the RD and the inner prefix are exchanged;

2) in the AS_PATH path attribute, i.e. the list of AS num-
bers which are to be traversed to reach the announced
prefix, the last element represents the original peer that
advertised the aforementioned prefix.

Correlating these two information allows to build a plot
as shown in fig. 11: the y-axis enumerates the AS numbers
advertising certain prefixes, while the x-axis shows when such
prefixes have been advertised. In the case proposed, there is
no prefix authority overlapping, nor transfer of ownership.

Fig. 11. Plot of EVPN prefixes advertised by BGP peers. The y-axis represents
the AS number, while the x-axis the time at which the prefix announcement
is being done, with format HH:MM:SS.

9

VI. CONCLUSIONS

In order to answer the research question, three main points
had to be addressed.

Firstly, a working BMP client which would support
BGP/EVPN was needed: FRR provided a good starting point,
already implementing BGP/EVPN and BMP for IPv4 and
IPv6. The FRR implementation has been successfully extended
in order to support EVPN.

Secondly, a working BMP server/collector which could
perform analysis specifically on EVPN BGP messages was
needed, as well. Given the lack of open implementations,
a custom solution capable of receiving, parsing, analyzing
and visualizing BMP messages exchanged by a BGP/EVPN
speaker has been built and published on Github [7].

Lastly, a set of use cases that could possibly be adopted in
the context of monitoring a EVPN overlay network were iden-
tified and the server/client solution was successfully applied
to meet the requirements of the defined use cases. Overall,
BMP has been proven to be a viable solution as far as EVPN
overlay monitoring is concerned. Furthermore, the adoption
of such protocol does not impact anyhow directly the way the
infrastructure is to be designed.

Future Work

In the future, it could be worth improving both the client and
the server implementations. The BMP implementation on FRR
could be more stable and less prone to sudden crashes, as
it was implemented mainly for the specific use case, rather
than for production purposes. More testing on it would be
beneficial, if not necessary to ensure stability. BMP on FRR,
moreover, is currently not VRF aware: this could also be
implemented in the future.

As far as stability goes, the same applies to the BMP
server. In fact, many BGP components are ignored by the
server and only a small set of all Path Attributes or Extended
Communities have parsing implemented for, namely only the
ones needed for the given use cases. Adding support for more
of these and testing, would not only make the implementation
more complete, but also more stable.

The identified use cases, although sufficient to demonstrate
the viability of BMP as a tool for monitoring EVPN, are
not, by any means, a comprehensive set of all its possible
applications: more could be identified and investigated. As
an example, the proposed experiment was mainly based on
pre-policy messages and use cases related to this kind
of information. Studying post-policy messages as well
would grant insights into how a specific router applies policies,
enabling for investigating new applications of BMP. Moreover,
when studying VM movements and convergence times, it
could be interesting to observe the behavior of the tool
whenever several events happen at the same time.

VII. ACKNOWLEDGEMENT

First and foremost, we would like to thank Cumulus Net-
works and, especially, Attilla de Groot, Donald Sharp and

Vivek Venkatraman, for the original idea behind the project
and the complete support throughout the duration of the
research, in all its aspects.

Moreover, we are grateful to the OS3 staff and the Univer-
sity of Amsterdam for allowing us the use of their facilities,
in such difficult time in which COVID-19 impacted so hard
on the way structures and institutions can offer their services.

10

REFERENCES

[1] Alshamrani, H. and Ghita, B. “IP prefix hijack detection using BGP connectivity monitoring”. In: 2016 IEEE 17th
International Conference on High Performance Switching and Routing (HPSR). IEEE. 2016, pp. 35–41.

[2] Bates, T. and Chandra, R. BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP). RFC 1966. Internet
Engineering Task Force (IETF), June 1996, pp. 1–12. URL: https://www.rfc-editor.org/rfc/rfc1966.txt.

[3] Bates, T. et al. Multiprotocol Extensions for BGP-4. RFC 2283. Internet Engineering Task Force (IETF), Feb. 1998,
pp. 1–9. URL: https://www.rfc-editor.org/rfc/rfc2283.txt.

[4] Bates, T. et al. Multiprotocol Extensions for BGP-4. RFC 2858. Internet Engineering Task Force (IETF), June 2000,
pp. 1–11. URL: https://www.rfc-editor.org/rfc/rfc2858.txt.

[5] Bates, T. et al. Multiprotocol Extensions for BGP-4. RFC 4760. Internet Engineering Task Force (IETF), Jan. 2007,
pp. 1–12. URL: https://www.rfc-editor.org/rfc/rfc4760.txt.

[6] Biersack, E. et al. “Visual analytics for BGP monitoring and prefix hijacking identification”. In: IEEE Network 26.6
(2012), pp. 33–39.

[7] Casoni, G. EVPN-BMP-Listener. 2020. URL: https://github.com/giacomo270197/EVPN-BMP-Listener (visited on July 1,
2020).

[8] Chen, E. et al. Revised Error Handling for BGP UPDATE Messages. RFC 7606. Internet Engineering Task Force (IETF),
Aug. 2015, pp. 1–19. URL: https://www.rfc-editor.org/rfc/rfc7606.txt.

[9] Dutt, D. G. BGP in the Data Center. Aug. 2017.

[10] Dutt, D. G. EVPN in the Data Center. July 2018.

[11] Evens, T. et al. Support for Adj-RIB-Out in the BGP Monitoring Protocol (BMP). RFC 8671. Internet Engineering Task
Force (IETF), Nov. 2019, pp. 1–9. URL: https://www.rfc-editor.org/rfc/rfc8671.txt.

[12] FRR. BMP — FRR 7.2 Documentation. 2020. URL: http://docs.frrouting.org/en/stable-7.2/bmp.html (visited on July 1,
2020).

[13] Hawkinson, J. and Bates, T. Guidelines for creation, selection, and registration of an Autonomous System (AS). RFC
1930. Internet Engineering Task Force (IETF), Mar. 1996, pp. 1–10. URL: https://www.rfc-editor.org/rfc/rfc1930.txt.

[14] Hu, L. et al. “Net-cohort: Detecting and managing vm ensembles in virtualized data centers”. In: Proceedings of the 9th
international conference on Autonomic computing. 2012, pp. 3–12.

[15] Juniper. Changing Duplicate MAC Address Detection Settings. 2020. URL: https://juniper.net/documentation/en US/
junos/topics/task/configuration/configuring-mac-mobility-settings.html (visited on July 1, 2020).

[16] Lapukhov, P., Premji, A., and Mitchell, J. Use of BGP for Routing in Large-Scale Data Centers. RFC 7938. Internet
Engineering Task Force (IETF), Aug. 2016, pp. 1–35. URL: https://www.rfc-editor.org/rfc/rfc7938.txt.

[17] Lougheed, K. and Rekhter, Y. A Border Gateway Protocol (BGP). RFC 1105. Internet Engineering Task Force (IETF),
June 1989, pp. 1–17. URL: https://www.rfc-editor.org/rfc/rfc1105.txt.

[18] Mahalingam, M. et al. Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer
2 Networks over Layer 3 Networks. RFC 7348. Internet Engineering Task Force (IETF), Aug. 2014, pp. 1–22. URL:
https://www.rfc-editor.org/rfc/rfc7348.txt.

[19] Matplotlib. Visualization with Python. 2020. URL: https://matplotlib.org (visited on July 1, 2020).

11

https://www.rfc-editor.org/rfc/rfc1966.txt
https://www.rfc-editor.org/rfc/rfc2283.txt
https://www.rfc-editor.org/rfc/rfc2858.txt
https://www.rfc-editor.org/rfc/rfc4760.txt
https://github.com/giacomo270197/EVPN-BMP-Listener
https://www.rfc-editor.org/rfc/rfc7606.txt
https://www.rfc-editor.org/rfc/rfc8671.txt
http://docs.frrouting.org/en/stable-7.2/bmp.html
https://www.rfc-editor.org/rfc/rfc1930.txt
https://juniper.net/documentation/en_US/junos/topics/task/configuration/configuring-mac-mobility-settings.html
https://juniper.net/documentation/en_US/junos/topics/task/configuration/configuring-mac-mobility-settings.html
https://www.rfc-editor.org/rfc/rfc7938.txt
https://www.rfc-editor.org/rfc/rfc1105.txt
https://www.rfc-editor.org/rfc/rfc7348.txt
https://matplotlib.org

[20] NetworkX. NetworkX Documentation. 2020. URL: https://networkx.github.io (visited on July 1, 2020).

[21] Nordström, O. and Dovrolis, C. “Beware of BGP attacks”. In: ACM SIGCOMM Computer Communication Review 34.2
(2004), pp. 1–8. DOI: 10.1145/997150.997152.

[22] Orsini, C. et al. “BGPStream: a software framework for live and historical BGP data analysis”. In: Proceedings of the
2016 Internet Measurement Conference. 2016, pp. 429–444.

[23] Putina, A. et al. “Unsupervised real-time detection of BGP anomalies leveraging high-rate and fine-grained telemetry
data”. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2018, pp. 1–2.

[24] Sajassi, A. et al. A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN). RFC 8365. Internet Engineering
Task Force (IETF), Mar. 2018, pp. 1–33. URL: https://www.rfc-editor.org/rfc/rfc8365.txt.

[25] Sajassi, A. et al. BGP MPLS-Based Ethernet VPN. RFC 7432. Internet Engineering Task Force (IETF), Feb. 2015,
pp. 1–56. URL: https://www.rfc-editor.org/rfc/rfc7432.txt.

[26] Schlamp, J. et al. “HEAP: reliable assessment of BGP hijacking attacks”. In: IEEE Journal on Selected Areas in
Communications 34.6 (2016), pp. 1849–1861.

[27] Scudder, J., Fernando, R., and Stuart, S. BGP Monitoring Protocol (BMP). RFC 7854. Internet Engineering Task Force
(IETF), June 2016, pp. 1–27. URL: https://www.rfc-editor.org/rfc/rfc7854.txt.

[28] Sermpezis, P. et al. “ARTEMIS: Neutralizing BGP hijacking within a minute”. In: IEEE/ACM Transactions on Networking
26.6 (2018), pp. 2471–2486.

[29] SNAS. OpenBMP. 2020. URL: https://github.com/SNAS/openbmp (visited on July 1, 2020).

[30] Traina, P. Autonomous System Confederations for BGP. RFC 1965. Internet Engineering Task Force (IETF), June 1996,
pp. 1–7. URL: https://www.rfc-editor.org/rfc/rfc1965.txt.

[31] Vissicchio, S. et al. “Beyond the Best: Real-Time Non-Invasive Collection of BGP Messages”. In: INM/WREN. 2010.

[32] Yan, H. et al. “BGPmon: A real-time, scalable, extensible monitoring system”. In: 2009 Cybersecurity Applications &
Technology Conference for Homeland Security. IEEE. 2009, pp. 212–223.

12

https://networkx.github.io
https://doi.org/10.1145/997150.997152
https://www.rfc-editor.org/rfc/rfc8365.txt
https://www.rfc-editor.org/rfc/rfc7432.txt
https://www.rfc-editor.org/rfc/rfc7854.txt
https://github.com/SNAS/openbmp
https://www.rfc-editor.org/rfc/rfc1965.txt

	Introduction
	Problem and Previous Research
	Research Questions
	Research Considerations
	Experiments and Discussion
	Network topology
	BMP server
	BMP client
	AFI/SAFI enablement
	Correct queue routes identification
	Two-layer tables iteration
	Final configuration

	Use cases and analysis
	VM movements and convergence time estimation
	MAC flapping detection
	MAC Mobility counter inconsistencies detection
	BGP sessions
	Prefix authority

	Conclusions
	Future Work

	Acknowledgement

