
An Evaluation of IPFS as a Distribution Mechanism for RPKI
Repository

Dadepo Aderemi
dadepo.aderemi@os3.nl

Woudt van Steenbergen
woudt.vanSteenbergen@os3.nl

Research Project 2 - Master Security and Network Engineering (SNE) - Universiteit van Amsterdam (UvA)

Abstract— IPFS is a distributed, content-addressable, and
peer-to-peer file system that can be used to share content
on the internet. RPKI is an approach to securing global
inter-domain routing by providing a mechanism to authorize
and validate route announcements made on the internet. The
RPKI approach requires cryptographically signed objects to
be distributed from parties making the authorization to parties
validating the authorization. This task is currently achieved
using rsync or the RPKI Repository Delta Protocol, which
builds on HTTPS. In this research, we investigated the use
of IPFS as a distribution mechanism for RPKI objects. We
performed both qualitative analysis and quantitative analysis to
determine how suitable IPFS is for use in RPKI. Our qualitative
analysis revealed features native to IPFS that could complement
or obsolete part of the current distribution mechanism within
RPKI. Our quantitative study focused on measuring network
performance of IPFS, and it shows IPFS is less performant for
data transfer than HTTPS.

Index Terms— Networks, Network security, Peer-to-peer
computing

I. INTRODUCTION

Resource Public Key Infrastructure (RPKI) is a Public
Key Infrastructure (PKI) approach to securing the Border
Gateway Protocol (BGP) used in global Internet routing.
RPKI provides an extra security layer by allowing provable
cryptographic attestations regarding the ownership of Internet
Number Resources (INR) - Internet Protocol (IP) version
4 and version 6 and the Autonomous System Numbers
(ASNs). The current application of RPKI makes it possible
to authenticate the relationship between these INRs and route
announcements in BGP.

The RPKI materials used for validating BGP announce-
ments are published to known publishing points called RPKI
repositories where they are retrieved by validating software.
At the moment of writing, rsync and the RPKI Repository
Delta Protocol (RRDP) [1] are the only two protocols that
are used in publishing to and retrieving contents from RPKI
repositories.

The Interplanetary File System (IPFS) is a peer-to-peer
distributed file system that uses a content-addressed block
storage model. The content-addressed block forms a general-
ized Merkle Directed Acyclic Graph (DAG), a data structure
upon which a versioned file system and a permanent web

can be built. IPFS routing is based on a modified version
of the Kademlia Distributed Hash Table (DHT), while the
identity of peers is based on public-key cryptography [2]. The
usage of content-addressing, DHT for routing, and public-
key cryptography for node identification ensures IPFS can
be a trustless peer-to-peer network with no single point of
failure.

A. Motivation

The mechanism used for publishing RPKI content has
evolved. The first RPKI publication servers used rsync,
which has since shown to have significant limitations in
practice. These limitations include the high computation
resources in terms of CPU and memory needed by the
publication server, as it needs to continually compute diffs of
content when responding to clients’ requests. This situation
does not scale as the adoption of RPKI increases with more
clients requesting content from RPKI repositories. Another
drawback of rsync is the lack of supported server and client
libraries. This forces reliance on installed rsync binaries
within RPKI implementations. This dependence on installed
binaries makes upgrade difficult and leads to fragility [1].

RRDP was conceived as an alternative mechanism for
publishing RPKI contents with an explicit goal of ame-
liorating the drawbacks of rsync. It is designed to require
less computing resources by being able to take advantage
of caching. It does this by pre-computing the delta arising
from an update to the content in the publication server. This
computation is done once, upon content updates and not upon
every request made by the clients, reducing the computation
resources required to run an RPKI repository. The resulting
delta files are essentially immutable content and hence, can
be cached indefinitely by an HTTP over Transport Layer
Security (HTTPS) server or by a Content Delivery Network
(CDN) reducing the computation resources needed to serve
contents from an RPKI repository.

IPFS seeks to be a technology that offers versioning, with
low global latency, high-throughput oriented file systems for
distributing data. [2]. As part of achieving this goal, IPFS in-
corporates ideas from many past successful systems. A non-
exhaustive list of these ideas includes content addressing,

1

which is a manifestation of an aspect of Information-Centric
Networking [3] (ICN), PKI based identity of participating
nodes, and the embracing of immutable data structures. The
ideas implemented as part of IPFS makes it an interesting
candidate upon which a mechanism for distributing cryp-
tographic materials within RPKI could potentially be built.
In this research, we studied the characteristics of IPFS,
performing both a quantitative and qualitative analysis in
other to understand how it could be incorporated within
RPKI.

B. Research Questions

Our primary research question is:

To what extent can IPFS be used as a distribution
mechanism between RPKI repositories and RPKI Relying
Parties.

In order to be able to answer this question, we articulated
the following sub-questions:

1) How is publishing and retrieving contents currently
implemented with RRDP in RPKI?

2) What are the features of IPFS that can replace or
augment current RRDP implementation of the RPKI
repository?

3) What are the network characteristics of IPFS, and how
would these characteristics influence the operations of
an RPKI repository.

We did not include a comparison with rsync in the scope
of this research.

C. Structure

The rest of this paper is organized as follows. In section
II, we survey related work of this research. In section III,
we outline the necessary concepts that underpin the results
presented in this paper. In section IV, we explained the
methodology used to carry out this research and described
the experiments performed. The results of our research are
presented in section V, while critical reflections on the results
are presented in section VI. The conclusion that can be
inferred from our results is given in section VII. Finally,
in section VIII we give suggestions for future research.

II. RELATED WORK

As at the time of writing, we are unaware of any research
targeting RRDP. RRDP is a relatively new protocol specified
by the Internet Engineering Task Force (IETF) as rfc8182
in 2017. We believe that the relative infancy of RRDP is
responsible for the paucity of research around it.

rsync, on the other hand, is an older technology that
was released in 1996 [4]. Although no formal specification
exists for it, its algorithm is well-described [5]. It has been
implemented in various applications and has enjoyed reason-
able deployment [6], with multiple studies done involving it.
These studies include how rsync can be applied to improve
file distribution, and also methods on how to enhance rsync
itself.

Despite the utility of rsync, it has been found that it
brings about operational challenges when used to distribute
cryptographic materials in RPKI repositories. The require-
ment of significant computing resources in terms of CPU
and memory, including lack of supported server and client
libraries [1], are cited in the RFC that specifies RRDP.

Data storage and distribution are usually done via a
traditional server-client architecture where a server stores
contents and make it available to clients. The need to improve
the storage and distribution of data has led to the explo-
ration of other architecture apart from the traditional server-
client approach. One such method is the use of peer-to-
peer technology. In [7], a torrent based approach to software
distribution in grid computing is explored. While [8] surveys
various peer-to-peer content distribution technologies.

IPFS is a specific implementation of peer-to-peer tech-
nology and has also been explored as a means for data
storage and distribution. [9] proposes a first-class object store
service for Fog/Edge facilities built using Scale-out Network
Attached Storage systems (NAS) and IPFS. In [10], IPFS
is used as the storage environment for storing electronic
medical records. IPFS has also been proposed and applied
[11] [12] [13] for off-chain storage within Blockchain.

Recently, Netflix Inc. [14] experimented with IPFS for
container image distribution across Amazon Web Service
regions [15]. The usage of IPFS resulted in reduced down-
load times for containers when compared with the HTTPS-
based delivery mechanism of Docker Hub [16] and the Titus
Registry [17].

In [18], I/O Performance of IPFS storage from a client’s
perspective is studied. In [19], the performance of IPFS as
an object store for Fog/Edge Computing Infrastructures is
studied and compared with Rados [20], Cassandra [21]. At
the same time, [22], analyzes the performance of IPFS for
Video on Demand (VOD) locally within an ISP, with an ICN
network layer enhancement proposed to improve delivery
quality.

III. BACKGROUND

In this section, we overview the technologies and concepts
that underpin the research presented in this paper. We first
give an overview of the RPKI architecture, covering relevant
components and protocols. Next, we describe the RPKI
validation process. We then conclude with selected parts
within IPFS that are relevant to the research.

A. BGP and Routing Security

BGP is a de facto standard protocol used for inter-domain
routing on the internet of today. It is an exterior gate-
way protocol that provides the mechanism for Autonomous
Systems (AS) to share network reach-ability information
via BGP announcements. Unfortunately, the original BGP
specification provided no security mechanism for validating
the authenticity of these network reach-ability information
shared with BGP. By default, BGP has traditionally operated
with a default-accept mode [23], where any AS can originate
any BGP announcement and be accepted by other ASes.

2

This situation makes BGP vulnerable to exploitation like
prefix and sub prefix hijacks, where a malicious actor can
black-hole traffic destined for hijacked prefixes or redirect
it to unintended destinations [24]. RPKI is a mechanism
that seeks to prevent these types of exploitation within the
inter-domain routing. It does this by providing a way to
authenticate the validity of network reach-ability information
contained within BGP announcements made by ASes.

B. RPKI Primer

1) Overview of RPKI: RPKI is a PKI approach to securing
global inter-domain routing. RPKI bases its security model
upon a top-down hierarchy rooted at the Regional Internet
Registries (RIR) that allocates and sub allocate IP address
space. This hierarchy forms a chain of trust that can verify
the final ownership of an IP address space. It also makes it
possible for the owner of an IP address space to grant an
AS the authority to originate BGP announcements for that
IP space.

2) RPKI Components: RPKI being a PKI, consists of
various components involved with the life-cycle management
of X.509 digital certificates and the application of public-
key cryptography. The essential elements of the RPKI infras-
tructure are described next. The Certificate Authority (CA)
refers to the entity that issues and revokes certificates. In
RPKI, these are the RIRs or the National Internet Registries
(NIR). The Trust Anchor (TA) is the root CA in a hierarchical
chain of trust, from which trust is assumed and not derived.
In the case of RPKI, these are the five RIRs (AfriNIC,
APNIC ARIN, LACNIC, and RIPE NCC). The Certificate
Revocation List (CRL) is a standard PKI component that
contains all certificates revoked by a particular CA. The
End Entity (EE) refers to a holder of certificates issued
by a CA. An EE can make cryptographically verifiable
statements using their certificates. In RPKI, the owners of
IP address space are EEs, and the certificate they own is
referred to as resource certificates. The cryptographically
variable statements that are made by certificates are referred
to as Signed Objects. In RPKI, a type of signed objects is
Resource Origin Authorization (ROAs) [25], which are used
to authorize an AS to originate BGP announcement for an IP
address space. Another example of a Signed Object within
RPKI is the Manifest File [26], which is a file that contains
all other Signed objects files in the repository publication
point. The RPKI repository is the publication point, and
this is where RPKI objects like X.509 certificates, CRLs,
Manifests, and Signed Objects can be retrieved. Finally,
the Relying Party (RP) is the component that verifies the
cryptographically verifiable statements made by EEs. The
RP does its verification based on RPKI objects it retrieves
from the RPKI repository.

C. RPKI and BGP Origin Validation

BGP origin validation refers to the process of checking
the authorization of route announcements originating from
an AS. RPKI can be used to perform BGP origin validation.
When an IP address space is allocated, a resource certificate

Fig. 1. Overview of RPKI and BGP origin validation.

is also granted with the allocation. The resource certificate
can then be used to create ROAs, which are cryptographically
verifiable statements about which AS is allowed to make
route announcement for the address space. The ROAs and
other RPKI objects are then published to a publicly available
RPKI repository where they can be retrieved by the RP
who then perform the BGP origin validation. The validation
process’s outcome is the Validated ROA Prefixes (VRP).
These VRPs are then ingested into the BGP speakers using
the RPKI to Router Protocol (RTR), where it is used to
determined routing decisions. The components involved in
the validation process is seen in Figure 1

D. RPKI Repository Delta Protocol

RRDP describes a publication and retrieval mechanisms
of RPKI objects from the RPKI repositories. It is designed
to utilize caching infrastructure as a strategy for scaling. It
makes use of Notification Files, which contain pointers to a
Snapshot file and Delta Files. An example of the notification
file used in RRDP is seen in Figure 2.

The Snapshot file contains the current snapshot of the
RPKI repository at the start of an RRDP session, while the
Delta files contain changes to the RPKI repository since the
beginning of an RRDP session. The Snapshot file and Delta
Files can be retrieved via HTTPS. The Snapshot and Delta
files are an immutable record of the RPKI repository state
for a given RRDP session. This enables caching via CDNs
or other caching infrastructures [1].

E. Trust Anchor Locator

The validation process described in section III-C starts
with retrieval of a TA, which then points to the location of
the RPKI repository from where the other RPKI objects can
be retrieved. In RPKI, The Trust Anchor Locator (TAL) [27]
is a file that is used to distribute the location to the TA and
its public key. It allows RPs to verify the retrieved TA by
checking it against the key listed in the TAL. An example
of the TAL is seen in Figure 3

F. IPFS Primer

1) Overview of IPFS: The Interplanetary File System
(IPFS) is a peer-to-peer, content-addressable distributed file
system upon which a permanent web can be built [2].

3

Fig. 2. Screenshot of RIPE’s notification.xml.

Fig. 3. Example of an RPKI TAL.

Fig. 4. Example of an IPFS path.

The IPFS specification is captured in [28] and has been
implemented in various programming languages [29]. This
research is based on go-ipfs [30] an implementation in the
Go programming language [31].

2) Content Addressing and Content Identifier: As stated
in I, IPFS implements content addressing, which allows for
contents to be addressed within the network by name and
not by their location. The name used in IPFS is derived from
the cryptographic hash of contents. IPFS uses SHA-256 by
default[32]. This has the side effect of integrity and content
deduplication being natively available within IPFS. The hash
value, which is used to address the content, is known as the
Content Identifier (CID). The algorithm governing how the
CIDs are derived from content within IPFS is specified in
the InterPlanetary Linked Data (IPLD) [33] [34].

3) Content Chunking, Merkle DAG and Storage: IPFS
supports the storage of any type of content. Content is stored
as objects in its data store. The process of ingesting content
into IPFS involves splitting the contents into blocks[35].
Individual CIDs are generated for these blocks and then
used to construct a Merkle DAG, which is also specified as
part of IPLD. This allows for distributed storage of contents
within the network while also supporting integrity checks.
The generated CID is also used to address and retrieve
content. An example of a CID path is seen in Figure 4

G. Content Discovery and Distributed Hash Table

IPFS is a peer-to-peer distributed network; hence it has
no centralized entity that coordinates how nodes find each
other and how content is discovered within the network. This
network functionality of IPFS is based on the libp2p [36]
library, which provides an implementation of a Distributed
Hash Table (DHT), through which IPFS achieves content and
peer discovery. Joining the so-called swarm is achieved by
connecting to a bootstrapping node that is already connected
to the swarm and aids in the discovery of other connected
nodes.

The DHT is a hash table that is distributed across the IPFS
network. It contains information regarding where contents
are hosted. It also creates a logical network layer and
provides an algorithm that allows for iterative probing of
the network for content. The DHT used by IPFS is based on
Kademlia [37].

H. Peer Identity

IPFS identifies peers based on a PKI namespace [2] [38]
where the hash of a public key indicates the identity of a
node. This hash is often referred to as PeerId, and as of
writing, RSA, Ed25519, Secp256k1, and ECDSA are the four
supported key types, while SHA-256 is the hashing function
used [39] to derive the PeerId. A node’s public key is also
used in establishing secure connections with other nodes
while enabling identity verification. The identity verification
is done by confirming that the hash of the public key used
in the connection process is the same as the PeerId of the
node being connected to.

I. InterPlanetary Naming System

Content addressing makes working with immutable con-
tent laborious. This is because when content previously
retrieved via a CID is mutated, the updated content will have
a new CID. This means new CIDs needs to be continually
known by clients in other to keep up to date. This problem is
solved in IPFS via the InterPlanetary Naming System (IPNS)
[40].

IPNS offers a mechanism for self certified, mutable nam-
ing based on public key cryptography. An IPNS name is the
hash of a public key and it is used to construct a globally
unique name space. An IPNS name makes use of the ipns

4

Fig. 5. Example of an IPNS name.

prefix as opposed to ipfs which is used as prefix in an IPFS
path. An example of an IPNS name is seen in Figure 5:

The public key used is by default, the one used to
identify the node, although alternative public key pair can
be generated and used.

The corresponding private key is used to sign a record that
contains the CID of the recent version of the content that can
be retrieved from the IPNS name. This signed record is then
put into the IPFS routing system that is based on the DHT.
Parties who are interested in updated content found at the
IPNS name can then continually fetch these signed records
from the routing system where they can then retrieve the
most recent published CID.

IV. METHODS

To determine how suitable IPFS is for implementing
an RPKI repository, we performed both a qualitative and
quantitative analysis of IPFS in the context of RPKI. The
qualitative analysis involved studying IPFS and RRDP’s
operational features to understand what aspects of publishing
RPKI objects to the RPKI repository can be augmented or
replaced by IPFS. The quantitative analysis involved a per-
formance comparison between IPFS and RRDP when used as
a mechanism to distribute RPKI objects. We also performed
experiments to understand the peer-to-peer network overhead
of IPFS as part of the quantitative analysis.

The qualitative analysis took the form of a literature study,
in which input from documentation, architecture descrip-
tions, and technical specifications of IPFS and RRDP was
gathered and analyzed.

The quantitative analysis took the form of experiments in
which we conducted two classes of tests. The first was a per-
formance comparison of both HTTPS and IPFS when used
for data transfer. The second involved modifying existing
RPKI repository software and an RPKI RP software to use
IPFS instead of RRDP. We then observed the performance
characteristics due to the introduction of IPFS. The two
software that was modified to use IPFS is Krill [41] and
Routinator [42]. Krill is an RPKI Certificate Authority with
support for being an RPKI repository, while Routinator is an
RPKI RP software.

We performed all experiments on a server with the hard-
ware specification listed in Table I

Fig. 6. Topology for HTTPS/IPFS Data Transfer Comparison. On the left
side a node hosting data using nginx is connected to a switch. This switch
is connected to other nodes that retrieve the data using HTTPS.

TABLE I
HARDWARE SPECIFICATION OF SERVER USED FOR EXPERIMENTS.

Model name Dell PowerEdge R240
Architecture x86_64
CPU Intel(R) Xeon(R) E-2124 CPU @ 3.30GHz
Memory 2x M391A1K43BB2-CTD 8GiB DDR4 @2666Mhz
Storage Samsung SSD 860 EVO 465GiB
NIC Virtualized full duplex 10Gbit/s (configurable)

A. Direct HTTPS and IPFS comparison

1) Experiment setup for HTTPS and IPFS comparison:
We used Containernet [43] as the network emulating envi-
ronment to conduct the experiments that compare the data
transfer performance of HTTPS and IPFS. Containernet is
an extension of Mininet [44], which allows using Docker
containers [45] as a host within the network emulation.
We created a network topology [46] from an Ubuntu-based
image that was modified to have IPFS installed. As seen in
Figure 6, the topology consisted of one node that hosts data,
with a switch that connects it to other nodes that download
the hosted data using either HTTPS or IPFS. The data being
requested are randomly generated files in a directory. In the
HTTPS version of the experiment, nginx is used as the server
providing the data while Wget is used as the client requesting
data. The parallel utility [47] is used to request the data
with Wget in parallel. The nginx server is configured to only
support TLSv1.2, and the parallel requests spawned by the
client are at most four at any given time.

The key parameters that we vary as part of the experiments
are the number of nodes that are requesting the data directory,
bandwidth between all nodes and connecting switch, the
delay between nodes and switch and delay between node
hosting data and switch. This is done in an attempt to isolate
under what conditions having peering connections can be
beneficial.

The list of software versions used and their role within the
experiment setup is seen in Table II

B. HTTPS and IPFS comparison within RPKI

Various parts of Krill and Routinator were modified to
enable the usage of IPFS instead of RRDP. We present an

5

TABLE II
SOFTWARE AND VERSION USED FOR DIRECT HTTPS AND IPFS

COMPARISON.

Software Version Description
IPFS 0.5.1 IPFS
nginx nginx/1.4.6 (Ubuntu) HTTPS Web server
Parallel GNU parallel 20161222 Tool to parallelize HTTP requests
Ubuntu 14.04.6 LTS Operating System
Wget GNU Wget 1.15 HTTPS Client

Fig. 7. Modified TAL that supports fetching from IPFS using IPNS. The
first address is for fetching the TAL, and the second address is for fetching
from the repository.

overview of some of the sections that were modified, after
which a description of the experimental setup is provided.

C. Modifying the TAL to support IPFS

The rpki-rs [48] library, which is used to implement the
RPKI specific features within Krill and Routinator, was
modified [49] to allow Routinator to be able to retrieve
the TA certificate via IPFS and also the locator where the
repository can be found. A modified version of the TAL can
be seen in Figure 7.

1) Modifying Krill to publish the RPKI Objects to IPFS:
Krill was modified [50] to support publishing RPKI ob-
jects to IPFS in addition to publishing to rsync and with
RRDP. The modification involved making Krill post the TA
certificate to IPFS via an IPNS name and also publish the
contents of its repository to IPFS on creation and updates of
RPKI materials. It makes use of the IPFS Go [30] binary
to communicate over IPFS. A Docker image [51] based
on the modified source code was created and used for the
experiments.

2) Modifying Routinator to fetch RPKI objects from IPFS:
Routinator was modified [52] to use only IPFS to fetch the
RPKI objects it needs to perform validation. The changes
involved making Routinator use the version of the TAL
described in IV-C and to also capture the same duration
metrics as it does when using rsync or RRDP. It uses the
IPFS Go [30] binary to communicate over IPFS. A Docker
image [53] based on the modified Routinator was created
and used for the experiments.

3) Experiment setup with Krill and Routinator: The ex-
periments to compare the performance characteristics of a
modified instance of Krill and Routinator, which uses IPFS
with unmodified versions, were also done using Docker
containers without the networking emulating environment
provided by Containernet. Instead, Docker-compose [54] was
used to orchestrate the hosts that were used as part of the

Fig. 8. Topology for HTTPS/IPFS comparison when used within RPKI.
The leftmost node is where all RPKI material originates from, created by
Krill which acts as a Trust Anchor and repository. This node is connected
to the switch in the middle of the figure. This switch is connected to all
other nodes that act as Relying Parties through the use of Routinator.

experiment. This decision was made with consideration to
practicality as the IPFS versions of Krill and Routinator have
incompatibilities with Containernet. The usage of Docker-
compose has the disadvantage that network parameters can
not be varied easily as within Containernet, but it has
the advantage that it provides an environment closer to
production since Containernet is not meant to run software
in production while Docker-compose is.

Krill provides an inbuilt TA for use in testing scenarios. It
also supports having both an embedded CA and an embedded
RPKI repository in one running instance. For our test envi-
ronments, we used the inbuilt TA, together with embedded
CA and embedded RPKI repository. As our experiment is
not concerned with observing performance characteristics
when running Krill with embedded features versus when
running Krill with remote features, we opted to simplify
the experiment set up by using the embedded features of
Krill. This simplification was made taking into cognizance
the fact that the metrics we are interested in the tests, which
is retrieval duration of RPKI objects by Routinator, are not
influenced by running the RPKI repository embedded or
remote.

We made it possible to specify in our test setup [55], the
number of Routinator instances needed for each run of an
experiment, and the number of child CA and ROAs that
should be created within Krill. The experiment topology is
depicted in Figure 8

The Routinator instance used for testing RRDP was mod-
ified to accept invalid Transport Layer Security (TLS) cer-
tificates. This modification was done in order to remove the
need to set up TLS certificates needed to communicate over
HTTPS with Krill. The change skips certificate validation
and does not turn HTTPS off or have material impacts
on the conducted experiments. A Docker image [56] based
on the modified source code was created and used for the
experiments.

The list of software versions used and their role within the
experiment setup is seen in Table III. The software that was
modified also lists the git hash from which the modification

6

was made.

V. RESULTS

We present the results of the qualitative analysis and
quantitative analysis in this section. The qualitative study
results are a theoretical evaluation of how IPFS can augment
the distribution mechanism used by the RPKI repository. We
leave out presenting possible ways the theoretical evaluations
can be implemented. The quantitative analysis results are the
outcome from the experiments performed comparing IPFS
and HTTP for pure data transfer and when used within the
context of RPKI.

A. Augmenting RPKI with IPFS

1) Remove the need for TAL: x509 certificates usually
establish a binding between a public key and an Identity.
Identities do not often change; hence it is practically feasible
to distribute TA certificate and only have a redistribution at
planned and infrequent intervals. This redistribution model
will not be practical within RPKI. In RPKI, x509 certificates
bind a public key to a set of IP address space, and these
change more frequently than identities. Hence if the same
model of redistribution of TA is to be applied to RPKI,
then this redistribution would need to happen too often to be
practical. RPKI fixes this problem by introducing the TAL.

As mentioned in III-E, the TAL is used to distribute the
location to the TA and its public key. It allows for a stable
locator to a TA certificate while allowing the certificate
retrieved at that locator to change as needed. The public
key contained within the TAL ensures that the validity of
the retrieved certificate can always be checked.

Essentially the TAL provides a stable Uniform Resource
Locator (URL) to content that can be updated alongside the
mechanism to verify the authenticity of the retrieved content.
This functionality of the TAL can be replaced by the inbuilt
feature of IPNS within IPFS.

As mentioned in III-I, IPNS allows for self-certified,
mutable naming based on public key cryptography. The fact
that the record retrieved at an IPNS name is signed makes
it possible, on content retrieval, for IPFS to check that the
signature matches the public key corresponding to the node
where it is published.

Hence having an IPNS name can serve as a replacement
for TAL files.

2) Remove the need for checksums in RRDP notification
file: The use of checksum is prevalent within RRDP. As
described in III-D, the RRDP notification file contains a link
to snapshot and links to delta files. Alongside the included
links is the hash of the content that can be found at the listed
links. This is seen in Figure 2. Including the hash makes
verification of data integrity possible.

IPFS is tamper resistance [2]. Its usage of content address-
ing and the Merkle DAG ensures that data integrity checks
are native in IPFS. As illustrated in Figure 9, using IPFS as
a publication mechanism for RPKI objects removes the need
for having extra integrity checks on retrieval.

3) Remove the need for RPKI Manifest file: The RPKI
manifest file [26] is a signed file that allows RP software to
detect malicious object deletion and the presence of valid but
stale objects within the RPKI repository. It is an enumeration
of all signed objects that should be present at an RPKI
repository. The existence of this Manifest file then allows
RP software to check the contents of the repository against
what is listed in the Manifest file to detect any malicious
tampering.

IPFS native tamper resistance can be applied in RPKI,
removing the need for a Manifest file. IPFS access data by
an identity that is derived from its content, rather than by its
location. This makes it possible to detect tamperings, such
as replacing an RPKI object with an old version or deletion
natively.

4) Remove the need for Delta processing: RRDP specifies
that updates to a repository are published as Delta files.
RP software also needs to be able to process the Delta
files accurately in order to arrive at the current state of the
repository at a particular time. The algorithm to perform
the Delta processing is not trivial [1] for both publishing
and retrieval. Processing the Delta files requires checking
their validity and considering all the new, replaced, and
withdrawn objects. For a more in-depth explanation of Delta
file processing, see RFC 8182 [1].

IPFS handles the resolution of content deltas transparently.
This resolution is part of the properties of making use of
a Merkle DAG. Another consequence of this is that data is
deduplicated within IPFS, such that all objects containing the
same content are identical, and only need to be stored once.
Updating content then involves either creating new content,
linking to existing content, or removing the link to existing
content in the case of a destructive modification.

This essential feature of IPFS can simplify the process
of publishing and retrieving RPKI objects from an RPKI
repository.

B. Direct HTTPS and IPFS comparison

In the direct comparison between IPFS and HTTPS, we
used a network setup with the following baseline parameters:

• The round-trip time between all nodes is 10ms
• The bandwidth between all nodes is 1000Mbit/s
• The amount of nodes in the network is 10, one of them

being the node hosting the data
• The size of the data that will be retrieved is 500MiB

divided into ten files
The resulting retrieval time of this baseline test can be seen
in Figure 10 for the IPFS baseline and Figure 11 for the
HTTPS baseline.

1) Varying latency: Figure 12 shows the results of running
our IPFS test with an increased latency between the node
hosting the data and the switch, causing the RTT between
the server and the nodes to add up to 250ms, and the RTT
between the other nodes themselves is 10ms. We observe that
the first node to retrieve the file takes around 191 seconds
compared to 59 seconds in the low latency environment,
which is an increase of 224%. All subsequent nodes retrieve

7

TABLE III
SOFTWARE AND VERSION USED FOR HTTPS AND IPFS COMPARISON WITHIN RPKI CONTEXT.

Software Version Description
Docker Community: 19.03.8 Container
Docker compose version 1.25.5, build 8a1c60f6 Orchestrate containers
Krill Krill 0.6.2 CA and RPKI repository
Krill modified with IPFS Krill 0.6.2 (Git: d10c88f0) CA and RPKI repository
Go-IPFS 0.5.1 IPFS implementation in Go
Routinator with TLS modified. 0.7.0-bis (Git:d6906b2b) RPKI RP
Routinator with IPFS. 0.7.0-bis (Git:d6906b2b) RPKI RP

Fig. 9. Example of the Content Identifier removing the need for a hash. The URL is replaced for a CID.

this file in less time. The retrieval time that is observed in
each node other than the first has a higher standard deviation.
For example, node 1 has a standard deviation of 1 second,
whereas node 3 has a standard deviation of 6.8 seconds.
These standard deviations are translated to a percentual stan-
dard deviation of 0.5% and 10.8%, respectively. Interestingly,
node 2 sees an improvement in retrieval time as its median
moves from 61 to 56 seconds, and its standard deviation
from 1 to 5 seconds. We also see the medians and means
of node 3 through node 9 rises by 6% and 10% on average,
suggesting that the node with bad connectivity is exerting a
negative effect on all peers except for the second to retrieve
the data.

This same behavior is not observed in the HTTPS test,
as shown in Figure 13. The standard deviation for all nodes
lies between 2.2 and 4.6 seconds, which is translated into a
percentual standard deviation of 11% and 23%. All HTTPS
nodes see an increase in data retrieval duration of 259% on
average when comparing the medians. This result is in line
with the performance degradation of the first node in the
IPFS experiment.

2) Varying bandwidth: After the latency experiment, we
performed the next experiment. We reduced the bandwidth
from 1000Mbit per second to 100Mbit per second on the link
between the node hosting the data and the switch. All other
nodes have a bandwidth of 1000Mbit per second, as is the
case in the baseline. The results can be seen in Figure 14.
When these results are compared with the baseline in Figure
10, we see a performance degradation on node 1 of 22% in

relation to the median. On all other nodes, we observe a slight
performance degradation or even improvement between 5.1%
and -3.6% on node 3 and node 9, respectively. In the case of
HTTPS the performance degradation was more severe as can
be seen in Figure 15 compared to its baseline in Figure 11.
When comparing the median of the tests performed on each
node in both environments we see an average performance
degradation of 704.4%.

3) Varying amount of nodes: We reduced the number of
nodes to observe the effect this would have on the time
taken for filesharing. This experiment was performed on
IPFS only as it is a peering technology, and in our setup,
we created a full mesh between nodes leading them to all
communicate with each other. Note that in this test, we do not
compare with the baseline, but instead with the results from
the increased latency experiment in Figure 12. We reduced
the number of nodes in the network from 10 to 4, one of
which has the file stored locally. The results of this test can
be seen in Figure 16. We observe that the nodes display
similar results in both tests, as their medians shift by 0.1%,
2%, and 2%, respectively. For Node 3, however, we note
that its 3rd quartile covers a smaller area suggesting more
stability in retrieval time.

C. HTTPS and IPFS comparison within RPKI

1) Varying amount of nodes: In our RPKI setup, we
performed experiments in which we reduced the number of
nodes in the network that are concurrently retrieving RPKI
material from the RPKI repository. After running the test for
a short duration, we update the repository by creating more

8

●

● ●

●

●

●

50

60

70

80

90

T
im

e
in

 s
ec

on
ds

Nod
e

1

Nod
e

2

Nod
e

3

Nod
e

4

Nod
e

5

Nod
e

6

Nod
e

7

Nod
e

8

Nod
e

9

Fig. 10. Baseline for IPFS benchmark. Retrieval duration is plotted against
the nodes where the measurement is taken from.

●

0

10

20

30

40

50

T
im

e
in

 s
ec

on
ds

Nod
e

1

Nod
e

2

Nod
e

3

Nod
e

4

Nod
e

5

Nod
e

6

 N
od

e
7

Nod
e

8

Nod
e

9

Fig. 11. Baseline for HTTPS benchmark. Retrieval duration is plotted
against the nodes where the measurement is taken from.

Fig. 12. IPFS latency benchmark. Retrieval duration is plotted against
nodes where the measurement is taken from. Each node downloads a file
after the previous node(s) have completed their download. Note that the
y-axis shows a gap in time for improved readability.

certificate authorities and ROAs. These experiments were
performed using IPFS and also with HTTPS. The results can
be seen in Figures 17 and 18 for IPFS, as well as Figures
19 and 20 for HTTPS. In the test with ten nodes, both IPFS
and HTTPS show an increase in fetch duration while ROAs
are being added to the repositories over a period of around
2 minutes. This same result is observed in the four-node
HTTPS test. After this increase in fetch duration, we see it
stabilize again at a relatively short duration. The results from
the four-nodes IPFS experiment show unexpected behavior;
see Figure 18, the fetch duration does not decrease as harshly
as is observed in the other tests when no updates to the
repository are taking place. This behavior is undesirable since
the repository is not receiving any updates, and as such, each
poll to the unmodified repository should be short because the
Relying Parties already have an up to date repository stored
locally.

D. Peer-to-Peer Network Overhead

We were also interested in knowing the network overhead
incurred due to IPFS being a peer-to-peer technology. To
do this involves measuring the passive network activities
within IPFS. We set up the topology described in IV-A.1

9

●

●

0

10

20

30

40

50

T
im

e
in

 s
ec

on
ds

Nod
e

1

Nod
e

2

Nod
e

3

Nod
e

4

Nod
e

5

Nod
e

6

Nod
e

7

Nod
e

8

Nod
e

9

Fig. 13. HTTPS latency benchmark. Retrieval duration is plotted against
nodes where the measurement is taken from. Each node downloads a file
after the previous node(s) have completed their download.

●

50

60

70

80

90

T
im

e
in

 s
ec

on
ds

Nod
e

1

Nod
e

2

Nod
e

3

Nod
e

4

Nod
e

5

Nod
e

6

Nod
e

7

Nod
e

8

Nod
e

9

Fig. 14. IPFS reduced bandwidth benchmark. The node hosting the file
has a bandwidth of 100Mbit/s available. Retrieval duration is plotted against
the nodes where the measurement is taken from.

Fig. 15. HTTPS reduced bandwidth benchmark. The node hosting the file
has a bandwidth of 100Mbit/s available. Retrieval duration is plotted against
the nodes where the measurement is taken from.

but did not start upload or downloading of contents, instead,
we made use of an IPFS CLI command [57] that returns
total bandwidth in and out, together with the rate at any
particular point in time. We ran this command every minute
for 10 minutes with topology with an increasing number of
nodes, starting from one to ten nodes. This measurement was
only sampled once.

Figure 21 shows data captured when the latent bandwidth
used is sampled at the 10th minute from the first node, which
is the boot node.

Figure 22 shows data captured when the latent bandwidth
used is sampled on the last node that gets added to the
topology. The last node ranged from being the first node
to being the 9th node in the topology with ten nodes.

VI. DISCUSSION

A. Literature Study

IPFS has native features that can augment or replace
similar features implemented in RRDP. IPFS naming feature,
IPNS could remove the need for having a TAL. The use
of content addressing and the Merkle DAG’s self-verifying
nature removes the need for having checksum and manifest
files. The need for Delta processing can also be avoided
as IPFS handles content synchronization and deduplication
natively.

IPFS being a peer-to-peer system, could offer more re-
siliency than the server-client model of RRDP. RP software
would still be able to retrieve RPKI repository contents from
the network if the original node that produces the content
goes offline. As long as its content has been retrieved, at least

10

Fig. 16. IPFS experiment with a reduced number of nodes. This network
contains four nodes. The node hosting the file has an RTT of 250ms
between itself and all other nodes. The RTT between the other nodes is
10ms. Retrieval duration is plotted against the nodes where the measurement
is taken from. Note that the y-axis shows a gap in time for improved
readability.

once, by another node, it would remain available within the
network. In the case of RRDP, if caching infrastructure like
CDNs is not in use, once the RPKI Repository goes offline,
its contents become unavailable to RP software.

Our study of IPFS also reveals that it cannot guarantee
atomic updates while RRDP can. IPFS synchronizes contents
over the network; hence updates are eventually consistent.
This could lead to a situation where RP software has an
inconsistent view of the repository contents. RRDP, on the
other hand, specifies that the link to its Snapshot file, which
represents the current state of the Repository, must only be
published after update to the Repository has been completed
[1]. This requirement in RRDP ensures atomic updates and
prevent RP software from having an inconsistent view of the
RPKI Repository.

B. Experiments

In our experiments, we saw trends suggesting that band-
width is not the bottleneck in the performance of IPFS.
We came to this conclusion by comparing the performance
reduction for IPFS with HTTPS when the same network

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●●●●●●●●●●

●
●

●●

●

●●●●●

●●

●
●

●

●● ●●●

●

●●●

●

●●

●

●●●●

●●●

●●●●

●●

●

●●●●

●●

●●●●●●●

●●

●

●

●

●●

●

●●●●●

●●

●

●●●●●●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●●●

●

●

●●

●

●●●●●●●●

●

●
●●
●

●

●●

●●

●●●●●● ●●
●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●●●●

●●●

●●●

● ●●

●

●

●

●

●●●●●● ●

●●●●

●●

●●

●

●●●●

●●

●

●

●

●

●
●●

●●

●●●

●●

●●●

● ●●

●

●●●●●●●

●
●
●

●

●●●●●

●

●●

●●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
in

 s
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 17. IPFS experiment in RPKI with 10 nodes. One node is acting as
the Trust Anchor and repository. The other nodes fetch from the repository
every minute. Fetch duration is plotted on the Y-axis against the current
fetch iteration.

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●●

●●
●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
in

 s
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 18. IPFS experiment in RPKI with 4 nodes. One node is acting as
the Trust Anchor and repository. The other nodes fetch from the repository
every minute. Fetch duration is plotted on the Y-axis against the current
fetch iteration.

11

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●●●●●●●●●●

●
●

●●

●

●●●●●

●●

●
●

●

●● ●●●

●

●●●

●

●●

●

●●●●

●●●

●●●●

●●

●

●●●●

●●

●●●●●●●

●●

●

●

●

●●

●

●●●●●

●●

●

●●●●●●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●●●

●

●

●●

●

●●●●●●●●

●

●
●●
●

●

●●

●●

●●●●●● ●●
●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●●●●

●●●

●●●

● ●●

●

●

●

●

●●●●●● ●

●●●●

●●

●●

●

●●●●

●●

●

●

●

●

●
●●

●●

●●●

●●

●●●

● ●●

●

●●●●●●●

●
●
●

●

●●●●●

●

●●

●●●●●
●

●●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T

im
e

in
 s

ec
on

ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 19. HTTPS experiment in RPKI with 10 nodes. One node is acting as
the Trust Anchor and repository. The other nodes fetch from the repository
every minute. Fetch duration is plotted on the Y-axis against the current
fetch iteration.

●

●

●

●●●

●
●
●

●

●

●
●●●

●

●

●

●

●

●●●

●●

●●

●
●●●

●

●●●

●

●

●●

●

●●●●
●●●●● ●●

●●●

●●●●● ●●●●●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●
●●

●● ●

●●●

●●

●
●●
●

● ●●● ●●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
in

 s
ec

on
ds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 20. HTTPS experiment in RPKI with 4 nodes. One node is acting as
the Trust Anchor and repository. The other nodes fetch from the repository
every minute. Fetch duration is plotted on the Y-axis against the current
fetch iteration.

parameters are reduced. In the case of bandwidth, IPFS
suffered only a 22% reduction in overall retrieval duration,
whereas, in the case of HTTPS, it incurred a reduction
of 704.4%. In our experiments with increased latency, we
observed that in the case of IPFS, only the first node to
retrieve the data incurs a penalty of 224%. The second node
sees a minor improvement of 10%, and all other nodes incur
a small penalty of 10%. HTTPS suffered an average retrieval
time increase of 259%. This suggests that a latency increase
may act as a bottleneck for the first node to retrieve the data
in IPFS, but that this penalty is only incurred once as all
other nodes may fetch data from the first node and so forth.
Note that the latter nodes still fetch some data from the node
with poor connectivity, but this penalty is less harsh than it
is for the first node. In HTTPS, of course, all nodes suffer
a similar penalty in relation to each other because of the
client-server architecture.

The data sharing with peers that we observed in the IPFS
latency test is likely to be less effective when all nodes
attempt to retrieve the data concurrently because, at that
point in time, only the node with poor connectivity will
have the data that is being requested. Since we downloaded
data sequentially in our experiment, all nodes after the first
node to retrieve data will have one or more nodes with good
connectivity that can provide data to them. Additionally,
it is unclear what the cause is behind the second node to
retrieve the data to perform better in the increased latency
experiment. One of the possible causes we considered was
the way IPFS attempts to retrieve a file. According to the
documentation of IPFS Bitswap[58], a node will attempt to
query every peer for the content it is looking for. If none
of the peers have the requested content, the node will use
the Distributed Hash Table. There is no clarification on the
order in which a node will query all of its peers. If we
assume a uniform distribution of chance that a node may
be asked to provide a block of data to the requesting node,
the second node will request more data from the node with
bad connectivity than the third node would, and so forth.
Our results suggest that this is not the case; however, as we
do not see a descending line in retrieval duration for each
subsequent node in Figure 12.

Our results for the direct HTTPS and IPFS comparison,
and RPKI comparison experiments suggest that having more
nodes in the IPFS swarm may cause higher variation in
download durations. When we increased the number of
nodes in the network, the variation between download times
increased. We consider this variance to be noteworthy within
the context of the RTR protocol, where VRPs are kept in
a cache to be made available to BGP speakers. Different
deployment scenarios are possible within RTR. One of which
is to have a BGP speaker make use of multiple VRP caches.
If the RP software is using IPFS, then the VRP cache they
produce will be influenced by the variance we observed. It
is worth adding that a strict synchronization should not be a
goal, as mentioned in Section 8 of RFC 6810 [59], caches
cannot be in strict synchrony due to the distributed nature
of RPKI. This observed variance is even less consequential

12

Additional nodes

kB

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9

Total out at 10th minutes Total in at 10th minutes

Total out/Total in at 10th minute from first node in the topology

B
/s

0

250

500

750

1000

1s
t m

inu
te

2n
d m

inu
tes

3rd
 m

inu
tes

4th
 m

inu
tes

5th
 m

inu
tes

6th
 m

inu
tes

7th
 m

inu
tes

8th
 m

inu
tes

9th
 m

inu
tes

10
 m

inu
tes

1 node

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

7 nodes

8 nodes

9 nodes

10 nodes

Rate in over time from first node within varying size of nodes in
topology

0

250

500

750

1000

1 m
inu

te

2 m
inu

tes

3 m
inu

tes

4 m
inu

tes

5 m
inu

tes

6 m
inu

tes

7 m
inu

tes

8 m
inu

tes

9 m
inu

tes

10
 m

inu
tes

1 node

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

7 nodes

8 nodes

9 nodes

10 nodes

Rate out over time from first node within varying size of nodes
in topology

Fig. 21. Total Out/Total In, Rate in, Rate out for first node (bootstrap node).

nth Node

0

100

200

300

400

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Total out at 10th minutes Total in at 10th minutes

Total out/Total in at 10th minute from last node to join topology

Rate in

0

100

200

300

400

500

1 m
inu

te

2 m
inu

tes

3 m
inu

tes

4 m
inu

tes

5 m
inu

tes

6 m
inu

tes

7 m
inu

tes

8 m
inu

tes

9 m
inu

tes

10
 m

inu
tes

1st node

2nd node

3rd node

4th node

5th node

6th node

7th node

8th node

9th node

10th node

Rate in over time from last nodes in topology

0

250

500

750

1000

1 m
inu

te

2 m
inu

tes

3 m
inu

tes

4 m
inu

tes

5 m
inu

tes

6 m
inu

tes

7 m
inu

tes

8 m
inu

tes

9 m
inu

tes

10
 m

inu
tes

1st node

2nd node

3rd node

4th node

5th node

6th node

7th node

8th node

9th node

10th node

Rate out over time from last nodes in topology

Fig. 22. Total Out/Total In, Rate in, Rate out for last node.

when considered within the global RPKI as different RP
software will have different update times they use in polling
repositories for new RPKI material. This update frequency
may range from the recommendation in RFC 8182 [1] of
at most once every minute to any other arbitrary value
considered appropriate by the operator of the RP software,
preferably at different times than other RPs to avoid peaks
in server and network load.

We also see that IPFS comes with a network overhead. We
saw that even when data is not being transmitted between the
nodes, there is still network activity. This is due to the fact
that IPFS is a peer-to-peer technology; hence there has to
be communication between the nodes to keep the network
operational. The DHT, which is used for peer and content
discovery, is one aspect that leads to network activities.
We see that in a static topology, as is the case in our
experiment, where the number of nodes does not change,
over time, the network activity reduces and finally stops,
indicating an information equilibrium has been reached. In
a real-life scenario where nodes are connected to the global
IPFS network, we do not expect to see the network overhead
stop, as the global IPFS network has a dynamic topology
with nodes continually joining and leaving. We can also see
that the network overhead increases as the number of nodes
increases. Since we did not make a repeated sampling of
the measurements, we cannot make any definite statement
about the rate of increase and relationship between the
observed network overhead and the number of nodes. More
experiments would have to be designed to study this. We can
also see that the network overhead observed for the first node,
which is the bootstrap node is higher than the last node in
the topology. Also, the first node has its incoming network
activity higher than its outgoing. This observation can be
explained by the fact that the first node needs to accept a

higher number of incoming requests by the very nature of it
being the bootstrapping node.

VII. CONCLUSION

At the beginning of this research, we set out to understand
to what extent IPFS can be used as a distribution Mechanism
for RPKI Repository. To do this, we first had to know how
RPKI, IPFS, and RRDP works. We also performed various
experiments which gave us insights into the network char-
acteristics of IPFS. The result from the tests we performed
allowed us to expound on the potential operational effects
IPFS could have when used as a distribution mechanism
within IPFS.

In this research, we were able to show that it is possible
to modify existing RPKI CA software and RPKI RP soft-
ware to make use of IPFS. Our research shows that one
approach to introduce IPFS into RPKI is by augmenting
current RRDP implementation. Another approach would be
replacing RRDP by creating a new protocol solely based on
IPFS.

Regarding networking, we observed that IPFS shows char-
acteristics of peer-to-peer networks. Content once retrieved
is shared with other nodes making it possible to pay the
price of retrieving contents from a destination with poor
network connectivity only once. Since after initial retrieval,
nearby nodes no longer necessarily have to fetch the content
from the same node with poor network connectivity. Another
consequence of being a peer-to-peer network is that IPFS
comes with a network overhead. This network overhead is
because nodes need to keep their portion of the DHT and also
keep communicating with each other to keep the network
operational.

IPFS data retrieval time performs poorly relative to
HTTPS, and IPFS makes less optimal use of available band-

13

width. These observations of IPFS network characteristics
are in line with the findings made in [18].

IPFS is a peer-to-peer, distributed network and its usage
of ideas like content addressing, imbues it with properties
that make some of the implemented features found in RRDP
redundant, but IPFS network and IO performance are below
par in comparison with HTTPS used within RRDP. One
feature of IPFS does show promise, however, if its network
and IO performance were better than in its current iteration.
Namely, when the data originates from a node with bad
connectivity, it will become available on other nodes that
have downloaded this data. These nodes may have better
connectivity and improve accessibility for other nodes that
are looking to download the same data, as we demonstrated
in Figure 12. To achieve this same effect using HTTPS, the
party that is hosting the data would have to invest in a CDN
infrastructure, for example.

VIII. FUTURE WORK

The results of the qualitative analysis can serve as the
basis for future work. Prototypes can be created based on
the identified ways IPFS can augment or replace features
within the current implementations of the RPKI repository.

Krill and Routinator were modified to use IPFS binaries
installed on the host operating system. This approach to
integrating IPFS into these two libraries was due to the IPFS
Rust library [60] not being matured enough at the time of
this research. It would be interesting to modify both Krill and
Routinator with IPFS using a library instead of the current
approach of calling to an installed binary and observe if there
is any noticeable difference in operational performance. This
modification can only be done once the IPFS Rust library
becomes mature enough to integrate a full-featured IPFS
node into a Rust application.

In this research, we took a look at the bandwidth con-
sumption of an idle IPFS node. It would be interesting to
make similar bandwidth measurements with nodes that are
actively participating in data transfers. Such measures can
serve as another approach to better understand the peer-to-
peer network overhead of IPFS.

In the network topology described in IV-B, we only
introduced delays between the switch and the node initially
hosting the contents. Future research could introduce similar
network delays in other parts of the topology and observe
the effect. Our research showed a glimpse of the effect that
a node with bad connectivity has on the IPFS network, to
continue this research with more complex topologies will
produce data necessary to construct an efficient network. For
example, it may prove or disprove the benefits of clustering
nodes into groups based on their connectivity to each other
to speed up file transfers.

Efficient energy use could also be the basis for future
research, in which power consumption when using IPFS
within the RPKI repository is compared with the use of
rsync or RRDP. We perceive resource usage in a peer-to-
peer system to have an influence on its adoption rate, which
is why a study of this sort could give meaningful insights.

IX. ACKNOWLEDGEMENTS

We would like to thank the NLnet Labs team for having
us for the duration of this research. Special thanks to our
supervisor, Luuk Hendriks, for his guidance, insights, and
support. Also, we would like to appreciate Martin Hoffmann
for all the technical support provided.

14

REFERENCES

[1] T. Bruijnzeels et al. The RPKI Repository Delta Pro-
tocol (RRDP). RFC 8182. RFC Editor, July 2017.

[2] Juan Benet. “IPFS - Content Addressed, Versioned,
P2P File System”. In: CoRR abs/1407.3561 (2014).
arXiv: 1407.3561. URL: http://arxiv.org/
abs/1407.3561.

[3] B. Ahlgren et al. “A survey of information-centric net-
working”. In: IEEE Communications Magazine 50.7
(2012), pp. 26–36.

[4] First release of rsync - rcp replacement. URL:
https : / / groups . google . com / forum /
! msg / comp . os . linux . announce /
tZE1qtTcQaU / IF8GhGQ _ uTsJ (visited on
06/02/2020).

[5] Efficient Algorithms for Sorting and Synchronization.
URL: https://www.samba.org/~tridge/
phd_thesis.pdf (visited on 05/29/2020).

[6] The rsync algorithm. URL: https : / / rsync .
samba . org / tech _ report/ (visited on
05/29/2020).

[7] V. Kotlyar et al. “Torrent Base of Software Distribu-
tion by ALICE at RDIG”. In: (2012), pp. 171–175.

[8] Stephanos Androutsellis-Theotokis and Diomidis
Spinellis. “A Survey of Peer-to-Peer Content Distribu-
tion Technologies”. In: ACM Comput. Surv. 36.4 (Dec.
2004), 335–371. ISSN: 0360-0300. DOI: 10.1145/
1041680.1041681. URL: https://doi.org/
10.1145/1041680.1041681.

[9] B. Confais, A. Lebre, and B. Parrein. “An Object
Store Service for a Fog/Edge Computing Infrastruc-
ture Based on IPFS and a Scale-Out NAS”. In: 2017
IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). 2017, pp. 41–50.

[10] Sihua Wu and Jiang Du. “Electronic medical record
security sharing model based on blockchain”. In:
Proceedings of the 3rd International Conference on
Cryptography, Security and Privacy. 2019, pp. 13–17.

[11] R. Norvill et al. “IPFS for Reduction of Chain Size
in Ethereum”. In: 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData). 2018, pp. 1121–1128.

[12] Q. Zheng et al. “An Innovative IPFS-Based Storage
Model for Blockchain”. In: 2018 IEEE/WIC/ACM
International Conference on Web Intelligence (WI).
2018, pp. 704–708.

[13] Bruno Produit. Using blockchain technology in dis-
tributed storage systems. 2018.

[14] Netflix Inc - Company Profile and News - Bloomberg
Markets. URL: https : / / www . bloomberg .
com/profile/company/NFLX:US (visited on
05/29/2020).

[15] New improvements to IPFS Bitswap for faster con-
tainer image distribution. URL: https://blog.

ipfs.io/2020-02-14-improved-bitswap-
for- container- distribution/ (visited on
05/28/2020).

[16] Docker Hub. URL: https://hub.docker.com/
(visited on 05/28/2020).

[17] A container management platform that provides scal-
able and reliable container execution and cloud-
native integration with Amazon AWS. URL: https:
//netflix.github.io/titus/ (visited on
05/28/2020).

[18] J. Shen et al. “Understanding I/O Performance of IPFS
Storage: A Client’s Perspective”. In: 2019 IEEE/ACM
27th International Symposium on Quality of Service
(IWQoS). 2019, pp. 1–10.

[19] B. Confais, A. Lebre, and B. Parrein. “Performance
Analysis of Object Store Systems in a Fog/Edge
Computing Infrastructures”. In: 2016 IEEE Interna-
tional Conference on Cloud Computing Technology
and Science (CloudCom). 2016, pp. 294–301.

[20] RADOS Object Store — Ceph documentation. URL:
https://docs.ceph.com/docs/bobtail/
rados/ (visited on 06/26/2020).

[21] Apache Cassandra. URL: https://cassandra.
apache.org/ (visited on 06/26/2020).

[22] Onur Ascigil et al. “Towards Peer-to-Peer Content Re-
trieval Markets: Enhancing IPFS with ICN”. In: Pro-
ceedings of the 6th ACM Conference on Information-
Centric Networking. ICN ’19. Macao, China: As-
sociation for Computing Machinery, 2019, 78–88.
ISBN: 9781450369701. DOI: 10.1145/3357150.
3357403. URL: https://doi.org/10.1145/
3357150.3357403.

[23] Ethan Heilman et al. “From the Consent of the Routed:
Improving the Transparency of the RPKI”. In: Pro-
ceedings of the 2014 ACM Conference on SIGCOMM.
New York, NY, USA: Association for Computing
Machinery, 2014. ISBN: 9781450328364. DOI: 10.
1145 / 2619239 . 2626293. URL: https : / /
doi.org/10.1145/2619239.2626293.

[24] Hitesh Ballani, Paul Francis, and Xinyang Zhang.
“A Study of Prefix Hijacking and Interception in the
Internet”. In: Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Proto-
cols for Computer Communications. SIGCOMM ’07.
Kyoto, Japan: Association for Computing Machinery,
2007, 265–276. ISBN: 9781595937131. DOI: 10 .
1145 / 1282380 . 1282411. URL: https : / /
doi.org/10.1145/1282380.1282411.

[25] M. Lepinski, S. Kent, and D. Kong. A Profile for Route
Origin Authorizations (ROAs). RFC 6482. RFC Editor,
Feb. 2012.

[26] R. Austein et al. Manifests for the Resource Public
Key Infrastructure (RPKI). RFC 6486. RFC Editor,
Feb. 2012.

[27] G. Huston et al. Resource Public Key Infrastructure
(RPKI) Trust Anchor Locator. RFC 8630. RFC Editor,
Aug. 2019.

15

https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ
https://groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ
https://groups.google.com/forum/#!msg/comp.os.linux.announce/tZE1qtTcQaU/IF8GhGQ_uTsJ
https://www.samba.org/~tridge/phd_thesis.pdf
https://www.samba.org/~tridge/phd_thesis.pdf
https://rsync.samba.org/tech_report/
https://rsync.samba.org/tech_report/
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://www.bloomberg.com/profile/company/NFLX:US
https://www.bloomberg.com/profile/company/NFLX:US
https://blog.ipfs.io/2020-02-14-improved-bitswap-for-container-distribution/
https://blog.ipfs.io/2020-02-14-improved-bitswap-for-container-distribution/
https://blog.ipfs.io/2020-02-14-improved-bitswap-for-container-distribution/
https://hub.docker.com/
https://netflix.github.io/titus/
https://netflix.github.io/titus/
https://docs.ceph.com/docs/bobtail/rados/
https://docs.ceph.com/docs/bobtail/rados/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://doi.org/10.1145/3357150.3357403
https://doi.org/10.1145/3357150.3357403
https://doi.org/10.1145/3357150.3357403
https://doi.org/10.1145/3357150.3357403
https://doi.org/10.1145/2619239.2626293
https://doi.org/10.1145/2619239.2626293
https://doi.org/10.1145/2619239.2626293
https://doi.org/10.1145/2619239.2626293
https://doi.org/10.1145/1282380.1282411
https://doi.org/10.1145/1282380.1282411
https://doi.org/10.1145/1282380.1282411
https://doi.org/10.1145/1282380.1282411

[28] ipfs/specs: Technical specifications for the IPFS pro-
tocol stack. URL: https://github.com/ipfs/
specs (visited on 06/27/2020).

[29] IPFS Implementations. URL: https://github.
com / ipfs - implementations (visited on
05/21/2020).

[30] ipfs/go-ipfs: IPFS implementation in Go. URL:
https://github.com/ipfs/go-ipfs (visited
on 06/27/2020).

[31] The Go Programming Language. URL: https://
golang.org/ (visited on 06/27/2020).

[32] Content addressing | IPFS Docs. URL: https :
/ / docs . ipfs . io / concepts / content -
addressing/#identifier-formats (visited
on 07/01/2020).

[33] IPLD - The data model of the content-addressable
web. URL: https : / / ipld . io/ (visited on
06/27/2020).

[34] ipld/specs: Content-addressed, authenticated, im-
mutable data structures. URL: https://github.
com/ipld/specs (visited on 06/27/2020).

[35] ipfs/go-ipfs-chunker: go-ipfs-chunkers provides Split-
ter implementations for data before being ingested to
IPFS. URL: https://github.com/ipfs/go-
ipfs-chunker (visited on 06/28/2020).

[36] libp2p. URL: https://libp2p.io/ (visited on
07/02/2020).

[37] Petar Maymounkov and David Mazières. “Kademlia:
A Peer-to-Peer Information System Based on the
XOR Metric”. In: Peer-to-Peer Systems. Ed. by Peter
Druschel, Frans Kaashoek, and Antony Rowstron.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 53–65. ISBN: 978-3-540-45748-0.

[38] ipfs/specs: Technical specifications for the IPFS pro-
tocol stack. URL: https://github.com/ipfs/
specs (visited on 06/28/2020).

[39] specs/peer-ids.md at master · libp2p/specs. URL:
https : / / github . com / libp2p / specs /
blob / master / peer - ids / peer - ids . md
(visited on 07/01/2020).

[40] IPNS | IPFS Docs. URL: https://docs.ipfs.
io/concepts/ipns/ (visited on 07/02/2020).

[41] NLnet Labs - RPKI Tools - Krill. URL: https :
/ / www . nlnetlabs . nl / projects / rpki /
krill/ (visited on 06/27/2020).

[42] NLnet Labs - RPKI Tools - Routinator. URL: https:
/ / www . nlnetlabs . nl / projects / rpki /
routinator/ (visited on 06/27/2020).

[43] Overview | Containernet. URL: https : / /
containernet . github . io/ (visited on
06/27/2020).

[44] Mininet: An Instant Virtual Network on your Laptop
(or other PC) - Mininet. URL: http://mininet.
org/ (visited on 06/27/2020).

[45] Empowering App Development for Developers |
Docker. URL: https : / / www . docker . com/
(visited on 06/28/2020).

[46] Benchmark of HTTPs and IPFS. URL: https://
github.com/sne- os3- rp2/ipfs_http_
benchmark (visited on 06/27/2020).

[47] O. Tange. “GNU Parallel - The Command-Line Power
Tool”. In: ;login: The USENIX Magazine 36.1 (Feb.
2011), pp. 42–47. DOI: http://dx.doi.org/
10.5281/zenodo.16303. URL: http://www.
gnu.org/s/parallel.

[48] NLnetLabs/rpki-rs: An RPKI library for Rust. URL:
https://github.com/NLnetLabs/rpki-rs
(visited on 06/28/2020).

[49] sne-os3-rp2/rpki-rs: An RPKI library for Rust. URL:
https://github.com/sne-os3-rp2/rpki-
rs (visited on 06/28/2020).

[50] sne-os3-rp2/krill: RPKI Certificate Authority and Pub-
lication Server written in Rust. URL: https : / /
github.com/sne- os3- rp2/krill (visited
on 06/28/2020).

[51] Docker image of Krill modified to use IPFS. URL:
https://hub.docker.com/repository/
docker / dadepo / krill - ipfs (visited on
06/28/2020).

[52] sne-os3-rp2/routinator: An RPKI Validator written in
Rust. URL: https://github.com/sne-os3-
rp2/routinator (visited on 06/28/2020).

[53] Docker image of Routinator modified to use IPFS.
URL: https : / / hub . docker . com /
repository/docker/dadepo/routinator-
ipfs (visited on 06/28/2020).

[54] Overview of Docker Compose | Docker Documen-
tation. URL: https : / / docs . docker . com /
compose/ (visited on 06/28/2020).

[55] sne-os3-rp2/lab: Scripts, and Docker build files for
creating Docker compose file that is to be used to
orchestrate Krill and routinator instances for exper-
iments purposes. URL: https://github.com/
sne-os3-rp2/lab (visited on 06/28/2020).

[56] Docker image of Routinator modified to accept in-
valid TLS certificates. URL: https : / / hub .
docker . com / repository / docker /
dadepo/lenient- ssl- routinator (visited
on 06/28/2020).

[57] CLI commands | IPFS Docs | IPFS Stats Band-
width. URL: https : / / docs . ipfs . io /
reference/cli/#ipfs-bitswap-stat (vis-
ited on 07/02/2020).

[58] Bitswap | IPFS Docs. URL: https://docs.ipfs.
io/concepts/bitswap/ (visited on 07/04/2020).

[59] R. Bush and R. Austein. The Resource Public Key
Infrastructure (RPKI) to Router Protocol. RFC 6810.
RFC Editor, Jan. 2013.

[60] rs-ipfs/rust-ipfs: The Interplanetary File System
(IPFS), implemented in Rust. URL: https : / /
github.com/rs- ipfs/rust- ipfs (visited
on 07/01/2020).

16

https://github.com/ipfs/specs
https://github.com/ipfs/specs
https://github.com/ipfs-implementations
https://github.com/ipfs-implementations
https://github.com/ipfs/go-ipfs
https://golang.org/
https://golang.org/
https://docs.ipfs.io/concepts/content-addressing/#identifier-formats
https://docs.ipfs.io/concepts/content-addressing/#identifier-formats
https://docs.ipfs.io/concepts/content-addressing/#identifier-formats
https://ipld.io/
https://github.com/ipld/specs
https://github.com/ipld/specs
https://github.com/ipfs/go-ipfs-chunker
https://github.com/ipfs/go-ipfs-chunker
https://libp2p.io/
https://github.com/ipfs/specs
https://github.com/ipfs/specs
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://github.com/libp2p/specs/blob/master/peer-ids/peer-ids.md
https://docs.ipfs.io/concepts/ipns/
https://docs.ipfs.io/concepts/ipns/
https://www.nlnetlabs.nl/projects/rpki/krill/
https://www.nlnetlabs.nl/projects/rpki/krill/
https://www.nlnetlabs.nl/projects/rpki/krill/
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://containernet.github.io/
https://containernet.github.io/
http://mininet.org/
http://mininet.org/
https://www.docker.com/
https://github.com/sne-os3-rp2/ipfs_http_benchmark
https://github.com/sne-os3-rp2/ipfs_http_benchmark
https://github.com/sne-os3-rp2/ipfs_http_benchmark
https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
https://github.com/NLnetLabs/rpki-rs
https://github.com/sne-os3-rp2/rpki-rs
https://github.com/sne-os3-rp2/rpki-rs
https://github.com/sne-os3-rp2/krill
https://github.com/sne-os3-rp2/krill
https://hub.docker.com/repository/docker/dadepo/krill-ipfs
https://hub.docker.com/repository/docker/dadepo/krill-ipfs
https://github.com/sne-os3-rp2/routinator
https://github.com/sne-os3-rp2/routinator
https://hub.docker.com/repository/docker/dadepo/routinator-ipfs
https://hub.docker.com/repository/docker/dadepo/routinator-ipfs
https://hub.docker.com/repository/docker/dadepo/routinator-ipfs
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://github.com/sne-os3-rp2/lab
https://github.com/sne-os3-rp2/lab
https://hub.docker.com/repository/docker/dadepo/lenient-ssl-routinator
https://hub.docker.com/repository/docker/dadepo/lenient-ssl-routinator
https://hub.docker.com/repository/docker/dadepo/lenient-ssl-routinator
https://docs.ipfs.io/reference/cli/#ipfs-bitswap-stat
https://docs.ipfs.io/reference/cli/#ipfs-bitswap-stat
https://docs.ipfs.io/concepts/bitswap/
https://docs.ipfs.io/concepts/bitswap/
https://github.com/rs-ipfs/rust-ipfs
https://github.com/rs-ipfs/rust-ipfs

	Introduction
	Motivation
	Research Questions
	Structure

	Related Work
	Background
	BGP and Routing Security
	RPKI Primer
	Overview of RPKI
	RPKI Components

	RPKI and BGP Origin Validation
	RPKI Repository Delta Protocol
	Trust Anchor Locator
	IPFS Primer
	Overview of IPFS
	Content Addressing and Content Identifier
	Content Chunking, Merkle DAG and Storage

	Content Discovery and Distributed Hash Table
	Peer Identity
	InterPlanetary Naming System

	Methods
	Direct HTTPS and IPFS comparison
	Experiment setup for HTTPS and IPFS comparison

	HTTPS and IPFS comparison within RPKI
	Modifying the TAL to support IPFS
	Modifying Krill to publish the RPKI Objects to IPFS
	Modifying Routinator to fetch RPKI objects from IPFS
	Experiment setup with Krill and Routinator

	Results
	Augmenting RPKI with IPFS
	Remove the need for TAL
	Remove the need for checksums in RRDP notification file
	Remove the need for RPKI Manifest file
	Remove the need for Delta processing

	Direct HTTPS and IPFS comparison
	Varying latency
	Varying bandwidth
	Varying amount of nodes

	HTTPS and IPFS comparison within RPKI
	Varying amount of nodes

	Peer-to-Peer Network Overhead

	Discussion
	Literature Study
	Experiments

	Conclusion
	Future Work
	Acknowledgements

