Presentation Master SNE

Security and Network Engineering

Master’s Event

OS3 Team

University of Amsterdam

February 13, 2020
1. History and Philosophy

2. Organisation

3. SNE Lab

4. Courses

5. People involved and more information
History of SNE

- Master of Science education, started in 2003
- Originally called System and Network Administration
 - In Dutch: “Systeem- en NetwerkBeheer”
- Now called Security and Network Engineering
- Moved to Science Park Amsterdam in 2009
 - Also part-time and international students
- Two focus areas
 - Networking and Security
 - Security includes Forensics
Inflow

- An interesting **mix** of bachelor educations
 - Bachelors of Science in Computer Science ("WO")
 - Bachelors of (Technical) Informatics (Polytechnic ("HBO"))
 - Belonging to the **best** polytechnic students
- **Intake** procedure (assessment) is required for all students
- You need to be well **motivated**
SNE master with an academic view

- Abstraction power
- Scientific knowledge
- Innovation power
- Presentation skills
- Reporting skills
- Research skills
Focus

- Open Technology
- OS3
 - Open Standards
 - Open Software
 - Open Security
- Security is omnipresent
- Technical orientation
- Middle ground between abstract science and professional application
Accreditation by the NVAO

In June 2013 the master education SNE has been visited by an accreditation panel. Most notable fact was that SNE got again, just as in 2008, an excellent evaluation for our didactic concept.

The official report of the NVAO (“Accreditation Organisation of the Netherlands and Flanders”) is available at their site:

https://search.nvao.net/search-detail/55361
Top programme 2016 — 2018

Keuzegids Masters

TOP RATED PROGRAMME

2016

Keuzegids Masters

TOP RATED PROGRAMME

2017

Keuzegids Masters

TOP RATED PROGRAMME

2018

http://www.keuzegids.org/
Curriculum

- Total of 10 modules of 6 ECTS each
 - 60 ECTS == 1 year
 - 2 weeks == 3 ECTS
- Semester 1: 8+8+4 weeks
- Semester 2: 8+8+4 weeks
- Full-time or part-time (≡ full-time in 2 years)
Focus Area: Networking

- Focus on advanced networking
 - In-depth Routing and Switching (OSPF/IS-IS/MPLS/BGP)
 - In-depth TCP (high bandwidth/high latency)
 - Software Defined Networking (SDN)
 - Fiber optics
 - Wireless technology

- Two specialist courses
 - InterNetworking and Routing
 - Advanced Networking
Focus Area: Security

- **Focus on digital security, including forensics**
 - Gather evidence in a way that will hold up in court
 - Malware
 - Security of radio-based technologies (GSM, BlueTooth, ZigBee)
 - Security of mobile operating systems

- **Four specialistic courses**
 - Security of Systems and Networks
 - CyberCrime and Forensics
 - Offensive technologies
 - Advanced Security
Focus Area: Foundations and Complexity

- Focus on history, foundational aspects and complexity
 - History of Unix and the Internet
 - Basic protocols: DNS, SMTP, HTTP
 - Scaling techniques
 - Virtualization
 - Administration + DevOps
- Two **specialistic** courses
 - Classical Internet Applications
 - Foundations of the Internet
 - Large Systems
Semester 1

<table>
<thead>
<tr>
<th>Month</th>
<th>Part-time year 1</th>
<th>Part-time year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep</td>
<td>Security of Systems and Networks</td>
<td>Classical Internet Applications</td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td>InterNetworking and Routing</td>
</tr>
<tr>
<td>Nov</td>
<td>Large Systems</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>Research Project 1</td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Part-time year 1</td>
<td>Part-time year 2</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Feb</td>
<td>CyberCrime</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>and Forensics</td>
<td>Networking</td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>Offensive</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>Technologies</td>
<td>Security</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>Research Project 2</td>
</tr>
</tbody>
</table>
“Theoretical” courses

- 7 weeks (20 hours a week)
 - 2 * 2 hours lectures
 - 2 * 4 hours lab exercises and practical work
 - 1 * 8 hours private study

- 1 week examination
“Project” or “Practical” courses

Same as theoretical courses, but with a small project as part of the practical work

- Teamwork
- Communication
- Presentation
Research Project

- 4 weeks (full-time)
- Individual work (mostly)
 - Week 1: orientation and project definition
 - Week 2 and 3: research
 - Week 4: report writing
 - One day in week 5: presentation
The “fifth” day

- Lectures and lab exercises fill 4 full days every week
- The remaining day (mostly Wednesday) contains
 - Guest lectures
 - Colloquia
 - Site visits
 - Research preparation
 - Private study
Obligatory presence

- 10:00-16:00 on normal days
- On Wednesdays if there is an organized event
- Research projects: twice 1 month full time.
Visit to CERN in October 2014
Visit to Paris in October 2015
Visit to Bletchley Park in October 2016
Visit to Paderborn in October 2017
Production environment

- x86-64 based PCs
- Running Ubuntu Linux on the desktop
- Using our own servers
- Using our own IP space 145.100.96.0/20
 - and our own IPv6 space 2001:610:158::/48
 - and our own AS AS1146
Experimental environment

- Unix (Linux, BSD, macOS), Windows, ...
- Hardware routers and software routers
- Each student uses own backend server
 with virtualisation technology (Xen, containers)
SNE Lab at Science Park opened in August 2009
Security of Systems and Networks (SSN)

- Security of Systems and Networks
 - Crypto (traditional and modern)
 - Protocols (SSL, IPsec)
 - Authentication
 - Hacking tools
 - Passwords

- Mini-project included
Classical Internet Applications (CIA)

- Classical Internet Applications
 - History
 - DNS(SEC)
 - Email
 - Web
Large Systems (LS)

- Large Systems
 - Design
 - Administration
 - Cloud Computing
 - Automation
 - Change Management

- Mini-project included
Offensive Technologies (OT)

- Offensive Technologies
 - Sniffing the network
 - Intrusion detection
 - Hacker mindset
 - Malware
 - Botnets
- Mini-project included
InterNetworking and Routing (INR)

- InterNetworking and Routing
 - Physical and logical structure of the Internet
 - Addressing (IPv4, IPv6)
 - Layer 2 and loop prevention
 - Layer 3 and routing
 - Interior (RIP, OSPF, IS-IS)
 - Exterior (BGP)
Advanced Networking (AN)

- Advanced Networking
 - In-depth TCP
 - Software Defined Networking (SDN)
 - Fiber optics
 - Wireless technology
 - Build your own network!
Cybercrime and Forensics

- Reliable gathering of digital information
- Recovering (partially) destroyed information
- Timelining
- Trap avoidance
- File systems
- Volatile information capture

Mini-project included
Advanced Security (AS)

- Advanced Security topics
 - Wireless security
 - Mobile security
 - Internet of Things
Research Projects

- Research a problem of your own choice

Examples

- OV Chipcard
- Detection of peer-to-peer botnets
- Smart metering
- Wireless protocol analysis using GNUradio
- Industrial-Scale Software Defined Networking
- Optical Networks using Hollow Fibers
Fatal flaw: How a baby became

The supposedly fail-safe system devised to foil terrorists and criminals can be easily turned to their advantage.

Steve Boggan reports

Jeroen van Beek takes the passport of a 16-month-old British boy and puts it on to a £40 smartcard reader the size of an iPod. He punches a code into his computer and, within seconds, the information contained in the passport’s microchip appears on screen.

This is not supposed to happen, as communication between the chip and the reader uses powerful encryption, but a renowned British computer expert called Adam Laurie worked out how to crack the code 18 months ago.

Within seconds, in his university office in Amsterdam, Mr van Beek, 30, copies the contents of the microchip on to another chip, making a clone of the first. He launches some software called Golden Reader Tool — the International Civil Aviation Organisation (ICAO) standard kit for checking biometric passports — and the new chip is found to be authentic.
Staff

- The Core Team
 - Director of education Karst Koymans
 - Also Networking Area coordinator
 - Security Area coordinator Jaap van Ginkel
 - Lecturers / Lab teachers Arno Bakker, Péter Prjevara, Vincent Breider
 - System Engineer Niels Sijm

- Other lecturers
 - Jeroen van Beek, Paola Grosso
 - Cees de Laat

- Guest lecturers
SNE information

- https://www.os3.nl/
- mailto:info@os3.nl
- “goto: Science Faculty, Science Park 904, Amsterdam”

for a visit and a personal introduction
Check the deadlines at https://www.uva.nl/

- Dutch students: 1 July
- EU/EEA students: 1 May
- Non-EU/EEA students: 1 February

Register in Studielink at https://www.studielink.nl/
Receive your UvA-net ID and further instructions by email (check your spam folder)

Apply for the programme in Datanose before the deadline

Go to www.datanose.nl, log in with your UvA-net ID and upload all necessary documents

Pass SNE intake!

The Admissions Board will consider your request